Skip to main content
Log in

An Asymptotic Preserving Maxwell Solver Resulting in the Darwin Limit of Electrodynamics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In plasma simulations, where the speed of light divided by a characteristic length is at a much higher frequency than other relevant parameters in the underlying system, such as the plasma frequency, implicit methods begin to play an important role in generating efficient solutions in these multi-scale problems. Under conditions of scale separation, one can rescale Maxwell’s equations in such a way as to give a magneto static limit known as the Darwin approximation of electromagnetics. In this work, we present a new approach to solve Maxwell’s equations based on a Method of Lines Transpose (\(\hbox {MOL}^T\)) formulation, combined with a fast summation method with computational complexity \(O(N\log {N})\), where N is the number of grid points (particles). Under appropriate scaling, we show that the proposed schemes result in asymptotic preserving methods that can recover the Darwin limit of electrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Assous, F., Degond, P., Segré, J.: Numerical approximation of the Maxwell equations in inhomogeneous media by P1 conforming finite element method. J. Comput. Phys. 128(2), 363–380 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind, vol. 4. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  3. Barnes, J., Hut, P.: A hierarchical \(O(N \log N)\) force-calculation algorithm. Nature 324, 446–449 (1986)

    Article  Google Scholar 

  4. Bennoune, M., Lemou, M., Mieussens, L.: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier–Stokes asymptotics. J. Comput. Phys. 227(8), 3781–3803 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Besse, N., Mauser, N., Sonnendrücker, E.: Numerical approximation of self-consistent Vlasov models for low-frequency electromagnetic phenomena. Int. J. Appl. Math. Comput. Sci. 17(3), 361–374 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Causley, M., Christlieb, A.: Higher order A-stable schemes for the wave equation using a successive convolution approach. SIAM J. Numer. Anal. 52(1), 220–235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Causley, M., Christlieb, A., Ong, B., Van Groningen, L.: Method of Lines Transpose: an implicit solution to the wave equation. Math. Comput. 83(290), 2763–2786 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Causley, M.F., Christlieb, A., Güçlü, Y., Wolf, E.: Method of Lines Transpose: a fast implicit wave propagator (2013). arXiv preprint arXiv:1306.6902

  9. Christlieb, A., Krasny, R., Verboncoeur, J., Emhoff, J., Boyd, I.: Grid-free plasma simulation techniques. IEEE Trans. Plasma Sci. 34(2), 149–165 (2006)

    Article  Google Scholar 

  10. Ciarlet, P., Jamelot, E.: Continuous Galerkin methods for solving the time-dependent Maxwell equations in 3D geometries. J. Comput. Phys. 226(1), 1122–1135 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciarlet Jr., P., Zou, J.: Finite element convergence for the Darwin model to Maxwell’s equations. RAIRO-Modélisation mathématique et analyse numérique 31(2), 213–249 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Darve, E.: The fast multipole method: numerical implementation. J. Comput. Phys. 160(1), 195–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Darwin, C.: The dynamical motions of charged particles. Lond. Edinb. Dublin Philos. Mag. J. Sci. 39(233), 537–551 (1920)

    Article  Google Scholar 

  14. De Flaviis, F., Noro, M.G., Diaz, R.E., Franceschetti, G., Alexopoulos, N.G.: A time-domain vector potential formulation for the solution of electromagnetic problems. IEEE Microw. Guid. Wave Lett. 8(9), 310–312 (1998)

    Article  Google Scholar 

  15. Degond, P., Deluzet, F., Savelief, D.: Numerical approximation of the Euler–Maxwell model in the quasineutral limit. J. Comput. Phys. 231(4), 1917–1946 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Degond, P., Liu, J.-G., Vignal, M.: Analysis of an asymptotic preserving scheme for the Euler–Poisson system in the quasineutral limit. SIAM J. Numer. Anal. 46(3), 1298–1322 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Degond, P., Raviart, P.-A.: An analysis of the Darwin model of approximation to Maxwell’s equations. Forum Math. 4, 13–44 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  19. Filbet, F., Jin, S.: A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229(20), 7625–7648 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Geng, W., Krasny, R.: A treecode-accelerated boundary integral Poisson–Boltzmann solver for electrostatics of solvated biomolecules. J. Comput. Phys. 247, 62–78 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gibbon, P., Speck, R., Karmakar, A., Arnold, L., Frings, W., Berberich, B., Reiter, D., Masek, M.: Progress in mesh-free plasma simulation with parallel tree codes. IEEE Trans. Plasma Sci. 38(9), 2367–2376 (2010)

    Article  Google Scholar 

  22. Gimbutas, Z., Rokhlin, V.: A generalized fast multipole method for nonoscillatory kernels. SIAM J. Sci. Comput. 24(3), 796–817 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guiggiani, M., Gigante, A.: A general algorithm for multidimensional Cauchy principal value integrals in the boundary element method. J. Appl. Mech. 57(4), 906–915 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jin, S.: Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review. Lecture notes for summer school on methods and models of kinetic theory (M&MKT), Porto Ercole (Grosseto, Italy), pp. 177–216 (2010)

  26. Li, P., Johnston, H., Krasny, R.: A Cartesian treecode for screened Coulomb interactions. J. Comput. Phys. 228(10), 3858–3868 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mašek, M., Gibbon, P.: Mesh-free magnetoinductive plasma model. IEEE Trans. Plasma Sci. 38(9), 2377–2382 (2010)

    Article  Google Scholar 

  28. Masmoudi, N., Mauser, N.J.: The selfconsistent Pauli equation. Monatshefte für Mathematik 132(1), 19–24 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nishimura, N.: Fast multipole accelerated boundary integral equation methods. Appl. Mech. Rev. 55(4), 299–324 (2002)

    Article  Google Scholar 

  30. Otani, Y., Nishimura, N.: A periodic FMM for Maxwells equations in 3D and its applications to problems related to photonic crystals. J. Comput. Phys. 227(9), 4630–4652 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pieraccini, S., Puppo, G.: Implicit–explicit schemes for BGK kinetic equations. J. Sci. Comput. 32(1), 1–28 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pieraccini, S., Puppo, G.: Microscopically implicit-macroscopically explicit schemes for the BGK equation. J. Comput. Phys. 231(2), 299–327 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Raviart, P.-A., Sonnendrücker, E.: Approximate models for the Maxwell equations. J. Comput. Appl. Math. 63(1), 69–81 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Raviart, P.-A., Sonnendrücker, E.: A hierarchy of approximate models for the Maxwell equations. Numer. Math. 73(3), 329–372 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Salazar, A.J., Raydan, M., Campo, A.: Theoretical analysis of the Exponential Transversal Method of Lines for the diffusion equation. Numer. Methods Partial Differ. Equ. 16(1), 30–41 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sauter, S., Schwab, C.: Boundary Element Methods. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  37. Schemann, M., Bornemann, F.: An adaptive Rothe method for the wave equation. Comput. Vis. Sci. 1(3), 137–144 (1998)

    Article  MATH  Google Scholar 

  38. Schmitz, H., Grauer, R.: Darwin–Vlasov simulations of magnetised plasmas. J. Comput. Phys. 214(2), 738–756 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sonnendrücker, E., Ambrosiano, J.J., Brandon, S.T.: A finite element formulation of the Darwin PIC model for use on unstructured grids. J. Comput. Phys. 121(2), 281–297 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xiong, T., Jang, J., Li, F., Qiu, J.-M.: High order asymptotic preserving nodal discontinuous Galerkin IMEX schemes for the BGK equation. J. Comput. Phys. 284, 70–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guo.

Additional information

Y. Cheng: Research is supported by NSF Grant DMS-1318186.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Christlieb, A.J., Guo, W. et al. An Asymptotic Preserving Maxwell Solver Resulting in the Darwin Limit of Electrodynamics. J Sci Comput 71, 959–993 (2017). https://doi.org/10.1007/s10915-016-0328-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0328-0

Keywords

Navigation