Skip to main content
Log in

Multi-scale Discontinuous Galerkin Method for Solving Elliptic Problems with Curvilinear Unidirectional Rough Coefficients

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a multi-scale discontinuous Galerkin (DG) method for second-order elliptic problems with curvilinear unidirectional rough coefficients by choosing a special non-polynomial approximation space. The key ingredient of the method lies in the incorporation of the local oscillatory features of the differential operators into the approximation space so as to capture the multi-scale solutions without having to resolve the finest scales. The unidirectional feature of the rough coefficients allows us to construct the basis functions of the DG non-polynomial approximation space explicitly, thereby greatly increasing the algorithm efficiency. Detailed error estimates for two-dimensional second-order DG methods are derived, and a general guidance on how to construct such non-polynomial basis is discussed. Numerical examples are also presented to validate and demonstrate the effectiveness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aarnes, J.E.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul. 2, 421–439 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aarnes, J.E., Efendiev, Y.: An adaptive multiscale method for simulation of fluid flow in heterogeneous porous media. Multiscale Model. Simul. 5, 918–939 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aarnes, J.E., Efendiev, Y., Jiang, L.: Mixed multiscale finite element methods using limited global information. Multiscale Model. Simul. 7, 655–676 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aarnes, J.E., Hou, T.Y.: An efficient domain decomposition preconditioner for multiscale elliptic problems with high aspect ratios. Acta Math. Appl. Sinica 18, 63–76 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 39, 742–760 (1982)

    Article  Google Scholar 

  6. Babuška, I., Caloz, G., Osborn, J.: Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31, 945–981 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Babuška, I., Osborn, J.: Generalized finite element methods: their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20, 510–536 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bernstein, S.N.: Sur la généralisation du probléme de Dirichlet. Math. Ann. 62, 253–271 (1906)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, Z., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72, 541–576 (2002)

    Article  MathSciNet  Google Scholar 

  10. Douglas, J., Jr., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Lecture Notes in Physics, vol. 58. Springer, Berlin (1976)

  11. Efendiev, Y., Ginting, V., Hou, T.Y., Ewing, R.: Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys. 220, 155–174 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods: Theory and Applications. Springer, New York (2009)

    Google Scholar 

  13. Efendiev, Y., Hou, T.Y., Wu, X.H.: The convergence of nonconforming multiscale finite element methods. SIAM J. Numer. Anal. 37, 888–910 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ewing, R., Iliev, O., Lazarov, R.: A modified finite volume approximation of second-order elliptic equations with discontinuous coefficients. SIAM J. Sci. Comput. 23, 1335–1351 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Falk, R.S., Osborn, J.E.: Remarks on mixed finite element methods for problems with rough coefficient. Math. Comput. 62, 1–19 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Godev, K.N., Lazarov, R.D., Makarov, V.L., Samarskii, A.A.: Homogeneous difference schemes for one-dimensional problems with generalized solutions. Math. USSR SB 59, 155–179 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hou, T.Y., Wu, X.H., Cai, Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68, 913–943 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hou, T.Y., Wu, X.H., Zhang, Y.: Removing the cell resonance error in the multiscale finite element method via a Petrov–Galerkin formulation. Commun. Math. Sci. 2, 185–205 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Langlo, P., Espedal, M.S.: Macrodispersion for two-phase, immiscible flow in porous media. Adv. Water Resour. 17, 297–316 (1994)

    Article  Google Scholar 

  21. Tikhonov, A.N., Samarskii, A.A.: Homogeneous difference schemes. USSR Comput. Math. Math. Phys. 1, 5–67 (1962)

    Article  Google Scholar 

  22. Wang, W.: Multiscale discontinuous Galerkin methods and applications. Ph.D. thesis, Brown University (2008)

  23. Wang, W., Guzmán, J., Shu, C.-W.: The multiscale discontinuous Galerkin method for solving a class of second order elliptic problems with rough coefficients. Int. J. Numer. Anal. Model 8, 28–47 (2011)

    MATH  MathSciNet  Google Scholar 

  24. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yuan, L., Shu, C.-W.: Discontinuous Galerkin method based on non-polynomial approximation spaces. J. Comput. Phys. 218, 295–323 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yuan, L., Shu, C.-W.: Discontinuous Galerkin method for a class of elliptic multi-scale problems. Int. J. Numer. Methods Fluids 56, 1017–1032 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Wang Shu.

Additional information

Johnny Guzmán’s research was partially supported by NSF Grant DMS-0914596. Chi-Wang Shu’s research was supported by DOE Grant DE-FG02-08ER25863 and NSF Grant DMS-1112700.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Wang, W., Guzmán, J. et al. Multi-scale Discontinuous Galerkin Method for Solving Elliptic Problems with Curvilinear Unidirectional Rough Coefficients. J Sci Comput 61, 42–60 (2014). https://doi.org/10.1007/s10915-013-9816-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9816-7

Keywords

Navigation