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Abstract In this paper, we consider a finite difference grid-based semi-Lagrangian approach
for solving the Vlasov–Poisson (VP) system. Many of existing methods are based on dimen-
sional splitting, which decouples the problem into solving linear advection problems, see
Cheng and Knorr (J Comput Phys 22:330–351, 1976). However, such splitting is subject to
the splitting error. If we consider multi-dimensional problems without splitting, difficulty
arises in tracing characteristics with high order accuracy. Specifically, the evolution of char-
acteristics is subject to the electric field which is determined globally from the distribution
of particle density via Poisson’s equation. In this paper, we propose a novel strategy of trac-
ing characteristics high order in time via a two-stage multi-derivative prediction–correction
approach and by using moment equations of the VP system. With the foot of characteristics
being accurately located, we propose to use weighted essentially non-oscillatory interpola-
tion to recover function values between grid points, therefore to update the solution at the
next time level. The proposed method does not have time step restriction as the Eulerian
approach and enjoys high order spatial and temporal accuracy. The performance of the pro-
posed schemes are numerically demonstrated via classical test problems such as Landau
damping and two stream instabilities.

Keywords Semi-Lagrangian · Vlasov–Poisson system · Characteristics · High order ·
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1 Introduction

This paper focuses on a high order truly multi-dimensional semi-Lagrangian (SL) approach
for the Vlasov–Poisson (VP) simulations. Arising from collisionless plasma applications, the
VP system,

∂ f

∂t
+ v · ∇x f + E(x, t) · ∇v f = 0, (1.1)

and
E(x, t) = −∇xφ(x, t), −�xφ(x, t) = ρ(x, t) − 1, (1.2)

describes the temporal evolution of the particle distribution function in six dimensional
phase space. f (x, v, t) is probability distribution function which describes the probability
of finding a particle with velocity v at position x at time t , E is the electric field, and φ is
the self-consistent electrostatic potential. The probability distribution function couples to the
long range fields via the charge density, ρ(t, x) = ∫

R3 f (x, v, t)dv, where we take the limit
of uniformly distributed infinitely massive ions in the background. In this paper, we consider
the VP system with 1-D in x and 1-D in v.

Many different approaches have been proposed for the VP simulations. There are the
Lagrangian particle-in-cell (PIC) methods, which have been very popular in practical high
dimensional simulations due to their relatively low computational cost [22,26,28]. How-
ever, the Lagrangian particle approach is known to suffer from statistical noise which is of
order 1/

√
N , where N is the number of particles in a simulation. There are very high order

Eulerian finite difference [37], finite volume [1], finite element discontinuous Galerkin meth-
ods [10,25]. Eulerian methods can be designed to be highly accurate in both space and in
time, thus being able to resolve complicated solution structures in a more efficient manner
by using a set of relatively coarse numerical mesh. However, they are subject to CFL time
step restrictions. There are the dimensional split SL approach originally proposed in [8], and
further developed in the finite volume [2,3,16,20,34], finite difference [5,30,31], finite ele-
ment discontinuous Galerkin framework [32,33] and a hybrid finite different-finite element
framework [24]. The semi-Lagrangian framework allows for extra large numerical time steps
comparedwith Eulerian approach, leading to some savings in computational cost. The dimen-
sional splitting allows for a very simple implementation procedure for tracing characteristics;
classical Strang-splitting is secondorder accurate, however it causes an operator splitting error
in time, which for example, prevents the construction of well balance schemes that maintain
the stationary solution. For convergence estimate for the semi-Lagrangian methods for the
VP simulations, we refer to [7]. If the splitting is not performed properly, numerically insta-
bilities are observed [27]. In [6,9,23], high order dimensional splitting techniques have been
applied to the VP simulations. In [11], an integral deferred correction method is proposed
for the dimensional split SL approach to reduce the splitting error in VP simulations. There
have been unsplit semi-Lagrangian solvers [12,18]. However, high order ways of tracing
characteristics for the nonlinear VP system is still lacking.

In this paper,wepropose ahighorder trulymulti-dimensional SLfinite difference approach
for solving the VP system. The ‘truly multi-dimensional’ means that no operator splitting is
involved. The difficulty is the tracing of characteristics with high order temporal accuracy
in a time step. Especially the evolution of characteristics is due to the electric field induced
by the unknown particle distribution function f in the Vlasov Eq. (1.1). A high order two-
stage multi-derivative predictor–corrector algorithm is proposed to build up a high order
characteristic-tracing algorithmbased on lower order ones,with the help ofmoment equations
of the VP system. A high order WENO interpolation is proposed to recover information
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among grid points. The proposed algorithm is of high order accuracy in both phase space and
in time.We also discuss the computational cost of the proposed algorithm. Finally, we remark
that there is no mass conservation, resolving which is the topic for our future investigation.

The paper is organized as follows. Section 2 describes the high order SL finite difference
approach without operator splitting. High order way of tracing characteristics are proposed
and analyzed. Issues related to computational cost are discussed. Section 3 presents numerical
simulation results. Finally, the conclusion is given in Sect. 4.

2 Truly Multi-Dimensional SL Algorithm

2.1 Algorithm Framework

Our goal is to design a high order SL finite difference scheme for the VP system without
operator splitting. Consider the VP system (1.1) with 1-D in x and 1-D v. The 2-D x − v

plane is discretized into uniformly spaces rectangular meshes,

x 1
2

< x1+ 1
2

< · · · < xi+ 1
2

< · · · < xnx+ 1
2
,

v 1
2

< v1+ 1
2

< · · · < v j+ 1
2

< · · · < vnv+ 1
2
.

The center of each of the rectangular cell [xi− 1
2
, xi+ 1

2
]×[v j− 1

2
, v j+ 1

2
] is denoted as (xi , v j ).

We consider evolving the numerical solution f ni, j , i = 1, · · · nx , j = 1, · · · , nv , where f ni, j
denotes the numerical solution at (xi , v j ) at the time level tn . The proposed SL algorithm in
updating the solution f n+1

i j consists of the following steps.

1. Characteristics are traced backward in time to tn . Let the foot of the characteristic at the
time level tn emanating from (xi , v j ) at tn+1 be denoted as (x�

i , v
�
j ). It is approximated

by numerically solving the following final value problem

⎧
⎪⎪⎨

⎪⎪⎩

dx(t)
dt = v(t),

dv(t)
dt = E(x(t), t),

x(tn+1) = xi ,
v(tn+1) = v j .

(2.1)

Here, we remark that solving (2.1) with high order temporal accuracy is non-trivial.
Especially, the electric field E depends on the unknown function f via Poisson’s Eq.
(1.2) in a global rather than local fashion. Moreover, being a final value problem, the
electric field E is known initially only at the time step tn . In Sect. 2.2, we discuss the
proposed high order (up to third order) way of tracing characteristics in time.

2. The solution is updated as

f n+1
i, j = f (xn,(l)

i , v
n,(l)
j , tn) ≈ f (x�

i , v
�
j , t

n). (2.2)

We propose to recover f (xn,(l)
i , v

n,(l)
j , tn) by a high order (up to sixth order) WENO

interpolation from f ni, j , i = 1, · · · nx , j = 1, · · · , nv . Here the superscript (l) denotes
the formal order of temporal approximation in locating the feet of characteristics. The
procedures are discussed in Sect. 2.3.
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2.2 Tracing Characteristics with High Order Temporal Accuracy

It is numerically challenging to design a one-step method to locate the foot of characteristics
with high order accuracy in time. The electric field E is not explicitly unknown; it is induced
by the unknown function f via the Poisson’s Eq. (1.2). Since it is difficult to evaluate the
electric field E [r.h.s. of Eq. (2.1)] for some intermediate time stages between [tn, tn+1],
Runge–Kutta methods can’t be used directly.

Below we describe our proposed predictor-corrector procedure for locating the foot of
characteristics.Wewill first describe a first order scheme in tracing characteristics; the second
scheme is built upon the first order prediction; and the proposed third order scheme is built
upon the second order prediction. In our notations, the superscript n denotes the time level, the
subscript i and j denote the location xi andv j in x andv directions respectively, the superscript
(l) denotes the formal order of approximation. For example, inEq. (2.3) below, xn,(1)

i (orvn,(1)
j )

approximates x�
i (or v�

j ) with first order, and En
i = E(xi , tn). d

dt = ∂
∂t + ∂x

∂t
∂
∂x denotes

the material derivatives along characteristics. The order of approximation we mentioned
in this subsection is for temporal accuracy. We propose to use a spectrally accurate fast
Fourier transform (FFT) in solving the Poisson’s Eq. (1.2), whose r.h.s. function ρ(x, t) =∫

f (x, v, t)dv is evaluated by a mid-point rule numercally. The mid point rule is of spectral
accuracy given the function being integrated is either periodic or compactly supported [4].

2.2.1 First Order Scheme

We let
xn,(1)
i = xi − v j�t; v

n,(1)
j = v j − En

i �t, (2.3)

which are first order approximations to x�
i and v�

j , see Proposition 2.1 below. Let

f n+1,(1)
i, j = f (xn,(1)

i , v
n,(1)
j , tn), (2.4)

which is a first order in time approximation to the exact solution f (xi , v j , tn+1). Note that
the spatial approximation in Eq. (2.4) (and in other similar equations in this subsection) is
performed via high order WENO interpolation discussed in Sect. 2.3. Based on { f n+1,(1)

i, j },
we compute

ρ
n+1,(1)
i , En+1,(1)

i

by using a mid-point rule and FFT based on the Poisson’s Eq. (1.2). Note that ρ
n+1,(1)
i and

En+1,(1)
i also approximate ρ(xi , tn+1) and E(xi , tn+1) with first order temporal accuracy.

Proposition 2.1 xn,(1)
i and v

n,(1)
j constructed in Eq. (2.3) are first order approximations to

x�
i and v�

j in time.
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Proof By Taylor expansion,

x�
i = xi − dxi

dt
(xi , v j , t

n+1)�t + O(�t2)

= xi − v j�t + O(�t2)
(2.3)= xn,(1)

i + O(�t2),

v�
j = v j − dv j

dt
|tn+1�t + O(�t2)

= v j − En+1
i �t + O(�t2)

= v j − (En
i + O(�t))�t + O(�t2)

(2.3)= v
n,(1)
j + O(�t2).

Hence xn,(1)
i and v

n,(1)
j are second order approximations to x�

i and v�
j locally in time for a

time step; the approximation is of first order in time globally. We remark that the proposed
first order scheme is similar to, but different from, the standard forward Euler or backward
Euler integrator. It is specially tailored to the system (2.1). ��

2.2.2 Second Order Scheme

We let

xn,(2)
i = xi − 1

2
(v j + v

n,(1)
j )�t, v

n,(2)
j = v j − 1

2
(E(xn,(1)

i , tn) + En+1,(1)
i )�t, (2.5)

which are second order approximations to x�
i and v�

j , see Proposition 2.2 below. Note

that E(xn,(1)
i , tn) in Eq. (2.5) can be approximated by WENO interpolation from {En

i }nxi=1.

Let f n+1,(2)
i, j = f (xn,(2)

i , v
n,(2)
j , tn), approximating f (xi , v j , tn+1) with second order in

time. Based on { f n+1,(2)
i, j }, we compute ρ

n+1,(2)
i , En+1,(2)

i approximating ρ(xi , tn+1) and

E(xi , tn+1) with second order temporal accuracy.

Proposition 2.2 xn,(2)
i and v

n,(2)
j constructed in Eq. (2.5) are second order approximations

to x�
i and v�

j in time.

Proof It can be checked by Taylor expansion

x�
i = xi −

(
dx

dt
(xi , v j , t

n+1) + dx

dt
(x�

i , v
�
j , t

n)

)
�t

2
+ O(�t3)

= xi −
(
v�
j + v j

) �t

2
+ O(�t3)

Prop. 2.1= xi −
(
v
n,(1)
j + O(�t2) + v j

) �t

2
+ O(�t3)

= xi −
(
v
n,(1)
j + v j

) �t

2
+ O(�t3)

(2.5)= xn,(2)
i + O(�t3).
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Similarly,

v�
j = v j −

(
En+1
i + E(x�

i , t
n)

) �t

2
+ O(�t3)

Prop. 2.1= v j −
(
En+1,(1)
i + E(xn,(1)

i , tn) + O(�t2)
) �t

2
+ O(�t3)

(2.5)= v
n,(2)
j + O(�t3).

Hence xn,(2)
i and v

n,(2)
j are third order approximations to x�

i and v�
j locally in time for a time

step; the approximation is of second order in time globally. Again the proposed second order
scheme tailored to the system (2.1) is similar to, but slightly different from, the second order
Runge–Kutta integrator based on the trapezoid rule. ��

2.2.3 Third Order Scheme

We let

xn,(3)
i = xi − v j�t + �t2

2

(
2

3
En+1,(2)
i + 1

3
E(xn,(2)

i , tn)

)

, (2.6)

v
n,(3)
j = v j − En+1,(2)

i �t + �t2

2

(
2

3

(
d

dt
E(xi , t

n+1)

)(2)

+ 1

3

d

dt
E(xn,(2)

i , tn)

)

,

(2.7)

which are third order approximations to x�
i and v�

j , see Proposition 2.4 below. Note that
d
dt E terms on the r.h.s. of Eq. (2.7) will be obtained by using the macro-equations described

below. Let f n+1,(3)
i, j = f (xn,(3)

i , v
n,(3)
j , tn), approximating f (xi , v j , tn+1) with third order

in time. Based on { f n+1,(3)
i, j }, we compute ρ

n+1,(3)
i , En+1,(3)

i approximating ρ(xi , tn+1)

and E(xi , tn+1) with third order temporal accuracy.

Remark 2.3 We note that the mechanism to build this third order scheme is different from
Runge–Kutta methods where intermediate stage solutions are constructed. It has some sim-
ilarity in spirit to the Lax–Wendroff type method, where higher order time derivatives are
recursively transformed into spatial derivatives. The difference with the Lax–Wendroff type
time integration is: Lax–Wendroff method only uses spatial derivatives at one time level,
while the proposed method uses the spatial derivatives (or its high order approximations) at
both tn and tn+1 via a predictor–corrector procedure. In a sense, the proposed method is a
two-stage multi-derivative method.

With ∂E
∂x = ρ −1 from the Poisson’s Eq. (1.2), to compute the Lagrangian time derivative

along characteristics d
dt E = ∂E

∂t +v ∂E
∂x , we only need to numerically approximate ∂E

∂t . Notice
that if we integrate the Vlasov Eq. (1.1) over v, we have

ρt + Jx = 0, (2.8)

where ρ(x, t) is the charge density and J (x, t) = ∫
f vdv is the current density. With the

Poisson’s Eq. (1.2), and fromEq. (2.8), we have ∂
∂x (Et + J ) = 0, that is Et + J is independent

of the spatial variable x . Thus

Et + J = 1

L

∫
(Et + J (x, t))dx = 1

L

∫
J (x, t)dx,
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the last equality above is due to the periodic boundary condition on the potential. It can be
shown, by multiplying the Vlasov Eq. (1.1) by v and performing integration in both x- and
v- directions, that

∂

∂t

∫
J (x, t)dx = 0,

therefore
∂

∂t
E(x, t) + J = 1

L

∫
j (x, t = 0)dx

.= J̄ 0,

where ·̄ denotes one’s spatial average. Hence,
d

dt
E =

(
∂

∂t
+ v

∂

∂x

)

E = J̄ 0 − J (x, t) + v(ρ − 1). (2.9)

Specifically, in Eq. (2.7)
(
d

dt
E(xi , t

n+1)

)(2)

= J̄ 0 − Jn+1,(2)
i + v j (ρ

n+1,(2)
i − 1),

d

dt
E(xn,(2)

i , tn) = J̄ 0 − J (xn,(2)
i , tn) + v

n,(2)
j (ρ(xn,(2)

i , tn) − 1).

Note that Jn+1,(2)
i and Jni can be evaluated by mid-point rule from { f n+1,(2)

i, j } and { f ni, j }
respectively with spectral accuracy in space; while J (xn,(2)

i , tn) can be numerically approx-
imated by WENO interpolation from Jni .

Proposition 2.4 xn,(3)
i and v

n,(3)
j constructed in Eqs. (2.6)–(2.7) are third order approxima-

tions to x�
i and v�

j in time.

Proof It can be checked by Taylor expansion

x�
i = xi − dx

dt
(xi , v j , t

n+1)�t +
(
2

3

d2xi
dt2

(xi , v j , t
n+1) + 1

3

d2xi
dt2

(x�
i , v

�
j , t

n)

)
�t2

2

+O(�t4)

= xi − v j�t +
(
2

3
En+1
i + 1

3
E(x�

i , t
n)

)
�t2

2
+ O(�t4)

Prop. 2.2= xi − v j�t +
(
2

3
En+1,(2)
i + 1

3
E(xn,(2)

i , tn) + O(�t3)

)
�t2

2
+ O(�t4)

(2.5)= xn,(3)
i + O(�t4).

Similarly,

v�
j = v j − En+1

i �t +
(
2

3

dE

dt
(xi , t

n+1) + 1

3

dE

dt
(x�

i , t
n)

)
�t2

2
+ O(�t4)

Prop. 2.2= v j − (En+1,(2)
i + O(�t3))�t

+
(
2

3

(
dE

dt
(xi , t

n+1)

)(2)

+ 1

3

dE

dt
(xn,(2)

i , tn) + O(�t3)

)
�t2

2
+ O(�t4)

(2.5)= v
n,(3)
j + O(�t4).
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Hence xn,(3)
i and v

n,(3)
j are fourth order approximations to x�

i and v�
j locally in time for a

time step; the approximation is of third order in time globally. ��

2.2.4 Higher Order Extensions

The procedures proposed above for locating the foot of characteristics can be extended
to schemes with higher order temporal accuracy by using higher order version of Taylor

expansion, e.g. as in Eqs. (2.6) and (2.7). As higher order material derivatives, e.g. d2

dt2
E ,

are involved, a set of macro-equations from the Vlasov equation are needed. Specifically, we
propose to multiply the Vlasov Eq. (1.1) by vk , integrate over v and obtain

∂

∂t
Mk + ∂

∂x
Mk+1 − kEMk−1 = 0,

where Mk(x, t) = ∫
f (x, v, t)vkdv. Especially, M0 = ρ(x, t) is the charge density and

M1 = J (x, t) is the current density. When k = 0, we have Eq. (2.8); When k = 1, we have

∂

∂t
J + ∂

∂x
M2 − Eρ = 0. (2.10)

With these, we have

d2E

dt2
(2.9)=

(
∂

∂t
+ v

∂

∂x

)

( J̄ 0 − J (x, t) + v(ρ − 1))

(2.10)= v2
∂ρ

∂x
+ ∂M2

∂x
− 2v

∂ J

∂x
− E, (2.11)

where spatial derivative terms can be evaluated by high orderWENO interpolations or recon-
structions.

2.3 High Order WENO Interpolations

In this subsection, we discuss the procedures in spatial interpolation to recover information
among grid points to update numerical solution by Eq. (2.2), and in spatial reconstruction
to recover function derivatives at grid points, e.g. in computing spatial derivatives in Eq.
(2.11). There have been a variety of interpolation choices, such as the piecewise parabolic
method (PPM) [14], spline interpolation [15], cubic interpolation propagation (CIP) [36],
ENO/WENO interpolation [5,31]. In our work we adapt the WENO interpolations.

2.3.1 WENO Interpolations

High order accuracy is achieved by using several points in the neighborhood: the number
of points used in the interpolation determines the order of interpolation. WENO [5,13,31],
short for ‘weighted essentially non-oscillatory’, is a well-developed adaptive procedure to
overcome Gibbs phenomenon, when the solution is under-resolved or contains discontinu-
ity. Specifically, when the solution is smooth the WENO interpolation recovers the linear
interpolation for very high order accuracy; when the solution is under-resolved, the WENO
interpolation automatically assigns more weights to smoother stencils. The smoothness of
the stencil is measured by the divided differences of numerical solutions. Below we provide
formulas for the sixth order WENO interpolation, which is what we used in our simulations.
The reason we choose to use such high order WENO interpolation is that we would like to
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make the temporal error the dominant one in our numerical studies, since the focus of current
paper is on temporal discretization of characteristics.

The sixth order WENO interpolation at a position x ∈ [xi−1, xi ] (or ξ
.= x−xi

�x ∈ [−1, 0])
is obtained by

Q(ξ) = ω1P1(ξ) + ω2P2(ξ) + ω3P3(ξ),

where

P1(ξ) = ( fi−3, fi−2, fi−1, fi )

⎛

⎜
⎜
⎝

0 −1/3 −1/2 −1/6
0 3/2 2 1/2
0 −3 −5/2 −1/2
1 11/6 1 1/6

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1
ξ

ξ2

ξ3

⎞

⎟
⎟
⎠ ,

P2(ξ) = ( fi−2, fi−1, fi , fi+1)

⎛

⎜
⎜
⎝

0 1/6 0 −1/6
0 −1 1/2 1/2
1 1/2 −1 −1/2
0 1/3 1/2 1/6

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1
ξ

ξ2

ξ3

⎞

⎟
⎟
⎠ ,

P3(ξ) = ( fi−1, fi , fi+1, fi+2)

⎛

⎜
⎜
⎝

0 −1/3 1/2 −1/6
1 −1/2 −1 1/2
0 1 1/2 −1/2
0 −1/6 0 1/6

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1
ξ

ξ2

ξ3

⎞

⎟
⎟
⎠ .

Linear weights are

γ1(ξ) = 1

20
(ξ − 1)(ξ − 2), γ2(ξ) = − 1

10
(ξ + 3)(ξ − 2), γ3(ξ) = 1

20
(ξ + 3)(ξ + 2).

Nonlinear weights are chosen to be

ωm = ω̃m
∑3

l=1 ω̃l
, with ω̃l = γl

(ε + βl)2
, l = 1, 2, 3,

where ε = 10−6, and the smoothness indicators are

β1 = −9 fi−3 fi−2 + 4/3 fi−3
2 − 11/3 fi−3 fi + 10 fi−3 fi−1 + 14 fi−2 fi

+22 fi−1
2 − 17 fi−1 fi + 10/3 fi

2 + 16 fi−2
2 − 37 fi−2 fi−1,

β2 = −7 fi−2 fi−1 + 4/3 fi−2
2 − 5/3 fi−2 fi+1 + 6 fi−2Ui + 6 fi−1 fi+1

+10 fi
2 − 7 fi fi+1 + 4/3 f4

2 + 10 fi−1
2 − 19 fi−1 fi ,

β3 = −17 fi−1 fi + 10/3 fi−1
2 − 11/3 fi−1 fi+2 + 14 fi−1 fi+1 + 10 fi fi+2

+16 fi+1
2 − 9 fi+1 fi+2 + 4/3 fi+2

2 + 22 fi
2 − 37 fi fi+1.

The above proposed sixth order WENO interpolation has a local truncation error on the
order of O(�x6) per time step. If such error is considered in local truncation error estimate,
see Proposition 2.4, then we would have the following Proposition taking into account the
spatial discretization error. Such estimate is being numerically confirmed in the error Table 1
presented in Sect. 3.

Proposition 2.5 Consider xn,(3)
i and v

n,(3)
j constructed in Eqs. (2.6)–(2.7) with the sixth

order WENO interpolation as described above. Assume that the local truncation error for
the sixth order WENO interpolation for a smooth problem is O(�x6), then xn,(3)

i and v
n,(3)
j

are third order approximations to x�
i and v�

j in time and fifth order approximations in space.
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Proof Following similar analysis as in Proposition 2.4 but taking into account the error from
spatial discretization, we would have

x�
i = xn,(3)

i + O(�t4,�x6), (2.12)

v�
j = v

n,(3)
j + O(�t4,�x6). (2.13)

That is xn,(3)
i and v

n,(3)
j are fourth order approximations to x�

i and v�
j in time and sixth order

approximations in space locally for a time step; the approximation is of third order in time
and of orderO(�x6/�t) in space globally. If one assume�t = O(�x), the scheme becomes
fifth order in space globally. ��

Remark 2.6 The main novelty of the proposed method, compared with other existing meth-
ods, is the high order way of tracing characteristics in time. We don’t foresee any difficulty
in extending such high order characteristics tracing algorithm to unstructured mesh, as long
as the spatial derivatives can be approximated on the corresponding meshes with proper
accuracy and efficiency. Note that this can be achieved in the finite difference setting on a
regular Cartesian mesh, which is the case that we consider in this paper. High order WENO
reconstruction on unstructured meshes are possible. For example, in the context of finite
volume schemes, we mention the work by Dumbser et al. [17] and Liu and Zhang [29].

2.4 Computational Cost and Savings

One of the procedures in the proposed method that takes up much computational time is to
trace the foot of characteristics. Assume N = nx = nv , the scheme involves solving the
Poisson’s equation via FFT with the cost on the order of N log(N ) and a high order 2-D
WENO interpolation on the order of CN 2, where the constant C is larger when the order of
interpolation is higher. Since the 2-D WENO interpolation (compared with the 1-D Poisson
solver) is a procedure that takes most of the computational time, we will use the number of
2-D WENO interpolations as a measurement of computational cost.

For the first order scheme (2.3), there is a high order 2-D WENO interpolation involved.
The proposed second order scheme (2.5) is based on the first order prediction: two high order
2-DWENO interpolations are involved. This leads to twice the computational cost as the first
order scheme. The third order scheme (2.6)–(2.7) is based on the second order prediction:
three high order 2-D WENO interpolations are involved. We claim that proposed high order
procedures are computationally efficient: the computational cost roughly grows linearly with
the order of approximation. To further save some computational cost, we propose to use
lower order 2-D WENO interpolation in the prediction steps. Specifically, in the third order
scheme (2.6)–(2.7), we propose to use a second order 2-D WENO interpolation in the first
order prediction, use a fourth order 2-D WENO interpolation in the second order prediction,
and use a sixth order 2-D WENO interpolation in the final step of updating.

3 Numerical Tests: The Vlasov–Poisson System

In this section, we examine the performance of the proposed fully multi-dimensional
semi-Lagrangian method for the VP systems. Periodic boundary condition is imposed in
x-direction, while zero boundary condition is imposed in v-direction. We recall several quan-
tities in the VP system below, which should remain constant in time.
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1. Mass:

Mass =
∫

v

∫

x
f (x, v, t)dxdv.

2. L p norm 1 ≤ p < ∞:

‖ f ‖p =
(∫

v

∫

x
| f (x, v, t)|pdxdv

) 1
p

. (3.14)

3. Energy:

Energy =
∫

v

∫

x
f (x, v, t)v2dxdv +

∫

x
E2(x, t)dx, (3.15)

where E(x, t) is the electric field.
4. Entropy:

Entropy =
∫

v

∫

x
f (x, v, t) log( f (x, v, t))dxdv. (3.16)

Tracking relative deviations of these quantities numerically will be a good measure of the
quality of numerical schemes. The relative deviation is defined to be the deviation away
from the corresponding initial value divided by the magnitude of the initial value. In our
numerical tests, we let the time step size �t = CFL · min(�x/vmax ,�v/max(E)), where
CFL is specified for different runs; and let vmax = 6 to minimize the error from truncating
the domain in v-direction.

We first present the example of two stream instability, for which we will demonstrate
the (1) high order spatial accuracy and the high order temporal accuracy of the proposed
schemes; (2) the time evolution of overall mass and other theoretically conserved physical
norms for the proposed method; (3) the performance of the proposed method in resolving
solution structures.

Example 3.1 Consider two stream instability [19], with an unstable initial distribution func-
tion:

f (x, v, t = 0) = 2

7
√
2π

(1+5v2)(1+α((cos(2kx)+cos(3kx))/1.2+cos(kx)) exp

(

−v2

2

)

(3.17)
with α = 0.01, k = 0.5, the length of the domain in the x direction is L = 2π

k and the
background ion distribution function is fixed, uniform and chosen so that the total net charge
density for the system is zero.

We test both spatial and temporal convergence of the proposed truly multi-dimensional
semi-Lagrangianmethod.We first test the spatial convergence by using a sequence of meshes
with nx = nv = {210, 126, 90, 70}. The meshes are designed so that the coarse mesh grid
coincides with part of the reference finemesh grid (nx = nv = 630). The errors are measured
by comparing the numerical solution with that on the reference fine grid with 630×630 grid
points. We set CFL = 0.01 so that the spatial error is the dominant error. Table 1 is the
spatial convergence table for the proposed schemes with sixth order WENO interpolation.
The expected fifth order convergence globally in time in observed. An alternative way of
checking the convergence of the proposed scheme is to make use of the time reversibility
of the VP system. In particular, one can firstly integrate the system forward to some time
T , and then reverse the process and integrate the system backward by the same amount of
time T . After such forward and backward integration processes, the system should recover
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Table 1 Two stream instability: test order of accuracy in space for the SL WENO schemes by comparing
numerical solutions with a reference solution from a simulation with a set of refined mesh

nx × nv L1 error Order

70 × 70 7.01E-7 –

90 × 90 2.06E-7 4.88

126 × 126 3.96E-8 4.89

210 × 210 3.20E-9 4.95

The scheme use sixth order WENO interpolation and has a third order temporal accuracy in tracing charac-
teristics. T = 1 and CFL = 0.01. We set CFL = 0.01 so that the spatial error is the dominant error

Table 2 Two stream instability: test order of accuracy in space for the SL WENO schemes via the time
reversibility of the system

nx × nv L1 error Order

60 × 60 1.52E-6 –

80 × 80 4.17E-7 4.53

100 × 100 1.43E-7 4.78

120 × 120 6.00E-8 4.76

140 × 140 2.90E-8 4.82

The scheme use sixth order WENO interpolation and has a third order temporal accuracy in tracing charac-
teristics. T = 0.5 and CFL = 0.01. We set CFL = 0.01 so that the spatial error is the dominant error

the initial condition, which can be used as a reference solution. We show errors and the
corresponding orders in Table 2 by the above-mentioned time reversibility property for testing
spatial convergence. We then test the temporal convergence of the proposed first, second and
third order schemes. Table 3 provides the temporal convergence rate for the scheme with
the first to third order temporal accuracy. We use the sixth order WENO interpolation and
a spatial mesh of nx = nv = 160, so that the temporal error is the dominant error. The
reference solution is computed by using the same spatial mesh but with relatively small
CFL = 0.1. In Table 3, the time step size is about 6 to 10 times that from an Eulerian
method, yet highly accurate numerical results is achieved. Expected first, second and third
order temporal accuracy are observed. On the rightmost column of Table 3, we show errors
and the corresponding orders of convergence with CFL ranging from 1 to 5. One can see that
the spatial error starts to dominate as CFL decreases, thus the theoretical order of convergence
in time can no longer be observed.

To compare the performance of schemes with different temporal orders, we numerically
track the time evolution of physically conserved quantities of the system. In our runs, we let
nx = nv = 128, CFL = 5. In Fig. 1, the time evolution of numerical L1 norm, L2 norm,
energy and entropy for schemeswith different orders of temporal accuracy are plot. In general,
high order temporal accuracy indicates a better preservation of those physically conserved
norms. The L1 norm is not conserved since our scheme is neither mass conservative nor
positivity preserving. We also check the mass conservation over time

∫
v

∫
x f (x, v, t)dxdv,

which is the same as the L1 norm if f is positive. For this example, the time evolution of
mass and L1 norm appear to be the same, indicating positivity of the solution. In Fig. 2,
we show the contour plot and slices of the numerical solution of the proposed SL WENO
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Table 3 Two stream instability. nx = nv = 160 and T = 5

CFL First order Second order Third order CFL Third order

L1 error Order L1 error Order L1 error Order CFL L1 error Order

6 1.17E-4 – 2.40E-6 – 1.13E-7 3.00 1 1.70E-9 –

7 1.40E-4 1.13 2.80E-6 2.04 1.79E-7 3.02 2 5.00E-9 1.60

8 1.63E-4 1.16 3.69E-6 2.07 2.69E-7 3.02 3 1.44E-8 2.60

9 1.87E-4 1.16 4.69E-6 2.04 3.84E-7 3.03 4 3.35E-8 2.93

10 2.12E-4 1.20 5.84E-6 2.08 5.31E-7 3.065 5 6.52E-8 2.97

Order of accuracy in time for the SLWENO schemes with sixth orderWENO interpolation and various orders
of temporal accuracy. The rightmost column is for the third order scheme with CFL ranging from 1 to 5. One
can see that the spatial error starts to dominate as CFL decreases, thus the theoretical order of convergence in
time can no longer be observed

Fig. 1 Two stream instability. The SL WENO scheme with sixth order WENO interpolation in space and
various orders of temporal accuracy. Time evolution of the relative deviations of discrete L1 norms (upper
left), L2 norms, kinetic energy norms (lower left) and entropy (lower right)

method with third order temporal accuracy at T = 60. The plot is comparable to our earlier
work reported in [30,31].

Example 3.2 Consider weak Landau damping for the Vlasov–Poisson system with initial
condition:

f (x, v, t = 0) = 1√
2π

(1 + α cos(kx)) exp

(

−v2

2

)

, (3.18)
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Fig. 2 Two stream instability: T = 60. The SLWENO scheme with the sixth order WENO interpolation and
a third order temporal accuracy. The spatial mesh is 128× 128 and CFL = 5. Left panel presents the contour
plot of the numerical solution, with middle and right panels presenting slices of numerical solutions at mid
points of spatial domain and at v = 0 respectively

Fig. 3 Weak Landau damping. Time evolution of electric field in L2 norm

whereα = 0.01.When the perturbationmagnitude is small enough (α = 0.01), theVPsystem

can be approximated by linearization around theMaxwellian equilibrium f 0(v) = 1√
2π

e− v2
2 .

The analytical damping rate of electric field can be derived accordingly [21]. We test the
numerical numerical damping rates with theoretical values. We only present the case of
k = 0.5. The spatial computational grid has nx = nv = 128 and CFL = 5.

For the scheme with first, second and third order accuracy in time and sixth order WENO
interpolation in space, we plot the evolution of electric field in L2 norm benchmarked with
theoretical values (solid black lines in the figure) in Fig. 3. A better match with the theoretical
decay rate of the electric field is observed for schemes with second and third order temporal
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Fig. 4 Weak Landau damping. The proposed SL WENO scheme with first, second and third order accuracy
in time and sixth order WENO interpolation in space. Time evolution of the relative deviations of discrete L1

norms (upper left), L2 norms, kinetic energy norms (lower left) and entropy (lower right)

accuracy. The time evolution of discrete L1 norm, L2 norm, kinetic energy and entropy of
schemes with different temporal orders are reported in Fig. 4. L1 and L2 norms are better
preserved by schemes with higher order temporal accuracy. Note that the mass is not exactly
preserved. Energy and entropy are better preserved by schemes with second and third order
accuracy than that with first order accuracy. For this weak Landau damping test, the time
evolution of the mass exactly coincides with that of the L1 norm, indicating that there is no
negative values in the function f .

Example 3.3 Consider strong Landau damping. The initial condition is Eq. (3.18), with
α = 0.5 and k = 0.5. The evolution of L2 norms of electric field is provided in Fig. 5, which
is comparable to existing results in the literature, e.g. see [24]. The time evolution of discrete
mass, L1 norm, L2 norm, kinetic energy and entropy are reported in Fig. 6. The L1 norm, as
expected, is not conservative. Numerical solutions of the proposed scheme at different times
are observed to be comparable to those that have been well reported in the literature, e.g.
[24,30] among many others. Thus we omit to present those figures to save space.

Example 3.4 Consider the symmetric two stream instability [1], with the initial condition

f (x, v, t = 0) = 1√
8πvth

[

exp

(

− (v − u)2

2v2th

)

+ exp

(

− (v + u)2

2v2th

)]
(
1+0.0005 cos(kx)

)

(3.19)
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Fig. 5 Strong Landau damping. Time evolution of electric field in L2 norm

Fig. 6 Strong Landau damping. The SL WENO scheme with sixth order WENO interpolation in space and
various orders of temporal accuracy. Time evolution of the relative deviations of discrete L1 norms (upper
left), L2 norms, kinetic energy norms (lower left) and entropy (lower right)
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Fig. 7 Symmetric two stream instability: time evolution of electric field in L2 norm. The SLWENO scheme
with sixth order WENO interpolation in space and various orders of temporal accuracy

Fig. 8 Symmetric two stream instability. The SL WENO scheme with sixth order WENO interpolation in
space and various orders of temporal accuracy. Time evolution of the relative deviations of discrete mass
(upper left), L1 norms (upper middle), L2 norms, kinetic energy norms (lower left) and entropy (lower right)
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Fig. 9 Symmetric two stream instability: T = 50. Results from schemes with first order temporal accuracy
with CFL = 5 (upper left), CFL = 0.1 (upper right). Results from schemes with second order temporal
accuracy (lower left) and third order temporal accuracy (lower right) and CFL = 5

with u = 5
√
3/4, vth = 0.5 and k = 0.2. The background ion distribution function is fixed,

uniform and chosen so that the total net charge density for the system is zero. We use a mesh
of 128 × 128 and CFL = 5. Figure 7 plots the evolution of electric fields for the proposed
scheme benchmarked with a reference rate from linear theory γ = 1√

8
, see [1]. Theoretical

consistent results are observed. Time evolution of discrete mass, L1 norm, L2 norm, kinetic
energy and entropy of schemes with different temporal orders are reported in Fig. 8. Again,
higher order schemes in general performbetter in preserving the conserved physical quantities
than low order ones. The mass conservation over time

∫
v

∫
x f (x, v, t)dxdv is different from

the L1 norm, since our scheme is not positivity preserving. The first two upper panels in Fig. 8
indicates howmuch of themass conservation and positivity are preserved at the discrete level.
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Fig. 10 Symmetric two stream instability. Slices of numerical solutions of the scheme with third order
temporal accuracy and CFL = 5. Left: the solution f (x, v, T = 50) with x located at the mid point of the
domain. Right: the solution f (x, v = 0, T = 50) with a reference line y = 0. It can be observed from the
right panel that the numerical solution does not strictly preserve positivity

In Fig. 9, we report numerical solutions from the SL WENO schemes with various temporal
accuracy in approximating the distribution solution f . It can be observed that, with the same
time step size, the higher order schemes (e.g. second and third order ones) perform better
than a first order one. For this example, we also show two slides of numerical solutions in
Fig. 10. It can be observed that our scheme does not preserve positivity of the solution. The
positivity error, however, is small and quickly decreases as the grid is refined. We measure
the positivity error, defined as

err p = ‖ f ‖1 − ∫
x

∫
v
f (x, v, t) dv dx

‖ f ‖1 .

For a mesh of 128 × 128, the positivity error is measured as 8.00E − 5. While we refine
the mesh to 256 × 256, the positivity error is measured as 1.73E − 5, indicating a decay
of positivity error with mesh refinement. Designing schemes with mass conservation and
positivity is of great importance and this constitutes our ongoing and future work [35].

4 Conclusion

In this paper, we propose a systematic way of tracing characteristics for a one-dimensional
in space and one-dimensional in velocity Vlasov–Poisson system with high order temporal
accuracy. Based on suchmechanism, a finite difference grid-based semi-Lagrangian approach
coupled withWENO interpolation is proposed to evolve the system. It is numerically demon-
strated that schemes with higher order of temporal accuracy perform better in many aspects
than the first order ones. Designingmass conservative semi-Lagrangian schemes, yet not sub-
ject to time step constraints, is considered to be challenging and is subject to future research
investigations.
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