Skip to main content
Log in

Improvement of Convergence to Steady State Solutions of Euler Equations with the WENO Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The convergence to steady state solutions of the Euler equations for high order weighted essentially non-oscillatory (WENO) finite difference schemes with the Lax-Friedrichs flux splitting (Jiang and Shu, in J. Comput. Phys. 126:202–228, 1996) is investigated. Numerical evidence in Zhang and Shu (J. Sci. Comput. 31:273–305, 2007) indicates that there exist slight post-shock oscillations when we use high order WENO schemes to solve problems containing shock waves. Even though these oscillations are small in their magnitude and do not affect the “essentially non-oscillatory” property of the WENO schemes, they are indeed responsible for the numerical residue to hang at the truncation error level of the scheme instead of settling down to machine zero. Differently from the strategy adopted in Zhang and Shu (J. Sci. Comput. 31:273–305, 2007), in which a new smoothness indicator was introduced to facilitate convergence to steady states, in this paper we study the effect of the local characteristic decomposition on steady state convergence. Numerical tests indicate that the slight post-shock oscillation has a close relationship with the local characteristic decomposition process. When this process is based on an average Jacobian at the cell interface using the Roe average, as is the standard procedure for WENO schemes, such post-shock oscillation appears. If we instead use upwind-biased interpolation to approximate the physical variables including the velocity and enthalpy on the cell interface to compute the left and right eigenvectors of the Jacobian for the local characteristic decomposition, the slight post-shock oscillation can be removed or reduced significantly and the numerical residue settles down to lower values than other WENO schemes and can reach machine zero for many test cases. This new procedure is also effective for higher order WENO schemes and for WENO schemes with different smoothness indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Colonius, T., Lele, S.K.: Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40, 345–416 (2004)

    Article  Google Scholar 

  4. Donat, R., Marquina, A.: Capturing shock reflections: An improved flux formula. J. Comput. Phys. 125, 42–58 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  6. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  MATH  Google Scholar 

  8. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  9. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Liu, Y.-Y., Shu, C.-W., Zhang, M.: On the positivity of linear weights in WENO approximations. Acta Math. Appl. Sinica 25, 503–538 (2009)

    MATH  MathSciNet  Google Scholar 

  11. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Saad, M.A.: Compressible Fluid Flow. Prentice Hall, New York (1993)

    MATH  Google Scholar 

  13. Sebastian, K., Shu, C.-W.: Multi domain WENO finite difference method with interpolation at subdomain interfaces. J. Sci. Comput. 19, 405–438 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Serna, S., Marquina, A.: Power ENO methods: a fifth-order accurate weighted power ENO method. J. Comput. Phys. 194, 632–658 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shu, C.-W.: High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shu, C.-W., Osher, S.: Efficient implementation of essentially non- oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhang, S., Zhang, Y.-T., Shu, C.-W.: Multistage interaction of a shock wave and a strong vortex. Phys. Fluid 17, 116101 (2005)

    Article  MathSciNet  Google Scholar 

  19. Zhang, S., Zhang, H., Shu, C.-W.: Topological structure of shock induced vortex breakdown. J. Fluid Mech. 639, 343–372 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, S., Shu, C.-W.: A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solution. J. Sci. Comput. 31, 273–305 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Wang Shu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Jiang, S. & Shu, CW. Improvement of Convergence to Steady State Solutions of Euler Equations with the WENO Schemes. J Sci Comput 47, 216–238 (2011). https://doi.org/10.1007/s10915-010-9435-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9435-5

Keywords

Navigation