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Abstract When using a finite difference method to solve a time dependent partial differen-
tial equation, the truncation error is often larger at a few grid points near a boundary or grid
interface than in the interior. In computations, the observed convergence rate is often higher
than the order of the large truncation error. In this paper, we develop techniques for analyzing
this phenomenon, and particularly consider the second order wave equation. The equation
is discretized by a finite difference operator satisfying a summation by parts property, and
the boundary and grid interface conditions are imposed weakly by the simultaneous approx-
imation term method. It is well-known that if the semi-discretized wave equation satisfies
the determinant condition, that is the boundary system in Laplace space is nonsingular for
all Re(s) ≥ 0, two orders are gained from the large truncation error localized at a few grid
points. By performing a normal mode analysis, we show that many common discretizations
do not satisfy the determinant condition at s = 0. We then carefully analyze the error equa-
tion to determine the gain in the convergence rate. The result shows that stability does not
automatically imply a gain of two orders in the convergence rate. The precise gain can be
lower than, equal to or higher than two orders, depending on the boundary condition and
numerical boundary treatment. The accuracy analysis is verified by numerical experiments,
and very good agreement is obtained.
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1 Introduction

In many physical problems arising in for example acoustics, seismology, and electromag-
netism, the governing equations can be formulated as systems of second order time dependent
hyperbolic partial differential equations (PDE). For wave propagation problems with smooth
solutions, it has been shown that high order accurate time marching methods as well as high
order spatial discretizations solve these problems more efficiently than low order methods
[7,9,10]. Examples of high order accurate methods to discretize the wave equation include
the discontinuous Galerkin method [5] and the spectral method [23]. In this paper, we in
particular consider high order finite difference methods.

High order finite difference methods have been widely used for solving wave propaga-
tion problems. One major difficulty with high order spatial discretizations is the numerical
treatment of boundary conditions and grid interface conditions. To achieve both stability and
high accuracy, one candidate is the summation-by-parts simultaneous–approximation–term
(SBP–SAT) finite difference method [4,22]. SBP finite difference operators were originally
constructed in [11] for first derivatives. In this paper,weuse theSBPfinite difference operators
in [15] to approximate second derivatives. Boundary conditions and grid interface conditions
are imposed weakly by the SAT technique [2,3,13,14]. In the SBP–SAT framework, the
energy method is often used to derive an energy estimate that guarantees stability.

A commonly used measure for accuracy is convergence rate, typically in L2 norm. The
convergence rate indicates how fast the error in the numerical solution approaches zero as
the mesh size goes to zero. The error in the numerical solution is caused by truncation errors.
The truncation error near a boundary is often larger than in the interior of the computational
domain, but the large boundary truncation error is localized at a fixed number of grid points.
As a consequence, its effect on the convergence rate may be weakened. This is often called
gain in convergence. A rule of thumb says m orders are gained in convergence for a PDE
with mth order spatial derivative, and such a gain is termed as optimal. The analysis of gain
in convergence for different PDEs has been a long–standing research topic.

It is well–known that by directly applying the energy method to the error equation, 1/2
order is gained in the convergence rate comparedwith the largest truncation error.Anoticeable
exception is that in [1], it is proven that 3/2 orders are gained in the convergence rate
for parabolic problems by a careful derivation of the energy estimate. However, numerical
experiments in [1] show a gain of two orders in convergence. This indicates that although an
energy estimate gives an upper bound of the error, it is often not sharp.

A more powerful tool for stability and accuracy analysis is normal mode analysis, which
is used for example in [6] to prove that under reasonable conditions one order is gained
in the convergence rate for first order hyperbolic systems. The idea is based on Laplace
transforming the error equation in time, which leads to a system of linear equations referred
to as the boundary system. The optimal gain straightforwardly follows if the boundary system
is nonsingular for all Re(s) ≥ 0, where s is the dual variable of time in Laplace space. For
such cases we use the same terminology as in [8, pp. 292] and say that the boundary system
satisfies the determinant condition.

In [21] the concept of pointwise stability is put forward as a condition implying the
determinant condition, and therefore leading to the optimal gain. In [22] a sufficient condition
of pointwise stability for an initial–boundary–value problem with a first derivative in time
is discussed. However, we find that for the wave equation, the determinant condition does
not follow from pointwise stability as defined in [21], and such an example is presented in
“Appendix 2”.
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In fact, there are many examples of discretized problems that violate the determinant
condition at points along the imaginary axis, even though the discretization is stable by an
energy estimate. In [17], the Schrödinger equation with a grid interface is considered and is
shown to be of this type. Analysis in Laplace space is performed and yields sharper error
estimates than the 1/2 order gain obtained by applying the energymethod to the error equation
in physical space.

In this paper, we consider the wave equation in the second order form. We find that
also for this problem, the determinant condition is violated in many interesting settings
even though there is an energy estimate. In particular, we consider problems with Dirichlet
boundary conditions, Neumann boundary conditions and a problem with a grid interface,
which are referred to as the Dirichlet problem, the Neumann problem and the interface
problem, respectively. If the determinant condition is satisfied,weget the optimal convergence
rate. If the determinant condition is not satisfied on the imaginary axis, the results in [8] are
not valid. We then carefully derive an estimate for the solution of the boundary system to
see how much is gained in the convergence rate. In addition, we have found by a careful
analysis of the boundary system that in certain cases the gain in convergence is higher than
the optimal gain, which we refer to as super–convergence.

The main contributions in this paper are: for the second order wave equation (1) an
energy estimate does not imply an optimal convergence rate; (2) the determinant condition
is not necessary for an optimal convergence rate; (3) if there is an energy estimate but the
determinant condition is not satisfied, there can be an optimal gain of order 2, or a non–
optimal gain of order 1, or only order 1/2; (4) in certain cases it is possible to obtain a
super–convergence, i.e. a gain of 2.5 orders.

The rest of the paper is organized as follows. We start in Sect. 2 with the SBP–SAT
method applied to the one dimensional wave equation with Dirichlet boundary conditions.
We apply the energy method and normal mode analysis, and derive results that correspond to
the second, fourth and sixth order schemes.We then discuss the Neumann problem in Sect. 3.
In Sect. 4, we consider the one dimensional wave equation on a grid with a grid interface. In
Sect. 5, we perform numerical experiments. The computational convergence results support
the accuracy analysis. In the end, we conclude the work in Sect. 6.

2 The One Dimensional Wave Equation with Dirichlet Doundary
Conditions

To describe the properties of the equation and numerical methods, we need the following
definitions. Let w1(x) and w2(x) be real–valued functions in L2[0,∞). An inner product is
defined as (w1, w2) = ∫ ∞

0 w1w2dx with a corresponding norm ‖w1‖2 = (w1, w1), and w1

is said to be in L2 if ‖w1‖ < ∞.
The second order wave equation on a half–line in one space dimension takes the form

Utt = Uxx + F, x ∈ [0,∞), 0 ≤ t ≤ t f ,

U (x, 0) = G(x), Ut (x, 0) = Ḡ(x). (1)

We consider the equation up to some finite time t f . For boundary conditions, we use either
the Dirichlet boundary condition:

U (0, t) = M(t), (2)

or the Neumann boundary condition

Ux (0, t) = M(t). (3)
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The forcing function F , the initial data G, Ḡ and the boundary data M are compatible
smooth functions with compact support. As a consequence, the true solution is smooth. For
the problem (1) in a bounded domain, there is one boundary condition at each boundary. For
the half line problem in consideration, the right boundary condition is substituted by requiring
that the L2 norm of the solution is bounded, i.e. ‖U (·, t)‖ < ∞. If the corresponding half
line and Cauchy problems are well–posed, then the original initial–boundary–value problem
is well–posed [8, pp. 256].

The problem (1) with (2) or (3) is well–posed if the solution can be bounded in terms of
the data. Multiplying Eq. (1) by Ut and integrating in space, with the homogeneous Dirichlet
or Neumann boundary condition, it follows from the integration–by–parts principle

d

dt
|||U ||| ≤ ‖F‖, (4)

where |||U |||2 = ‖Ut‖2 + ‖Ux‖2 is the continuous energy, a semi–norm of the solution U .
The standard energy estimate follows from an integration in time of (4),

|||U ||| ≤
√

‖Gx‖2 + ‖Ḡ‖2 +
∫ t

0
‖F(·, z)‖dz

≤
√

‖Gx‖2 + ‖Ḡ‖2 + t max
0≤z≤t

‖F(·, z)‖ (5)

Therefore, problem (1) is well–posed with either (2) or (3).

Remark 1 We are interested in the solution U , but the standard energy analysis above only
shows that a semi–norm of U is bounded. To include U itself in the estimate, we use the
relation

d

dt
‖U‖2 = 2‖U‖ d

dt
‖U‖

and

d

dt
‖U‖2 =

∫ ∞

0

∂

∂t
U 2dx =

∫ ∞

0
2UUt dx ≤ 2‖U‖‖Ut‖

to obtain

d

dt
‖U‖ ≤ ‖Ut‖ ≤ |||U |||.

An integration in time, together with (5), gives

‖U‖ ≤ ‖G‖ + t
√

‖Gx‖2 + ‖Ḡ‖2 +
∫ t

0

(∫ y

0
‖F(·, z)‖dz

)

dy

≤ ‖G‖ + t
√

‖Gx‖2 + ‖Ḡ‖2 + t2 max
0≤z≤t

‖F(·, z)‖ (6)

Therefore, ‖U‖ is bounded by the data in any bounded time interval t ∈ [0, t f ], and is in the
space of L2.

To discretize the equation in space, we introduce an equidistant grid xi = ih, i =
0, 1, 2, · · · , and agrid functionui (t) ≈ U (xi , t). Furthermore, letu(t)= [u0(t), u1(t), · · · ]T

where T denotes the transpose.We also define an inner product and norm for the grid functions
a and b inR as (a, b)H = aT Hb and ‖a‖2H = aT Ha, respectively, where H is a symmetric
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Table 1 α2p values

2p 2 4 6 8 10

α2p 0.4 0.2508560249 0.1878715026 0.0015782259 0.0351202265

positive definite operator on the space of grid functions. The norm ‖ · ‖H is equivalent to the
standard discrete L2 norm, and they are the same if H = hI with an identity operator I .

An SBP operator has the standard central finite difference stencil in the interior and a
special one–sided stencil near the boundary. The boundary closure is chosen such that the
SBP operator mimics integration–by–parts via its associated inner product. The SBP operator
approximating the second derivative D ≈ ∂2/∂x2 has a structure

D = H−1(−A + BS), (7)

where H is diagonal and positive definite, A is symmetric positive semi-definite and B =
diag(−1, 0, 0, · · · ). S is a one sided approximation of the first derivative at the boundary.

In this paper, we use the diagonal norm SBP operators constructed in [15]. Although these
operators are termed as 2pth order accurate, the truncation error of D isO(h2p) in the interior
but only O(h p) near the boundary. The truncation error of S is O(h p+1). Such operators are
constructed for p = 1, 2, 3, 4 in [15], and p = 5 in [12].

An SBP operator itself does not impose any boundary condition. It is important that bound-
ary conditions are imposed in a way such that an energy estimate can be derived to ensure
stability. Such numerical boundary treatments for the wave equation include the projection
method [16] and the ghost point approach [19], which impose boundary conditions strongly.
In this paper, we instead use a weak enforcement technique, the SAT method [3], since it is
easy to derive an energy estimate even in higher dimensions. The semi–discretization of (1)
and (2) with the homogeneous boundary data reads:

utt = Du + PDu + f, (8)

where PD = −H−1ST E0 − τh−1H−1E0, e0 = [1, 0, 0, · · · ]T , E0 = e0eT
0 and f (t) is

the restriction of F(x, t) to the grid. On the right hand side, the first term Du is an SBP
approximation of Uxx , while the second term PDu imposes weakly the boundary condition
U (0, t) = 0. It acts as a penalty term dragging the numerical solution at the boundary
towards zero so that the boundary condition is simultaneously approximated, but the boundary
condition is in general not satisfied exactly. The penalty parameter τ is to be determined so
that an energy estimate of the discrete solution exists, which ensures stability.

2.1 Stability

In [2,13,14], it is shown that the operator A in (7) can be written as

A = hα2p(BS)T BS + Ã, (9)

where α2p > 0 is a constant independent of h and Ã is symmetric positive semi-definite.
This is often called the borrowing trick. The values of α2p are computed for p = 1, 2 and 3
in [13]. We use the same technique to compute α2p for p = 4 and 5, and list the results in
Table 1.
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To derive an energy estimate, we introduce the energy

|||u|||2D,h = ‖ut‖2H + ‖u‖2
Ã

+
(

√
hα2p(BSu)0 − u0√

hα2p

)2

+ h−1(τ − 1

α2p
)u2

0, (10)

where τ ≥ 1/α2p . Multiplying Eq. (8) by uT
t H from the left, it follows from (7) and (9)

d

dt
(|||u|||2D,h) = 2uT

t H f.

The discrete energy estimate

|||u(t)|||D,h ≤ |||u(0)|||D,h +
∫ t

0
‖ f (z)‖H dz

≤ |||u(0)|||D,h + t max
0≤z≤t

‖ f (z)‖H

is an analogue of the continuous energy estimate (5). We conclude that the semi–
discretization (8) is energy stable if τ ≥ 1/α2p . The term ‖u‖H can be included in the
energy estimate in the same way as in Remark 1.

2.2 Accuracy Analysis by the Energy Method

The error equation for the pointwise error ζ j = U (x j , t) − u j (t) is

ζt t = Dζ + PDζ + T 2p, (11)

where ‖ζ(t)‖h < ∞, T 2p is the truncation error and 2p is the accuracy order of the SBP
operator D. The solution has compact support during the entire time interval in consideration,
so does the truncation error. Therefore, T 2p

j = 0, j ≥ J for some J ∼ O(h−1). The first

m components of T 2p are of order O(h p), and all the other nonzero components are of
order O(h2p). For 2p = 2, 4, 6, 8, 10, the corresponding values of m are 1, 4, 6, 8, 11. In
the analysis, we only consider the leading term of the truncation error. We introduce the
interior truncation error T 2p,I , and the boundary truncation error T 2p,B such that T 2p =
h2pT 2p,I + h pT 2p,B , where T 2p,I and T 2p,B are independent of h, but depend on the
derivatives of U . Since the number of grid points with the large truncation error O(h p) is
finite and independent of h, we have

‖T 2p‖2h = h(h4p
∞∑

i=m

|T 2p,I
i |2

︸ ︷︷ ︸
O(h−1)

+h2p
m−1∑

i=0

|T 2p,B
i |2

︸ ︷︷ ︸
O(1)

).

For 2p = 2, 4, 6, 8, 10 and small h, the first term is much smaller than the second one. Thus,
we have ‖T 2p‖h ≤ K h p+1/2. Here and in the rest of the paper, we use the capital letter K
in the estimate to denote some constant independent of the grid spacing. The constant K can
be made precise by Taylor expansions, but we do not distinguish them from one estimate to
another for a sake of simplified notations.

By applying the energymethod to the error equation (11), we obtain for the discrete energy
defined by (10)

|||ζ |||D,h ≤ K h p+1/2. (12)
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This means that by the energy method we can only prove a gain in accuracy of 1/2 order.
Therefore, the convergence rate is at least p + 1/2 if the numerical scheme is stable, that is
if the penalty parameter τ ≥ 1/α2p .

2.3 Normal Mode Analysis for the Boundary Truncation Error

To derive a sharper estimate, we partition the pointwise error into two parts, the interior
error ε I and the boundary error ε, such that ζ = ε I + ε. ε I is the error due to the interior
truncation error, and ε is the error due to the boundary truncation error. ε I can be estimated
by the energy method, yielding ∣

∣
∣
∣
∣
∣
∣
∣
∣ε I

∣
∣
∣
∣
∣
∣
∣
∣
∣

D,h
≤ K h2p. (13)

As mentioned above, ‖ε I ‖H can be bounded similarly.
We perform a normal mode analysis to analyze ε for the second, fourth and sixth order

SBP-SAT schemes. The boundary error equation is

εt t = Dε + PDε + h pT 2p,B , (14)

where ‖ε‖h < ∞. In the analysis of ε, we take the Laplace transform in time of (14),

s2ε̂ = Dε̂ + PD ε̂ + h pT̂ 2p,B (15)

for Re(s) > 0, whereˆdenotes Laplace transform. After multiplying by h2 on both sides of
(15), we obtain with the notation s̃ = sh

s̃2ε̂ = h2Dε̂ + h2PD ε̂ + h p+2T̂ 2p,B . (16)

Note that the coefficients in the first two terms in the right hand side of (16) are h-independent,
and that T̂ 2p,B is nonzero only at a few points near the boundary.

There are essentially two steps in the normal mode analysis. In the first step, by a detailed
analysis of the error equation (16), we derive an estimate of the solution to (16) in terms of
the forcing. We use Parseval’s relation in the second step to derive an estimate for the error
in the physical space, which involves an inverse Laplace transform. As will be seen later,
the integration is performed along the vertical line Re(s̃) = ηh with η > 0 a fixed constant
independent of h. It is therefore important to derive a sharp error estimate in Laplace space
when Re(s̃) goes to zero. The final estimate in the physical space is in the form

√∫ t f

0
‖ε(·, t)‖2hdt ≤ K hq , (17)

where K depends only on η, the final time t f and the derivatives of the true solution U .
Convergence rate is an asymptotic property, and we need the solution to be smooth and

well resolved. By the smoothness assumption |T̂ 2p(η + iξ)| decreases fast for large |ξ |,
making contributions from |ξ | > K̄ insignificant for some constant K̄ . In the analysis we
will only consider s = η + iξ , with η positive and |ξ | < K̄ . Correspondingly we only
consider |s̃| 	 1, Re(s̃) = O(h). In particular it suffices to consider s̃ = 0 when checking
the determinant condition.We formalize this discussion bymaking the following assumption.

Assumption 1 There is a constant K̄ < ∞ such that contributions from s = η+ iξ , |ξ | > K̄
to the estimate (17) do not influence the rate q .

We summarize the convergence result for the Dirichlet problem in Theorem 1.

123



226 J Sci Comput (2017) 71:219–245

Table 2 Theoretical convergence result for the one dimensional wave equation with the Dirichlet boundary
condition with τ > 1/α2p

2p qB = p+Gain q = min(qB , 2p)

2 3.5=1+2.5 2

4 4 =2+2 4

6 5.5=3+2.5 5.5

2p: interior order. qB : order of the boundary error. q: convergence rate

Theorem 1 Consider the second, fourth and sixth order stable SBP-SAT approximations (8)
of the second order wave equation (1) with the Dirichlet boundary condition. With Assump-
tion 1, the rates q in (17) depend on τ :

1. If τ = 1/α2p, then q = p + 1/2, i.e. the gain in convergence is only half an order.
2. If τ > 1/α2p, then the interior and boundary truncation errors lead to errorsO(h2p) and

O(hqB ) in the solution, respectively. The values qB and the overall rates q = min(2p, qB)

are listed in Table 2.

Remark 2 The penalty parameter τ has an effect on the convergence rate for a stable scheme.
More precisely, with the same SBP operator, the convergence rate is always higher with τ >

1/α2p than with τ = 1/α2p . We therefore should always choose τ > 1/α2p in computations,
but bearing in mind that a moderate value of τ is appropriate because a very large τ has a
negative impact on the CFL condition.

The convergence rates are optimal for the second and fourth order schemes, while super–
convergence is obtained with the sixth order scheme. We also comment that the overall
convergence rate for the second order scheme is dominated by the interior truncation error.

After somepreliminarieswewill proveTheorem1 for 2p = 2, 4 and 6 in Sects. 2.3.2, 2.3.3
and 2.3.4, respectively.

2.3.1 Solution to the Error Equation

To begin with, we note that sufficiently far away from the boundary, the penalty terms and
the boundary truncation error in (16) are not present. The coefficients in D correspond to
standard central finite difference schemes:

2p = 2 : s2ε̂ j = D+ D−ε̂ j , j = 3, 4, 5, · · · , (18a)

2p = 4 : s2ε̂ j = (D+ D− − 1

12
(D+ D−)2)ε̂ j , j = 4, 5, 6, · · · , (18b)

2p = 6 : s2ε̂ j = (D+ D− − h2

12
(D+ D−)2 + h4

90
(D+ D−)3)ε̂ j , j = 5, 6, 7, · · · , (18c)

where

D+ε̂ j = ε̂ j+1 − ε̂ j

h
and D−ε̂ j = ε̂ j − ε̂ j−1

h
.
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The corresponding characteristic equations are

2p = 2 : κ2 − (2 + s̃2)κ + 1 = 0, (19a)

2p = 4 : κ4 − 16κ3 + (30 + 12s̃2)κ2 − 16κ + 1 = 0, (19b)

2p = 6 : 2κ6 − 27κ5 + 270κ4 − (180s̃2 + 490)κ3 + 270κ2 − 27κ + 2 = 0. (19c)

It is easy to verify by the von Neumann analysis that the interior numerical scheme is stable
when applied to the corresponding periodic problem. From Lemma 12.1.3 in [8, pp. 379],
it is straightforward to prove that there is no root of (19) with |κ| = 1 for Re(s) > 0. We
call a root κ an admissible root if |κ| < 1. Since the problem in consideration is a half line
problem, any κ with |κ| > 1 is not admissible because it results in an unbounded solution.
We will need the following specifics for the roots.

Lemma 1 For 2p = 2, 4, 6, the number of admissible roots of (19) satisfying |κ| < 1 for
Re(s̃) > 0 is 1,2,3, respectively. In the vicinity of s̃ = 0, they are given by

2p = 2 : κ1 = 1 − s̃ + O(s̃2), (20a)

2p = 4 : κ1 = 1 − s̃ + O(s̃2), κ2 = 7 − 4
√
3 + O(s̃2), (20b)

2p = 6 : κ1 = 1 − s̃ + O(s̃2), κ2 = 0.0519 − 0.0801i + O(s̃2),

κ3 = 0.0519 + 0.0801i + O(s̃2). (20c)

Proof 2p = 2: Eq. (19a) has two roots: κ1,2 = 1 + 1
2 s̃2 ± 1

2

√
s̃4 + 4s̃2. We find by Taylor

expansion at s̃ = 0 that κ1 = 1 − s̃ + O(s̃2) and κ2 = 1 + s̃ + O(s̃2). Thus, in the vicinity
of s̃ = 0 the admissible root is κ1 = 1 − s̃ + O(s̃2).

2p = 4: Eq. (19b) has four roots:

κ1 = 4 −
√
9 − 3s̃2 −

√

24 − 3s̃2 − 8
√
9 − 3s̃2,

κ2 =
√
9 − 3s̃2 −

√

8
√
9 − 3s̃2 − 3s̃2 + 24 + 4,

κ3 =
√

8
√
9 − 3s̃2 − 3s̃2 + 24 +

√
9 − 3s̃2 + 4,

κ4 =
√

24 − 3s̃2 − 8
√
9 − 3s̃2 −

√
9 − 3s̃2 + 4.

We find by Taylor expansion at s̃ = 0 that

κ1 = 1 − s̃ + O(s̃2), κ2 = 7 − 4
√
3 + O(s̃2),

κ3 = 7 + 4
√
3 + O(s̃2), κ4 = 1 + s̃ + O(s̃2).

Thus, the admissible roots are κ1 = 1 − s̃ + O(s̃2) and κ2 = 7 − 4
√
3 + O(s̃2).

2p = 6: There is no closed form of the solution to a sixth order equation like (19c).
However, (19c) with s̃ = 0 can be factorized to a second order polynomial multiplied by
a fourth order polynomial, thus an analytical solution can be obtained. We then perform a
perturbation analysis to the six roots, and find analytical expressions for their dependence on
s̃ in a neighbourhood of s̃ = 0. The three admissible roots are given by (20c). We show the
numerical values with four digits since the analytical expressions are very lengthy. ��
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The pointwise error away from the boundary can be expressed as

2p = 2 : ε̂ j = σ1κ
j−2, j = 2, 3, 4, · · · , (21a)

2p = 4 : ε̂ j = σ1κ
j−2
1 + σ2κ

j−2
2 , j = 2, 3, 4, · · · , (21b)

2p = 6 : ε̂ j = σ1κ
j−3
1 + σ2κ

j−3
2 + σ3κ

j−3
3 , j = 3, 4, 5, · · · , (21c)

where the coefficients σ are determined by the boundary closure. The error equation (16)
corresponding to a few grid points near the boundary also determines the pointwise errors
that are not determined by 21. The general form for the L2 norm of ε̂ can be written as

‖ε̂‖2h = h
d∑

i=0

|ε̂i |2 + h
p∑

m=1

∞∑

j=d+1

|σmκ
j−d−1

m |2,

= h
d∑

i=0

|ε̂i |2 + h
p∑

m=1

|σm |2
1 − |κm |2 (22)

where d = 1, 1, 2 for 2p = 2, 4, 6, respectively. Note that by Lemma 1 we have that in the
second term the factor 1

1−|κ1|2 cannot be bounded independent of h when s̃ = O(h).

Lemma 2 Consider Re(s̃) = ηh > 0, where η is a constant independent of h. For 2p =
2, 4, 6 the admissible root κ1(s̃) in 20 satisfies

1

1 − |κ1|2 ≤ 1

2ηh

to the leading order.

Proof Let s̃ = x + iy where x, y are real numbers. Then |x | ≥ ηh.

1 − |κ1(s̃)|2 = 1 − |1 − s̃ + O(s̃2)|2
≥ 1 − |1 − s̃|2 + O(|s̃|2)
= 1 − |1 − x − iy|2 + O(|s̃|2)
= 2x − x2 − y2 + O(|s̃|2)
= 2Re(s̃) + O(|s̃|2).

The desired estimate follows. ��

By Lemma 2, (22) becomes

‖ε̂‖2h ≤ h
d∑

i=0

|ε̂i |2 + K

η
|σ1|2 + K h

p∑

m=2

|σm |2. (23)

In the following sections, we analyze the error equation (16) corresponding to the grid points
near the boundary, and derive bounds for ε̂i and σm in (23). The final estimate in the physical
space of the form (17) follows by Parseval’s relation. To keep a balance between clarity and
paper length, we give a very detailed analysis for the second order scheme, and only show
the main steps of the proof for the fourth and sixth order schemes.
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2.3.2 Proof of Theorem 1 for the Second Order Scheme

The first three rows of (16) are affected by the boundary closure. They are

s̃2ε̂0 = ε̂0 − 2ε̂1 + ε̂2 + 3ε̂0 − 2τ ε̂0 + h3T̂ 2,B
0 ,

s̃2ε̂1 = ε̂0 − 2ε̂1 + ε̂2 − 2ε̂0,

s̃2ε̂2 = ε̂1 − 2ε̂2 + ε̂3 − 1

2
ε̂0. (24)

By Taylor expansion, it is straightforward to derive T̂ 2,B
0 = −Ûxxx (0, s) to the leading order.

We obtain the boundary system by rewriting (24) in a matrix–vector multiplication form

⎡

⎣
−1 s̃2 − 4 + 2τ 2
−1 1 s̃2 + 2

κ1 − 2 − s̃2 1
2 1

⎤

⎦

︸ ︷︷ ︸
C2D(s̃,τ )

⎡

⎣
σ1
ε̂0
ε̂1

⎤

⎦

︸ ︷︷ ︸
Σ2D

= h3

⎡

⎣
−1
0
0

⎤

⎦ Ûxxx (0, s)

︸ ︷︷ ︸
T̂ 2,B
v

. (25)

If the determinant condition is satisfied, i.e. C2D is nonsingular for Re(s̃) ≥ 0, then |Σ2D| is
bounded by a constant multiplying h3 and a gain of two orders from the boundary truncation
error follows. In other words, we obtain the optimal convergence rate if the determinant
condition is satisfied. Below we demonstrate that by analyzing the components of Σ2D , it is
in certain cases possible to obtain an even higher order gain from the boundary truncation
error, which is referred to as super–convergence.

In Lemma 2, we use Re(s̃) = ηh to estimate 1/(1− |κ1|2), with η a constant independent
of h. When analyzing the boundary system, we need to use the same s̃ = ηh because that
is where the inverse Laplace transform is performed later. We write the solution to (25) as
Σ2D(s̃, τ ) = h3C−1

2D T̂ 2,B
v for Re(s̃) = ηh. Since η is a constant and h is arbitrarily small,

it is important to check how Σ2D(s̃, τ ) behaves as s̃ approaches zero. We start by setting
s̃ = 0, and find that when τ 
= 2.5 the determinant condition is satisfied, i.e. C2D(0, τ )

is nonsingular; but the determinant condition is not satisfied when τ = 2.5. The stability
condition τ ≥ 1/α2 = 2.5 motivates us to consider these two cases separately.

In the case τ > 2.5, the determinant condition is satisfied and we can expect at least an
optimal gain of 2 orders in convergence. A perturbation analysis of Σ2D at s̃ = 0 shows that

σ1 =
[

− s̃2

2(2τ − 5)
+ O(s̃3)

]

Ûxxx (0, s)h3 =
[

− η2

2(2τ − 5)
+ O(s̃)

]

Ûxxx (0, s)h5,

ε̂0 =
[

− 1

2τ − 5
+ O(s̃2)

]

Ûxxx (0, s)h3, ε̂1 =
[

1

2τ − 5
+ O(s̃2)

]

Ûxxx (0, s)h3,

which together with (23) leads to

‖ε̂‖2h ≤ h
d∑

i=0

|ε̂i |2 + K

η
|σ1|2 ≤ K h7|Ûxxx (0, s)|2. (26)

Remember that |s̃| 	 1 corresponds to |s| < K̄ for some constant K̄ and h 	 1. By
Assumption 1 and Parseval’s relation, we have
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∫ ∞

0
e−2ηt‖ε‖2hdt = 1

2π

∫ ∞

−∞
‖ε̂(η + iξ)‖2hdξ

≤ K h7

2π

∫ ∞

−∞
|Ûxxx (0, η + iξ)|2dξ

= K h7
∫ ∞

0
e−2ηt |Uxxx (0, t)|2dt.

We have derived the estimate for ε̂ in the vicinity of s̃ = 0, but Assumption 1 allows us to
use this estimate when integrating ξ from −∞ to ∞. By arguing that future cannot affect
past [8, pp. 294], we can replace the upper limit of the integrals on both sides by a finite time
t f . Since

∫ t f

0
e−2ηt f ‖ε‖2hdt ≤

∫ t f

0
e−2ηt‖ε‖2hdt,

∫ t f

0
e−2ηt |Uxxx (0, t)|2dt ≤

∫ t f

0
|Uxxx (0, t)|2dt,

we obtain
√∫ t f

0
‖ε‖2hdt ≤ h3.5

√

K e2ηt f

∫ t f

0
|Uxxx (0, t)|2dt .

Thus, the boundary error isO(h3.5), which is 2.5 orders higher than the boundary truncation
error. In practical computations, this super–convergence is not seen because the dominat-
ing source of error is the interior error O(h2) given by (13). We conclude that the overall
convergence rate is 2, and this proves that qB = 3.5 and q = 2 in Theorem 1.

Remark 3 By only checking the determinant condition, we can prove the optimal conver-
gence rate, i.e. a gain of two orders from the boundary truncation error. The above analysis
demonstrates that it is important to analyze the components of the solution to the boundary
system. Super–convergence is obtained when σ1 is much smaller than the other components
of the solution to the boundary system when h is sufficiently small. In this case, the error in
the solution is larger at a few grid points near the boundary than in the interior.

In the case τ = 2.5, the last two components of Σ2D are infinite when s̃ = 0 since
C2D(0, τ ) is singular and the determinant condition is not satisfied. We again perform a
perturbation analysis to the solution Σ2D and obtain

σ1 =
[

−1

3
+ O(s̃)

]

Ûxxx (0, s)h3,

ε̂0 =
[

−2

3
s̃−2 + O(1)

]

Ûxxx (0, s)h3 =
[

−2

3
η−2 + O(h2)

]

Ûxxx (0, s)h,

ε̂0 =
[
1

3
s̃−2 + O(1)

]

Ûxxx (0, s)h3 =
[
1

3
η−2 + O(h2)

]

Ûxxx (0, s)h.

This, in the same way as the case τ > 2.5, leads to a gain of 0.5 order from the boundary
truncation error and the overall convergence rate p + 1/2 = 1.5, which is the same as
predicted by the energy estimate.
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2.3.3 Proof of Theorem 1 for the Fourth Order Scheme

The first four rows of (16) are affected by the penalty terms, which can be written as the
boundary system

C4D(s̃, τ )Σ4D = h4T̂ 4,B
v . (27)

As in the second order case in Sect. 2.3.2,we again considerRe(s̃) = ηh andwrite the solution
to the boundary system (27) as Σ4D = h4C−1

4D(s̃, τ )T̂ 4,B
v where Σ4D = [σ1, σ2, ε̂0, ε̂1]T ,

and

T̂ 4,B
v = [11

12
,− 1

12
,

5

516
,
11

588
]T Ûxxxx (0, s). (28)

The matrix C4D(0, τ ) is presented in “Appendix 1”.
In the case τ > 1/α4, C4D(0, τ ) is nonsingular and the determinant condition is satisfied.

All the four components of Σ4D are order O(h4) with σ1 independent of τ . This gives the
estimate to the leading order

‖ε̂‖2h ≤ K

η
|Ûxxxx (0, s)|2h8.

By Parseval’s relation and by arguing that future cannot affect past, we obtain
√∫ t f

0
‖ε‖2hdt ≤ h4

√
K e2ηt f

η

∫ t f

0
|Uxxxx (0, t)|2dt .

Thus, the boundary error isO(h4). In this case, the interior error is alsoO(h4) given by (13).
Therefore, the convergence rate is 4. This proves that qB = q = 4 in Theorem 1.

In the case τ = 1/α4,C4D(0, τ4) is singular and the determinant condition is not satisfied.
By the energy estimate (12), the convergence rate is p + 1/2 = 2.5.

2.3.4 Proof of Theorem 1 for the Sixth Order Scheme

Similar to the previous two cases, we consider the six–by–six boundary system and analyze
its solution Σ6D = [σ1, σ2, σ3, ε̂0, ε̂1, ε̂2]T :

C6D(s̃, τ )Σ6D = h5T̂ 6,B
v , (29)

where

T̂ 6,B
v = [−157525

163788
,
3869

17580
,−30409

54220
,
65723

321540
,− 80821

472620
,

9015

175204
]T Ûxxxxx (0, s).

(30)

ThematrixC6D(0, τ ) is presented in “Appendix 1”. It is singular if τ = 1/α6, and nonsingular
otherwise.

When τ > 1/α6, we write the solution to (29) as Σ6D(s̃, τ ) = h5C−1
6D T̂ 6,B

v . A calculation
of Σ6D(s̃, τ ) at s̃ = 0 shows that σ1 = 0 and the other five componentsO(h5), and a further
perturbation analysis gives σ1 ∼ O(h7) when s̃ = O(h). As a consequence, from (23) we
obtain that the boundary error isO(h5.5). In this case, the interior error isO(h6) given by (13).
Thus, the convergence rate is 5.5, which is a super–convergence and is half order higher than
the optimal convergence. This proves that qB = q = 5.5 in Theorem 1.

When τ = 1/α6, the convergence rate p +1/2 = 3.5 is given by the energy estimate (12).
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3 The One Dimensional Wave Equation with Neumann Boundary
Conditions

We consider Eq. (1) with the Neumann boundary condition (3), and use the same assumption
of the data as for the Dirichlet problem. As will be seen later, the determinant condition is
not satisfied. Our analysis gives sharp error estimates for such problems as well.

3.1 Stability

To discretize the equation in space, we use the grid and grid functions introduced for the
Dirichlet problem. The semi–discretized equation of the Neumann problem is

utt = Du + H−1E0Su + f. (31)

On the right hand side of (31), the first term approximates Uxx and the second term imposes
weakly the boundary condition Ux (0, t) = 0. Since we consider a half line problem, the
SBP operator D is in the form D = H−1(−A − E0S). As a consequence, the semi–
discretization (31) can be written as

utt = −H−1Au + f. (32)

Multiplying Equation (32) by uT
t H from the left, we obtain

d

dt

(‖ut‖2H + ‖u‖2A
) = 2uT

t H f.

The discrete energy |||u|||2N ,h = ‖ut‖2H + ‖u‖2A is bounded as

|||u(t)|||N ,h ≤ |||u(0)|||N ,h +
∫ t

0
‖ f (z)‖H dz

≤ |||u(0)|||N ,h + t max
0≤z≤t

‖ f (z)‖H (33)

Here again, ‖u‖H can be included in the energy estimate as in Remark 1.

3.2 Accuracy

With the pointwise error defined as before, the error equation is

ζt t = −H−1Aζ + T 2p,N , (34)

where ‖ζ‖h < ∞, T 2p,N is the truncation error and 2p is the accuracy order of the SBP
operator. In the same way as for the Dirichlet problem, by applying the energy method to the
error equation (34), we obtain an estimate

|||ζ |||N ,h ≤ K h p+1/2,

This means that the convergence rate of (32) is at least p + 1/2. In the following, we use
normal mode analysis to derive a sharper bound of the error, which agrees well with the
results from numerical experiments.

As in the Dirichlet problem, we partition the error ζ into two parts, the error ε I due to
the interior truncation error and the error ε due to the boundary truncation error. ε I can be
estimated by the energy method, yielding

∣
∣
∣
∣
∣
∣ε I

∣
∣
∣
∣
∣
∣
N ,h ≤ K h2p . The boundary error equation

is
εt t = −H−1Aε + h pT 2p,N ,B, (35)
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where h pT 2p,N ,B is the boundary truncation error. T 2p,N ,B depends on the derivatives of
the true solution U , but not h. Moreover, only the first m elements of T 2p,N ,B are nonzero,
where m depends on p but not h.

We Laplace transform Equation (35) in time. With the notation s̃ = sh, we obtain

s̃2ε̂ = −h2H−1Aε̂ + h p+2T̂ 2p,N ,B . (36)

Since the operator A in (36) is only symmetric positive semi–definite, we expect that the
determinant condition is not satisfied for this problem. The characteristic equations of the
interior error equations are the same as for the Dirichlet problem (19), and Lemma 1 and 2
are also applicable to the Neumann problem. Below we analyze the second, fourth and sixth
order accurate cases.

3.2.1 Second Order Accurate Scheme

Only the first row of the error equation is affected by the boundary closure. In this case, the
boundary system is the scalar equation

C2N (s̃)σ1 = h3T̂ 2,N ,B
0 , (37)

with

C2N (s̃) = 2s̃ + O(s̃2) and T̂ 2,N ,B
0 = −2

3
Ûxxx (0, s)

and the error is in the form (21a) with j starting at 0. Clearly the determinant condition is
violated at s̃ = 0, but we straightforwardly obtain

|σ1| ≤ K

η
|Ûxxx (0, s)|h2,

for s̃ = O(h). In the same way as for the Dirichlet problem, an estimate in physical space of
the type (17) follows with q = 2. Since the interior error is alsoO(h2), the convergence rate
is 2.

Remark 4 In this case, the gain from the boundary truncation error is only one order, and does
not follow the p + 2 optimal gain. The interior error O(h2) restricts the overall convergence
rate to second order. Therefore, a gain of more than one order can normally not be observed.
In the numerical experiments, we design a stable numerical scheme to verify that the gain in
convergence is indeed only one order.

3.2.2 Fourth and Sixth Order Accurate Schemes

We follow the above approach to derive the four by four boundary system

C4N (s̃)Σ4N = h4T̂ 4,N ,B
u ,

for the fourth order scheme, and the sixth by sixth boundary system

C6N (s̃)Σ6N = h5T̂ 6,N ,B
u ,

for the sixth order scheme. The truncation errors T̂ 4,N ,B
u , T̂ 6,N ,B

u are the same as the Dirichlet
case (28), (30) except the coefficients of the first component are 43/204 and -53845/163788,
respectively. The matrices C4N (0) and C6N (0) presented in “Appendix 1” are singular, indi-
cating that the determinant condition is violated. We consider s̃ = ηh with a constant η
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Table 3 Theoretical convergence result for the one dimensional wave equation with the Neumann boundary
condition

2p qB = p+Gain q = min(2p, qB )

2 2 =1+1 2

4 4.5=2+2.5 4

6 5.5=3+2.5 5.5

2p: interior order. qB : order of the boundary error. q: convergence rate

independent of h, and analyze the solution to the boundary system. For the fourth order case,
σ1 in (23) is σ1 ∼ O(s̃h4) ∼ O(ηh5), and the other components are bounded by O(h4).
For the sixth order case σ1, ε̂0 ∼ O(s̃h5) ∼ O(ηh6), and the other components are bounded
by O(h5). Both cases lead to a gain of 2.5 orders from the boundary truncation error. We
summarize the results on the Neumann problem in the following theorem.

Theorem 2 Consider the second, fourth and sixth order stable SBP-SAT approximations (31)
of the second order wave equation (1) with the Neumann boundary condition. With Assump-
tion 1, the boundary truncation error lead to error O(hqB ) in the solution, where qB and the
overall rates q = min(2p, qB) are listed in Table 3.

4 The One Dimensional Wave Equation with a Grid Interface

In this section, we consider another example that does not satisfy the determinant condition.
It is the Cauchy problem for the second order wave equation in one space dimension

Utt = Uxx + F, x ∈ (−∞,∞), t ≥ 0, ‖U (·, t)‖ < ∞
U (x, 0) = G(x), Ut (x, 0) = Ḡ(x), (38)

where the forcing function F , the initial data G and Ḡ are compatible smooth functions
with compact support. It is straightforward to derive the energy estimate of the form (5) for
Eq. (38).

We solve the equation on a grid with a grid interface at x = 0.With the assumption that the
true solution is smooth, it is natural to impose two interface conditions at x = 0: continuity
of the solution and continuity of the first derivative of the solution.

We introduce the grid on the left x− j = − jhL , j = 0, 1, 2, · · · , and the grid on the right
x j = jh R, j = 0, 1, 2, · · · , with the grid size hL and h R , respectively. The grid functions
are uL

j (t) ≈ U (x− j , t) and u R
j (t) ≈ U (x j , t). Denote

e0L = [· · · , 0, 0, 1]T , e0R = [1, 0, 0, · · · ]T ,

uL = [· · · , uL−1, uL
0 ]T , u R = [u R

0 , u R
1 , · · · ]T .

Both uL
0 = eT

0L uL and u R
0 = eT

0Ru R approximate U (0, t). Both (SL uL)0 = eT
0L SL uL and

(SRu R)0 = eT
0R SRu R approximate Ux (0, t). To simplify notation, we define {u} = uL

0 − u R
0

and {Su} = (SL uL)0 − (SRu R)0. The semi–discretized equation reads

uL
tt = DL uL + PI L{u} + fL , u R

tt = DRu R + PI R{u} + fR, (39)
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Table 4 Theoretical convergence result for the one dimensional wave equation with a grid interface when
τ > τ̃2p in (40)

2p q
(hL =h R )
B = p + Gain q

(hL 
=h R )
B = p + Gain q = min(2p, qB )

2 3.5=1+2.5 2=1+1 2

4 4.5=2+2.5 4=2+2 4

2p: interior order. qB = p + Gain : order of the boundary error. q : convergence rate

where fL and fR are the restriction of F(x, t) on the grid. The penalty terms PI L{u} and
PI R{u} impose the interface conditions weakly and have the form

PI L{u} = 1

2
H−1

L ST
L e0L{u} − 1

2
H−1

L e0L{Su} − τ H−1
L e0L{u},

PI R{u} = 1

2
H−1

R ST
R e0R{u} − 1

2
H−1

R e0R{Su} + τ H−1
R e0R{u}.

The penalty parameters τ is chosen so that the semi–discretization is stable. By the energy
method, the numerical scheme is stable if

τ ≥ hL + h R

4α2phL h R
:= τ̃2p. (40)

The stability proof is found in [13, Lemma 2.4, pp. 215]. If hL = h R := h, then τ̃2p =
1/(2α2ph).

By the energy estimate, the convergence rate is at least p+1/2 if the semi–discretization is
stable. In order to derive a sharper estimate, we follow the same approach as in the previous
sections. The interior truncation error results in an error O(h2p) in the solution. In the
remaining part of this section we will only consider the effect of the interface truncation
error. Denote

εL− j (t) = U (x− j , t) − uL− j (t), εR
j (t) = U (x j , t) − u R

j (t), j = 0, 1, 2, · · · .

The error equation in Laplace space reads

s̃2L ε̂L = h2
L DL ε̂L + h2

L PI L{ε̂} + h p+2
L T̂ 2p,L ,B , (41a)

s̃2R ε̂R = h2
R DR ε̂R + h2

R PI R{ε̂} + h p+2
R T̂ 2p,R,B , (41b)

where s̃L = shL , s̃R = sh R . Here the interface truncation errors T̂ 2p,L/R,B are nonzero at
only a few grid points near the interface. The errors are estimated for the second and fourth
order schemes by the normal mode analysis, with the results summarized in the following
theorem.

Theorem 3 For the second and fourth order stable SBP-SAT approximation (39) of the wave
equation with a grid interface, the numerical solution converges to the true solution at rate q.
When τ = τ̃2p in (40), the rate q = p + 1/2 is given by the energy estimate. When τ > τ̃2p,
the rate q is listed in Table 4.

Remark 5 In practical computations, we should always choose τ > τ̃2p so that the optimal
convergence rate is obtained. Note that in this case, the gain in convergence depends on
whether the grid spacing hL is equal to h R as shown in Table 4. The overall rate q =
min(2p, qB), however, is not affected by the relation of hL and h R .
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We only need to analyze the values qB when τ > τ̃2p . We use the notation h = hL = rh R

where r is a fixedmesh size ratio. The analysis follows in the sameway as before.We construct
the characteristic equation on each side and solve them to obtain the general solution, which
are given by (19) and (20), respectively. The boundary system is formulated by substituting
the general solution to the error equation. The accuracy order is determined by how the
solution of this system behaves with respect to h when s̃ = O(h).

4.1 Proof of Theorem 3 for the Second Order Scheme

The last three rows of (41a) and the first three rows of (41b) are affected by the penalty
terms, which lead to the six by six boundary system

C2I (s̃, τ )Σ = h3T̂ 2,B
u ,

where

Σ = [σ1L , σ1R, ε̂L
0 , ε̂L−1, ε̂

R
0 , ε̂R

1 ]T ,

T̂ 2,B
u = [2

3
+ 1

3r2
, 0, 0,− 2

3r3
− 1

3r
, 0, 0]T Ûxxx (0, s).

The determinant condition is not satisfied because C2I (0, τ ) shown in “Appendix 1” is
singular. We find that when r = 1,

σ1L , σ1R ∼ O(s̃2h3) ∼ O(h5) and ε̂L
0 , ε̂L−1, ε̂

R
0 , ε̂R

1 ∼ O(h3),

which leads to a boundary error O(h3.5), i.e. a gain of 2.5 orders in convergence and
q(hL=h R)

B = 3.5, in the same way as in Sect. 2.3.2. When r 
= 1, all components of
Σ ∼ O(s̃−1h3) ∼ O(h̃2). In this case, the gain in convergence is only 1 order, i.e.
q(hL 
=h R)

B = 2. In both cases, the overall convergence rate is q = 2.

4.2 Proof of Theorem 3 for the Fourth Order Scheme

In this case, the eight by eight boundary system takes the form

C4I (s̃, τ )Σ = h4T̂ 4,B
u ,

where

Σ = [σ1L , σ2L , σ1R, σ2R, ε̂L
0 , ε̂L−1, ε̂

R
0 , ε̂R

1 ]T ,

T̂ 4,B
u = [115

204
− 6

17r3
,− 1

12
,

5

516
,
11

588
,

115

204r4
− 6

17r
,

− 1

12r4
,

5

516r4
,

11

588r4
]T Ûxxxx (0, s).

The boundary system is also singular at s̃ = 0, and the determinant condition is not satisfied.
The matrix C4I (0, τ ) is presented in “Appendix 1”. When r = 1,

σ1L , σ1R ∼ O(s̃h4) ∼ O(h5) and σ2L , σ2R, ε̂L
0 , ε̂L−1, ε̂

R
0 , ε̂R

1 ∼ O(h4),

which leads to a boundary error O(h4.5), i.e. a gain of 2.5 orders in convergence and
q(hL=h R)

B = 4.5. When r 
= 1, all components of Σ ∼ O(h4). In this case, we gain two

orders in convergence, i.e. q(hL 
=h R)
B = 4. In both cases, the overall convergence rate is

q = 4.
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Fig. 1 A convergence test for the one dimensional wave equation with a Dirichlet and b Neumann boundary
conditions

5 Numerical Experiments

In this section, we perform numerical experiments to verify the accuracy analysis. We inves-
tigate how the accuracy of the numerical solution is affected by the large truncation error
localized near boundaries and grid interfaces. In the analysis, we use the half line problem.
However, in the numerical experiments, we use a bounded domain and impose boundary con-
ditions on all boundaries weakly. For the integration in time, we write the semi–discretized
equation as a first order system in time and use the classical fourth orderRunge–Kuttamethod.
The step size Δt in time is chosen so that the temporal error has a negligible impact on the
spatial convergence result. The value of Δt is given in each numerical experiment.

The L2 error at a given time point are computed as the norm of the difference between the
exact solution uex and the numerical solution uh according to

‖uh − uex‖L2 =
√

hd(uh − uex )T (uh − uex ),

where d is the spatial dimension. The convergence rate is computed by

q = log

( ‖uh − uex‖
‖u2h − uex‖

) /

log

(
1

2

)

. (42)

5.1 The One Dimensional Wave Equation

We choose the analytical solution

u = cos(10πx + 1) cos(10π t + 2), 0 ≤ x ≤ 1, 0 ≤ t ≤ 2, (43)

and use it to impose the Dirichlet boundary conditions at x = 0 and x = 1. The step size
in time Δt = 0.1h is much smaller than the step size restricted by the stability condition.
We use it because then the temporal error has a negligible impact on the spatial convergence
rate. The analytical solution and its derivatives do not vanish at the boundaries at the final
time t = 2. The errors in discrete L2 norm are plotted versus the number of grid points in
Fig. 1(a), and the convergence rates in L2 norm are shown in the same figure.

With a 2pth (2p = 2, 4, 6) order accurate method, the convergence rate is p + 1/2 in L2

norm if the penalty parameter τ equals its limit. With a larger penalty parameter (increased
by 20%), the accuracy of the numerical solution is improved significantly. The observed
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Fig. 2 Error plot for the. a Dirichlet and. b Neumann problem with the sixth order accurate scheme

convergence rates by (42) for the second, fourth and sixth order accurate schemes are 2.00,
3.97 and 5.56, which are very close to the theoretical rates 2, 4 and 5.5 in Table 2, Theorem 1.
The super–convergence of the sixth order accurate scheme is also observed when solving the
Schrödinger equation [17,18].

To test the Neumann problem, we again use (43) as the analytical solution and impose
the Neumann boundary condition at two boundaries x = 0 and x = 1. In Fig. 1b we show
the L2 errors and the convergence rates in L2 norm, which corroborate the accuracy analysis
very well: for the second, fourth and sixth order accurate schemes, the observed convergence
rates 2.01, 4.04 and 5.54 are quite close to the theoretical values 2, 4 and 5.5.

For the sixth order accurate scheme with τ > 1/α6, the components of the solution to
the boundary system are of different magnitude: σ1 ∼ O(h7) while the other components
are of order O(h5). Therefore, the boundary truncation error only leads to O(h7) interior
error. The large errorO(h5) in the solution is located only at a few points near the boundary,
which can be seen in Fig. 2a. The same is true for the Neumann problem with the sixth order
accurate scheme, and the error plot in Fig. 2b also shows that the error in the solution is
localized.

Next, we test how the accuracy and convergence are affected by the large truncation error
localized near a grid interface.We choose the same analytical solution (43). The grid interface
is located at x = 0.5 in the computational domain Ω = [0, 1], and the grid size ratio is 2:1.
The step size in time is Δt = 0.1h, where h is the smaller grid size. Note that the analytical
solution does not vanish at the grid interface. We use the SAT technique to impose the outer
boundary condition weakly and choose the boundary penalty parameters strictly larger than
their limits. The interface conditions are also imposed by the SAT technique.We use different
interface penalty parameters to see how they affect the accuracy and convergence. The results
are shown in Fig. 3a.

According to the accuracy analysis in Sect. 4, for second and fourth order accuratemethods
with τ = τ2p , the expected convergence rates are 1.5 and 2.5 in L2 norm. This is clearly
observed in Fig. 3a. With a larger penalty parameter, a much better convergence result is
obtained. For the second and fourth order methods, we get the optimal (second and fourth,
respectively) order of convergence in L2 norm. For the sixth order accurate scheme, the
convergence rate is about 3.4 with τ = τ6, which is in line with the p + 1/2 convergence
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Fig. 3 Convergence tests for. a a grid interface problem. b a Neumann problem with schemes with added
truncation errors

rate.With a larger penalty parameter, the convergence rate is about 5.4. Herewe again observe
a super–convergence phenomenon.

5.2 Non–Optimal Convergence

We have shown several cases where the gain in convergence does not follow the optimal
p +2 rule. For example, the sixth order accurate SBP–SAT scheme has a super–convergence
property,which is both proved theoretically and observed in the numerical experiments. There
are also cases where the accuracy analysis predicts a lower or higher order gain. Examples
include the second and fourth order schemes for the Neumann problem, where analysis
indicates a gain of 1 and 2.5 orders, respectively. In these cases, the interior error also plays
an important role in the overall convergence rate. It is therefore unclear from the computation
what the precise gain is in computations.We design the following two experiments to confirm
that our accuracy analysis indeed gives sharp error estimates.

We use (43) as the analytical solution and impose the Neumann boundary condition at
two boundaries x = 0 and x = 1. With this analytical solution, the equation does not have a
forcing term, and f = 0 in (32). We modify the numerical scheme (32) to

utt = −H−1Au + F . (44)

In the first experiment, we use the second order accurate scheme and choose the first compo-
nent ofF to be (10π)3 and all the other components zero.We use the number (10π)3 because
the truncation error involves the third derivative of the true solution with the factor (10π)3.
The boundary truncation error of (44) has the same structure as in the original scheme, but
increases to O(1), i.e. order 0. Note that energy stability still holds for (44). The L2 error
versus the number of grid points is plotted in Fig. 3b. Clearly, the convergence rate is 1, and is
a gain of 1 order from the boundary truncation error. This corroborates the accuracy analysis
very well.

In the second experiment, we use the fourth order accurate scheme and let the first four
components of F be h(10π)4[43/204,−1/12, 5/516, 11/588]T , and the other components
zero. The boundary truncation error of (44) has the same structure as in the original scheme,
but increases to O(h). We plot the L2 error versus the number of grid points in Fig. 3b, and
observe a 3.5 orders convergence rate, i.e. a gain of 2.5 orders from the boundary truncation
error. This again demonstrates that the error estimate is sharp.
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6 Conclusion

For the second order wave equation a stable numerical scheme does not automatically satisfy
the determinant condition, nor does it imply an optimal gain in convergence rate. We have
considered stable SBP–SAT finite difference schemes for the Dirichlet, Neumann and inter-
face problems. In all these cases the boundary/interface truncation error is larger than the
interior truncation error. We find that the schemes satisfy the determinant condition only for
the Dirichlet problem when the penalty parameter is greater than its limit value, and a gain
of two orders in convergence follows by the standard analysis. By a careful analysis of the
solution to the boundary system, we prove that the gain in convergence for some schemes is
in fact 2.5 orders, i.e. half an order higher than the optimal gain.

For all the other cases the determinant condition is not satisfied, but there is nonetheless
a gain in convergence of 0.5, 1, 2, or even 2.5 orders. In those cases, only a detailed analysis
of the boundary system reveals the precise gain.

We have performed numerical experiments by using both the standard SBP–SAT scheme,
and a modified version to confirm that our accuracy analysis gives sharp error estimates.

In this paper, we have performed accuracy analysis for problems in one space dimension.
The technique and results can be straightforwardly generalized to two space dimensions if
the boundary condition is periodic in one of the spatial dimensions. In a coming paper, we
will show how to perform accuracy analysis for problems in two space dimensions when the
boundary conditions in both dimensions are non–periodic. We will in particular consider a
corner problem when the large truncation error is located on a few grid points at a conner in
two space dimensions.
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Appendix 1

The boundary systems for the high order schemes for the Dirichlet problem are C4D(0, τ )

in Sect. 2.3.3

C4D(0, τ ) =

⎡

⎢
⎢
⎢
⎣

−3 3 − 4
√
3 −122+48τ

17 5
−1 −1 85

59 2
55
43

85+12
√
3

43 − 68
43 − 59

43

− 1
49 − 37+3

√
3

49
17
49 0

⎤

⎥
⎥
⎥
⎦

,

and C6D(0, τ ) in Sect. 2.3.4

C6D(0, τ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2.9794 3.3686 + 0.0230i 3.3686 − 0.0230i 3.1651τ − 9.3821 8.0245 −8.2157
0.5705 1.0025 + 0.0469i 1.0025 − 0.0469i 1.8235 2.3504 −1.8675

−4.6151 −6.7899 − 0.2266i −6.7899 + 0.2266i −4.1363 −4.1376 8.1084
2.5660 4.5927 + 0.1966i 4.5927 − 0.1966i 0.8615 1.159 −3.5117

−1.2510 −3.1883 − 0.2835i −3.1883 + 0.2835i −0.0951 −0.9157 1.9876
0.1996 0.3281 + 0.1029i 0.3281 − 0.1029i −0.0400 0.1875 −0.3471

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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InSect. 3.2.2, the boundary systems for the fourth and sixth order schemes for theNeumann
problem are analyzed. We have for the fourth order scheme

C4N (0) =

⎡

⎢
⎢
⎢
⎣

5
17

11−4
√
3

17
54
17 − 59

17−1 −1 −1 2
55
43

85+12
√
3

43
4
43 − 59

43

− 1
49 − 37+8

√
3

49
1
49 0

⎤

⎥
⎥
⎥
⎦

,

and for sixth order scheme

C6N (0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.4494 −0.8104 − 0.0403i −0.8104 + 0.0403i 3.8057 −4.6357 1.2795
0.5705 1.0025 + 0.0469i 1.0025 − 0.0469i −1.0534 2.3504 −1.8675

−4.6151 −6.7899 − 0.2266i −6.7899 + 0.2266i 0.6442 −4.1376 8.1084
2.5660 4.5927 + 0.1966i 4.5927 − 0.1966i −0.2134 1.1591 −3.5117

−1.2510 −3.1883 − 0.2835i −3.1883 + 0.2835i 0.1791 −0.9157 1.9876
0.1996 0.3281 + 0.1029i 0.3281 − 0.1029i −0.0400 0.1875 −0.3471

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The boundary systems for the interface problem are

C2I (0, τ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
2

r
2 −1 + 2τh 0 3

2 + 3r
2 − 2τh −2r

−1 0 0 2 −1 0
1 0 − 1

4 −1 1
4 0

1
2r − 1

2
3
2 + 3

2r − 2τh
r − 2

r −1 + 2τh
r 0

0 −1 −1 0 0 2
0 1 1

4 0 − 1
4 −1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

C4I (0, τ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 23
17

31−36
√
3

17
28r
17

4r(8
√
3−5)

17
48hτ−34

17
13
17

44r−48hτ+44
17 − 72r

17−1 −1 0 0 13
59 2 − 72

59 0
55
43

12
√
3+85
43 0 0 − 32

43 − 59
43

36
43 0

− 1
49 − 8

√
3+37
49 0 0 9

49 0 − 8
49 0

28
17r

4(8
√
3−5)

17r − 23
17

31−36
√
3

17
44r−48hτ+44

17r − 72
17r

48hτ−34r
17r

13
17

0 0 −1 −1 − 72
59 0 13

59 2

0 0 55
43

12
√
3+85
43

36
43 0 − 32

43 − 59
43

0 0 − 1
49 − 8

√
3+37
49 − 8

49 0 9
49 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Appendix 2

Consider the one dimensional wave equation (1) with the homogeneous Neumann boundary
condition (3). To begin with, we will derive estimates for the continuous problem of U and
Ut in maximum norm in terms of data. Then follows the corresponding derivation for the
semi–discrete case.

The standard energy estimate (5) gives

‖Ux‖ ≤
√

‖Gx‖2 + ‖Ḡ‖2 + t max
0≤τ≤t

‖F(·, τ )‖. (45)
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Together with the estimate (6) and the Sobolev inequality [8, Lemma 8.3.1], we obtain that
U is bounded by the data in maximum norm

‖U‖∞ ≤ ‖U‖ + ‖Ux‖
≤ ‖G‖ + (1 + t)

√
‖Gx‖2 + ‖Ḡ‖2 + (t + t2) max

0≤τ≤t
‖F(·, τ )‖ (46)

where ‖U (x, t)‖∞ := sup{|U (x, t)| : x ≥ 0} for any fixed t .
Next, let V = Ut . Then V satisfies

Vtt = Vxx + Ft ,

with initial condition

V (x, 0) = Ḡ(x),

Vt (x, 0) = Utt (x, 0) = Uxx (x, 0) + F(x, 0) = Gxx (x) + F(x, 0),

and homogeneous Neumann boundary condition

Vx (0, t) = 0.

The equation in V is in the same form as the equation in U , but with a different forcing and
initial data. In the same way, V is bounded by the data in maximum norm

‖V ‖∞ ≤ ‖Ḡ‖ + (1 + t)
√

‖Ḡx‖2 + ‖Gxx + F(·, 0)‖2 + (t + t2) max
0≤τ≤t

‖Fτ (·, τ )‖. (47)

Before analyzing the semi–discrete case, we recall the definition of pointwise stability,
Definition 2.2, in [21].

Definition 2.2 in [21]: The approximation, v, is strongly pointwise stable if, for all h ≤ h0,
the estimate

‖v(t)‖2∞ ≤ K (t)(‖ f ‖2 + max
0≤τ≤t

‖F(τ )‖2 + max
0≤τ≤t

g(τ )2) (48)

holds. Here K (t) is a bounded function in any finite time interval and does not depend on
the data. (‖ · ‖ denotes some norm.) The approximation is pointwise stable if (48) holds with
g(t) = 0.

In the above definition, v(t) is the semi–discrete solution, f is the initial data, F is the
forcing in the equation and g is the boundary data. We also recall Theorem 2.13 in [21].

Theorem 2.13 in [21]:If v and vt are pointwise stable discrete solutions to (24’), then with
r = 2p − 2 the global order of accuracy is 2p.

In the above theorem, (24’) is the SBP–SAT discretization of the wave equation, v is
the semi–discrete solution, vt is the time derivative of v, and r? is the order of boundary
truncation error. This theorem says that for the wave equation if the semi–discrete solution
and its time derivative are pointwise bounded, then two orders are gained in convergence.

In the following, we derive the pointwise estimates for the semi–discrete solution and its
time derivative. The discrete energy estimate (33) gives

‖u‖A ≤
√

‖ḡ‖2H + ‖g‖2A + t max
0≤z≤t

‖ f (z)‖H , (49)

where g and ḡ are the restrictions of G(x) and Ḡ(x) to the grid. By the Cauchy–Schwarz
inequality, we have

2‖u‖H
d

dt
‖u‖H = d

dt
‖u‖2H ≤ 2‖u‖H ‖ut‖H ,
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which leads to

d

dt
‖u‖H ≤ ‖ut‖H ≤

√
‖ḡ‖2H + ‖g‖2A + t max

0≤z≤t
‖ f (z)‖H .

An integration in time yields

‖u‖H ≤ ‖g‖H + t
√

‖ḡ‖2H + ‖g‖2A + t2 max
0≤z≤t

‖ f (z)‖H . (50)

In the right hand side of (49) and (50), the H–norm causes no problem because it is equivalent
to the standard discrete L2 norm. The term ‖g‖2A is bounded by the following lemma.

Lemma 3 Consider the initial data G(x) in (1) with homogeneous Neumann boundary con-
dition. Let g be the restriction of G(x) to the grid. Then we have 1) Gx (0) = 0; 2)With the
operator A in (7), ‖g‖2A is bounded by G(x) and its derivatives up to order 2p + 2.

Proof 1) It follows from compatibility between initial and boundary data. We differentiate
the initial conditionU (x, 0) = G(x) and obtainUx (x, 0) = Gx (x). It is compatible with
the homogeneous Neumann boundary condition Ux (0, t) = 0 at t = 0, which implies
Gx (0) = 0.

2) We have

‖g‖2A = −gT E0Sg − gT H Dg

≤ |G(0)||(Sg)0| + ‖g‖H ‖Dg‖H , (51)

where

(Sg)0 = Gx (0) + TS = TS, Dg = gxx + TD,

gxx is the restriction of Gxx (x) to the grid, TS and TD are the truncation errors of the
operators S and D. More precisely, by Taylor expansion

TS = h p+1
k1∑

i=1

ai
∂ p+2

∂x p+2 G(bi ),

where h is the grid spacing, p is the order of the boundary truncation error, k1 is the
stencil width of the operator S, bi ∈ [0, ih], and ai depends on the precise form of S and

the details of Taylor expansions. Clearly, |TS | is bounded by max0≤x≤k1h | ∂ p+2

∂x p+2 G(x)|.
As a consequence, |(Sg)0| ≤ |TS | is also bounded by the same data.

In a similar way, by using Taylor expansions, TD can be expressed as h p ∑k2
i=1 ci

∂ p+2

∂x p+2

G(di ) and h2p ∑k3
i=1 ei

∂2p+2

∂x2p+2 G( fi ) at boundary and interior points, respectively, where k2,

k3 depend on the stencil width of D. Therefore, ‖g‖2A is bounded by |G(x)| and its derivatives
up to order 2p + 2. ��
The estimates (49), (50), and Lemma 3 give that both ‖u‖H and ‖u‖A are bounded in terms
of data. Then by Lemma 3.2 in [21], an analogue of the discrete Sobolve inequality, the
numerical solution u is pointwise stable according to Definition 2.2 in [21].

Next, we show that ut is also pointwise bounded. Let v = ut . Then v satisfies

vt t = −H−1Av + ft ,

v(0) = ḡ, vt (0) = −H−1Ag + f (0)
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Similarly as before, we have

‖v‖A ≤
√

‖ − H−1Ag + f (0)‖2H + ‖ḡ‖2A + t max
0≤z≤t

‖ fz(z)‖H , (52)

and

‖v‖H ≤ ‖ḡ‖H + t
√

‖ − H−1Ag + f (0)‖2H + ‖ḡ‖2A + t2 max
0≤z≤t

‖ fz(z)‖H . (53)

The term ‖ḡ‖2A can be bounded by using Lemma 3. For the term ‖ − H−1Ag‖H , we note

−H−1Ag = Dg + H−1E0Sg.

‖Dg‖H also appears in the term ‖g‖A in Lemma 3 and we use the same bound here. Only
the first component of H−1E0Sg is nonzero and is

|(H−1E0Sg)0| = K h−1|(Gx (0) + TS)| = K h−1|TS | ≤ K h p
k1∑

i=1

∣
∣
∣
∣ai

∂ p+2

∂x p+2 G(bi )

∣
∣
∣
∣ ,

where K depends on the particular form of S but not h. As a consequence, ‖ − H−1Ag‖H

is bounded by G(x) and its derivatives up to order 2p + 2 in maximum norm. We can then
again use Lemma 3.2 in [21] to derive a pointwise bound on ut .

In conclusion, with an SBP–SAT finite difference scheme for the wave equation with Neu-
mann boundary condition, the numerical solutions u and ut are pointwise bounded according
to Definition 2.2 in [21]. However, the determinant condition is not satisfied as shown in
Sect. 3, nor is the p + 2 optimal gain obtained. In particular, for p = 1 the gain is only 1
order.

References

1. Abarbanel, S., Ditkowski, A., Gustafsson, B.: On error bounds of finite difference approximations to
partial differential equations—temporal behaviour and rate of convergence. J. Sci. Comput. 15, 79–116
(2000)

2. Appelö, D., Kreiss, G.: Application of a perfectly matched layer to the nonlinear wave equation. Wave
Motion 44, 531–548 (2007)

3. Carpenter, M.H., Gottlieb, D., Abarbanel, S.: Time-stable boundary conditions for finite-difference
schemes solving hyperbolic systems: methodology and application to high-order compact schemes. J.
Comput. Phys. 111, 220–236 (1994)

4. Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simul-
taneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids
95, 171–196 (2014)

5. Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave
equation. SIAM J. Numer. Anal. 44, 2408–2431 (2006)

6. Gustafsson, B.: The convergence rate for difference approximations to mixed initial boundary value
problems. Math. Comp. 29, 396–406 (1975)

7. Gustafsson, B.: High Order Difference Methods for Time Dependent PDE. Springer, Berlin (2008)
8. Gustafsson, B., Kreiss, H.O., Oliger, J.: Time-Dependent Problems and Difference Methods. Wiley, New

Jersey (2013)
9. Hagstrom, T., Hagstrom, G.: Grid stabilization of high-order one-sided differencing II: second-order wave

equations. J. Comput. Phys. 231, 7907–7931 (2012)
10. Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations.

Tellus 24, 199–215 (1972)
11. Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential

equations, Mathematical aspects of finite elements in partial differential equations. Symp. Proc. 33, 195–
212 (1974)

123



J Sci Comput (2017) 71:219–245 245

12. Mattsson, K., Almquist, M.: A solution to the stability issues with block norm summation by parts
operators. J. Comput. Phys. 253, 418–442 (2013)

13. Mattsson, K., Ham, F., Iaccarino, G.: Stable and accurate wave-propagation in discontinuous media. J.
Comput. Phys. 227, 8753–8767 (2008)

14. Mattsson, K., Ham, F., Iaccarino, G.: Stable boundary treatment for the wave equation on second-order
form. J. Sci. Comput. 41, 366–383 (2009)

15. Mattsson, K., Nordström, J.: Summation by parts operators for finite difference approximations of second
derivatives. J. Comput. Phys. 199, 503–540 (2004)

16. Mattsson, K., Nordström, J.: High order finite difference methods for wave propagation in discontinuous
media. J. Comput. Phys. 220, 249–269 (2006)

17. Nissen, A., Kreiss, G., Gerritsen, M.: Stability at nonconforming grid interfaces for a high order dis-
cretization of the Schrödinger equation. J. Sci. Comput. 53, 528–551 (2012)

18. Nissen, A., Kreiss, G., Gerritsen, M.: High order stable finite difference methods for the Schrödinger
equation. J. Sci. Comput. 55, 173–199 (2013)

19. Petersson, N.A., Sjögreen, B.: Stable grid refinement and singular source discretiztion for seismic wave
simulations. Comm. Comput. Phys. 8, 1074–1110 (2010)

20. Svärd, M.: A note on L∞ bounds and convergence rates of summation-by-parts schemes. BIT. Numer.
Math. 54, 823–830 (2014)

21. Svärd, M., Nordström, J.: On the order of accuracy for difference approximations of initial-boundary
value problems. J. Comput. Phys. 218, 333–352 (2006)

22. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems.
J. Comput. Phys. 268, 17–38 (2014)

23. Taylor, N.W., Kidder, L.E., Teukolsky, S.A.: Spectral methods for the wave equation in second-order
form. Phys. Rev. D 82, 024037 (2010)

24. Virta, K., Mattsson, K.: Acoustic wave propagation in complicated geometries and heterogeneous media.
J. Sci. Comput. 61, 90–118 (2014)

123


	Convergence of Summation-by-Parts Finite Difference Methods for the Wave Equation
	Abstract
	1 Introduction
	2 The One Dimensional Wave Equation with Dirichlet Doundary Conditions
	2.1 Stability
	2.2 Accuracy Analysis by the Energy Method
	2.3 Normal Mode Analysis for the Boundary Truncation Error
	2.3.1 Solution to the Error Equation
	2.3.2 Proof of Theorem 1 for the Second Order Scheme
	2.3.3 Proof of Theorem 1 for the Fourth Order Scheme
	2.3.4 Proof of Theorem 1 for the Sixth Order Scheme


	3 The One Dimensional Wave Equation with Neumann Boundary Conditions
	3.1 Stability
	3.2 Accuracy
	3.2.1 Second Order Accurate Scheme
	3.2.2 Fourth and Sixth Order Accurate Schemes


	4 The One Dimensional Wave Equation with a Grid Interface
	4.1 Proof of Theorem 3 for the Second Order Scheme
	4.2 Proof of Theorem 3 for the Fourth Order Scheme

	5 Numerical Experiments
	5.1 The One Dimensional Wave Equation
	5.2 Non--Optimal Convergence

	6 Conclusion
	Acknowledgements
	Appendix 1
	Appendix 2
	References




