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Abstract The convergence to steady state solutions of the Euler equations for high or-
der weighted essentially non-oscillatory (WENO) finite difference schemes with the Lax-
Friedrichs flux splitting (Jiang and Shu, in J. Comput. Phys. 126:202–228, 1996) is inves-
tigated. Numerical evidence in Zhang and Shu (J. Sci. Comput. 31:273–305, 2007) indi-
cates that there exist slight post-shock oscillations when we use high order WENO schemes
to solve problems containing shock waves. Even though these oscillations are small in
their magnitude and do not affect the “essentially non-oscillatory” property of the WENO
schemes, they are indeed responsible for the numerical residue to hang at the truncation
error level of the scheme instead of settling down to machine zero. Differently from the
strategy adopted in Zhang and Shu (J. Sci. Comput. 31:273–305, 2007), in which a new
smoothness indicator was introduced to facilitate convergence to steady states, in this paper
we study the effect of the local characteristic decomposition on steady state convergence.
Numerical tests indicate that the slight post-shock oscillation has a close relationship with
the local characteristic decomposition process. When this process is based on an average
Jacobian at the cell interface using the Roe average, as is the standard procedure for WENO
schemes, such post-shock oscillation appears. If we instead use upwind-biased interpolation
to approximate the physical variables including the velocity and enthalpy on the cell inter-
face to compute the left and right eigenvectors of the Jacobian for the local characteristic
decomposition, the slight post-shock oscillation can be removed or reduced significantly
and the numerical residue settles down to lower values than other WENO schemes and can
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reach machine zero for many test cases. This new procedure is also effective for higher order
WENO schemes and for WENO schemes with different smoothness indicators.

Keywords WENO reconstruction · WENO interpolation · Steady state solution

1 Introduction

In this paper, we continue our work in [20] to further study the convergence of high order
weighted essentially nonoscillatory (WENO) finite difference schemes [8] to solve steady
state solutions of the conservation law

∂U

∂t
+

d∑

i=1

∂Fi(U)

∂xi

= 0 (1.1)

given by the equation

d∑

i=1

∂Fi(U)

∂xi

= 0. (1.2)

We obtain the steady state solutions of (1.2) through a total variation diminishing (TVD)
Runge-Kutta time marching scheme [16]. Here U is the vector of the conservative variables,
Fi(U) is the (usually nonlinear) flux function in the i-th direction, and d is the spatial di-
mension. In all the numerical tests we use the Euler equations of compressible gas dynamics
as examples.

Euler equations (1.1) or (1.2) contain discontinuous solutions, which are known as shock
waves or contact lines. Across these discontinuities, the physical variables, such as density,
pressure and velocity, may be discontinuous. Capturing such discontinuities well is a key
requirement in the design of numerical schemes. There are many choices of shock capturing
schemes such as the TVD schemes [5], essentially non-oscillatory (ENO) schemes [6, 16],
and WENO schemes [8, 9]. The finite difference WENO schemes [8], because of their sim-
plicity and efficiency for multi-dimensional calculations, have been extensively used in the
simulation of the multi-scale and delicate structures of physical phenomena, for example in
problems related to shock turbulence interaction and shock vortex interaction [18, 19]. For
a review of WENO schemes, see [15].

However, like most other high order shock capturing schemes, WENO schemes also
suffer from problems during convergence to steady states. When we use WENO schemes
to simulate the solution of the steady equation (1.2) by marching with the unsteady equa-
tion (1.1), the residue often stops decreasing at the truncation error level of the scheme, far
above machine zero, although the flow variables do not change significantly with further
iteration. In our earlier work [20], we have performed extensive numerical tests to demon-
strate this difficulty. A major problem influencing steady state convergence is the existence
of slight post-shock oscillations. When we use WENO schemes to solve a steady prob-
lem that contains shock waves, there usually exist slight post-shock oscillations [20]. Even
though these slight post-shock oscillations do not influence the aerodynamic character, they
can be confused with the multi-scale features such as the acoustic signals and turbulence
fluctuation. For instance, the radiated pressure fluctuation of the “terrifyingly loud” noise of
114 dB of turbo-jets [3] is less than 10−4, which might be smaller than the “slight” post-
shock oscillation for a WENO simulation of a Mach 2 steady shock wave.
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There are many factors which may influence the slight post-shock oscillation and slow
steady state convergence. Serna and Marquina [14] designed a smooth limiter to recon-
struct the flux. Although the authors did not discuss convergence to steady states for their
scheme, the use of the limiter actually improves convergence to steady states [20]. Zhang and
Shu [20] proposed a new smoothness indicator for the fifth order WENO scheme. With this
new smoothness indicator, the slight post-shock oscillation is either removed or significantly
reduced. The residue can settle down to machine zero for many one and two dimensional
test cases. However, it seems difficult to generalize such smoothness indicators to higher
order WENO schemes. Also, this new smoothness indicator may result in a degeneracy of
accuracy at certain higher order critical points [7].

In this paper we adopt a different approach than that in [20] and concentrate on an in-
vestigation of the effect of the local characteristic decomposition procedure to steady state
convergence. We perform extensive numerical tests to identify the close relationship be-
tween the slight post-shock oscillation and the local characteristic decomposition process.
It is noticed that, when this process is based on an average Jacobian at the cell interface, for
example using the traditional Roe average [11], such post-shock oscillations would appear.
If we instead use upwind-biased interpolation procedure to approximate the physical vari-
ables including the velocity and enthalpy on the cell interface to compute the left and right
eigenvectors for the local characteristic decomposition, the slight post-shock oscillation can
be either removed or reduced significantly and the residue can settle down to machine zero
in many test problems. This improvement is obtained without any restriction to the WENO
weights, making it easier to be generalized to higher order WENO schemes or to be applied
with different WENO weights (e.g. those in [7]) to enhance accuracy.

This paper is organized as follows. In the second section, we give a brief overview of
the methodology of WENO schemes, including the traditional procedure to perform the lo-
cal characteristic decomposition. Section 3 contains our proposed method to compute the
eigenvectors during the local characteristic decomposition process. Section 4 contains nu-
merical test and comparison results. An accuracy test is performed in Sect. 5, and concluding
remarks are given in Sect. 6.

2 Methodology of WENO Schemes

In this section, we give a brief overview of the finite difference WENO schemes including
the numerical fluxes, smoothness indicator, flux splitting and the discretization of the time
derivative.

2.1 Numerical Fluxes of WENO Schemes

We consider the following one dimensional hyperbolic scalar equation as an example

ut + f (u)x = 0. (2.1)

We take the positive wind direction, namely f ′(u) ≥ 0 in (2.1), as an example below. The
computational domain [xL, xR] is divided into a uniform mesh for simplicity, with a constant
mesh size �x = xj+1 −xj . The conservative property of the spatial discretization is obtained
by implicitly defining the numerical flux function f̂ (x) as

f (u(x)) = 1

�x

∫ x+ �x
2

x− �x
2

f̂ (ξ)dξ. (2.2)
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Hence, the spatial derivative f (u)x at the point x = xi in (2.1) can be represented by a
conservative finite difference formula

d ui

dt
= − 1

�x
(f̂i+ 1

2
− f̂i− 1

2
). (2.3)

The right hand side will also be written in the operator form

L(u)i = − 1

�x
[f̂i+ 1

2
− f̂i− 1

2
]. (2.4)

The numerical flux f̂i+ 1
2

can be reconstructed by the point value fi = f (ui) (which is

the cell average of f̂ (x), the flux function) in a r-point stencil Sk = (xi−k, xi−k+1, . . . , xi+s),

f̂ k

i+ 1
2

=
r−1∑

j=0

ckjfi−k+j , (2.5)

where k ≥ 0, s ≥ 0 and k + s + 1 = r . This numerical flux can achieve r-th order numerical
accuracy for approximating the spatial derivative f (u)x

1

�x
(f̂ k

i+ 1
2
− f̂ k

i− 1
2
) = f (u(x))x |x=xi

+ O(�xr) (2.6)

with suitable choices of the coefficients ckj .
There are r possible candidates of such stencils and numerical fluxes f̂ k

i+ 1
2
, k = 0, . . . ,

r − 1. To capture the discontinuities, ENO schemes [6] are devised through “adaptive sten-
cil”, by choosing the smoothest stencil among these candidates to avoid the discontinuity.
WENO schemes [8, 9] are an extension of ENO schemes. Instead of using only one sten-
cil (the optimal stencil in some sense), a WENO scheme would use all candidate stencils
through a convex combination to approximate the flux. The accuracy can be improved to the
optimal order in smooth regions while the essentially non-oscillatory property near discon-
tinuities is maintained. The WENO numerical flux is given by

f̂ WENO
i+ 1

2
=

r−1∑

k=0

ωkf̂
k

i+ 1
2
. (2.7)

The nonlinear weights ωk are computed by

ωk = αk

α0 + α1 + · · · + αr−1
, (2.8)

where

αk = dk

(ε + ISk)p
, k = 0,1, . . . , r − 1. (2.9)

Here dk are the linear weights and ε is a small positive number which is introduced to avoid
the denominator becoming zero. In our later tests, we take ε = 10−6 and the power p = 2.
ISk is the smoothness indicator of the flux function in the k-th substencil which is taken as
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in Jiang and Shu [8] as

ISk =
r−1∑

l=1

∫ x
i+ 1

2

x
i− 1

2

�x2l−1

(
∂lf̂ k(x)

∂lx

)2

dx (2.10)

where f̂ k(x) is the reconstruction polynomial based on the substencil Sk .

2.1.1 High Order WENO Schemes

In this subsection we document the fifth and seventh order finite difference WENO schemes
[1, 8] that we will use later in our numerical tests.

(a) Fifth order WENO scheme (r = 3).
In the case of r = 3, the fifth order WENO scheme was obtained by Jiang and

Shu [8], which has been used most often among various WENO schemes in applica-
tions. The three third order numerical fluxes from the three substencils are

f̂ 0
j+1/2 = 1

3
f (uj−2) − 7

6
f (uj−1) + 11

6
f (uj ),

f̂ 1
j+1/2 = −1

6
f (uj−1) + 5

6
f (uj ) + 1

3
f (uj+1),

f̂ 2
j+1/2 = 1

3
f (uj ) + 5

6
f (uj+1) − 1

6
f (uj+2).

(2.11)

The linear weights are given by

d0 = 1

10
, d1 = 6

10
, d2 = 3

10
, (2.12)

and the nonlinear weights are given by

ωr = αr∑2
i=0 αi

, αr = dr

(ε + ISr )p
, r = 0,1,2. (2.13)

ISr are the smoothness indicators which are given by

IS0 = 13

12
(fj−2 − 2fj−1 + fj )

2 + 1

4
(fj−2 − 4fj−1 + 3fj )

2,

IS1 = 13

12
(fj−1 − 2fj + fj+1)

2 + 1

4
(fj−1 − fj+1)

2,

IS2 = 13

12
(fj − 2fj+1 + fj+2)

2 + 1

4
(3fj − 4fj+1 + fj+2)

2.

(2.14)

Henrich et al. [7] noticed that the nonlinear weights with the smoothness indica-
tor (2.14) may lose accuracy at certain smooth extrema. They introduced a mapping
function:

gr(ω) = ω(dr + (dr)
2 − 3drω + ω2)

(dr)2 + (1 − 2dr)ω
, (2.15)
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where ω ∈ [0,1] and r = 0,1,2. This function is monotonically increasing with a finite
slope and gr(0) = 0, gr(1) = 1, gr(dr) = dr , g′

r (dr) = 0, and g′′
r (dr ) = 0. The mapped

weights are given by:

ωM
r = gr(ωr), (2.16)

where ωr are computed by (2.13) and (2.14). This mapped WENO scheme can improve
accuracy at smooth extrema. An additional advantage is that accuracy depends much
less on the magnitude of the parameter ε and hence it can be taken close to machine
zero. We refer to [7] for more details.

Borges et al. [2] defined a new smoothness indicator by

βz
r = ISr + ε

ISr + τ5 + ε
, r = 0,1,2 (2.17)

where τ5 = |IS2 − IS0|, and the nonlinear weights are defined by

ωz
r = αz

r∑2
l=0 αz

l

, αz
r = dr

βz
r

= dr

(
1 + τ5

βr + ε

)
, r = 0,1,2. (2.18)

With this new smoothness indicator, the improved WENO scheme has similar accuracy
at smooth extrema as the mapped WENO, while the CPU cost is reduced by about 25%,
since no mapping is necessary.

(b) Seventh order WENO scheme (r = 4).
In the case of r = 4, the seventh order WENO scheme was obtained by Balsara and

Shu [1]. The four fourth order numerical fluxes from the four substencils are

f̂ 0
i+ 1

2
= −1

4
fi−3 + 13

12
fi−2 − 23

12
fi−1 + 25

12
fi,

f̂ 1
i+ 1

2
= 1

12
fi−2 − 5

12
fi−1 + 13

12
fi + 1

4
fi+1,

f̂ 2
i+ 1

2
= − 1

12
fi−1 + 7

12
fi + 7

12
fi+1 − 1

12
fi+2,

f̂ 3
i+ 1

2
= 1

4
fi + 13

12
fi+1 − 5

12
fi+2 + 1

12
fi+3.

(2.19)

The linear weights are given by

d0 = 1

35
, d1 = 12

35
, d2 = 18

35
, d3 = 4

35
, (2.20)
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and the smoothness indicators are

IS0 = fi−3(547fi−3 − 3882fi−2 + 4642fi−1 − 1854fi)

+ fi−2(7043fi−2 − 17246fi−1 + 7042fi)

+ fi−1(11003fi−1 − 9402fi) + 2107f 2
i ,

IS1 = fi−2(267fi−2 − 1642fi−1 + 1602fi − 494fi+1)

+ fi−1(2843fi−1 − 5966fi + 1922fi+1)

+ fi(3443fi − 2522fi+1) + 547f 2
i+1,

IS2 = fi−1(547fi−1 − 2522fi + 1922fi+1 − 494fi+2)

+ fi(3443fi − 5966fi+1 + 1602fi+2)

+ fi+1(2843fi+1 − 1642fi+2) + 267f 2
i+2,

IS3 = fi(2107fi − 9402fi+1 + 7042fi+2 − 1854fi+3)

+ fi+1(11003fi+1 − 17246fi+2 + 4642fi+3)

+ fi+2(7043fi+2 − 3882fi+3) + 547f 2
i+3.

(2.21)

2.2 Local Characteristic Decomposition for Conservative Law Systems

For system of equations, such as the Euler equations (1.2), the WENO reconstruction is
usually implemented in the local characteristic fields, to more effectively avoid spurious
oscillations. Let Ai+ 1

2
denote the Jacobian ∂F

∂U
at the cell interface xi+ 1

2
. The left and right

eigenvectors of Ai+ 1
2

are denoted by Ls and Rs , for s = 1,2, . . . ,m. Then, the scalar WENO
reconstruction procedure can be applied to each of the characteristic fields

F̂ k

i+ 1
2 ,s

=
r−1∑

j=0

ckjLsFi−k+j , (2.22)

F̂ WENO
i+ 1

2 ,s
=

r−1∑

k=0

ωk,s F̂
k

i+ 1
2 ,s

. (2.23)

The nonlinear weights ωk,s are computed in the local characteristic fields

ωk,s = ωk(LsFi+k−r+1, . . . ,LsFi+k). (2.24)

When the WENO reconstruction is finished in each characteristic field, the numerical
fluxes that are obtained in each characteristic field can be projected back to the component
space by

F̂ WENO
i+ 1

2
=

m∑

s=1

F̂ WENO
i+ 1

2 ,s
Rs. (2.25)

Traditionally, the left and right eigenvectors Ls and Rs are computed from the physical
variables including velocity and enthalpy on the cell interface xi+ 1

2
that are often taken as
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the Roe average [11] from the physical values at the two neighboring points xi and xi+1.
The Roe average is defined through the mean value theorem

F(Ui+1) − F(Ui) = A(Ui+ 1
2
)(Ui+1 − Ui).

For the Euler equations, let ρ be the density, the other physical variables for the Roe average
can be obtained by

Ui+ 1
2

=
√

ρ
i√

ρ
i
+ √

ρ
i+1

Ui +
√

ρ
i+1√

ρ
i
+ √

ρ
i+1

Ui+1, (2.26)

and then the left and right eigenvectors Ls and Rs of the Jacobian matrix Ai+ 1
2

can be
computed by

Ls = Ls(Ui+ 1
2
), Rs = Rs(Ui+ 1

2
). (2.27)

If the Roe average is not readily available, the simple arithmetic mean

Ui+ 1
2

= 1

2
(Ui + Ui+1) (2.28)

is also often used in the computation of left and right eigenvectors Ls and Rs .

2.3 Flux Splitting

The purpose of flux splitting is to introduce the correct upwinding. In general, the flux can
be split into two parts:

f (u) = f +(u) + f −(u), (2.29)

where df +(u)

du
≥ 0 and df −(u)

du
≤ 0. For the system case, this means that the eigenvalues of

df +(u)

du
are all non-negative, and those of df −(u)

du
are all non-positive. The simplest and com-

monly used flux splitting is the Lax-Friedrichs flux splitting

f ±(u) = 1

2
(f (u) ± αu), (2.30)

where α = max |f ′(u)| with the maximum taken over some relevant range of u.

2.4 Time Discretization

After the spatial derivative is discretized with the WENO scheme, we obtain a set of ordinary
differential equations (ODEs):

du

dt
= L(u). (2.31)

The operator L(u) is represented in (2.4). This set of ODEs can be discretized by an ODE
solver, for example the third order TVD Runge-Kutta method [16] as follows:

u(1) = un + �tL(un),

u(2) = 3

4
un + 1

4
u(1) + 1

4
�tL(u(1)),

un+1 = 1

3
un + 2

3
u(2) + 2

3
�tL(u(2)).

(2.32)
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3 Improvement of Convergence to Steady States

Like many high order accurate shock capturing schemes, WENO schemes also suffer from
difficulties in their convergence toward steady state solutions, as demonstrated extensively
in [20]. In [20], we proposed a new smoothness indicator, differently from (2.10), for the
fifth order WENO scheme. With this new smoothness indicator, the residue of the fifth
order WENO scheme for typical steady states can settle down to machine zero. However,
for certain types of critical points (zeros of certain derivatives of a smooth solution), this
WENO procedure might lose accuracy, as can be verified by a Taylor expansion. It also
seems difficult to generalize this new smoothness indicator to higher order WENO schemes.

Based on our numerical tests, we observe that the Roe averaging procedure in (2.26) to
compute the physical variables on the cell interface for the computation of the left and right
eigenvectors Ls and Rs of the Jacobian matrix Ai+ 1

2
can influence the convergence history

of WENO schemes. Inspired by the approach in [4], we use upwind-biased interpolation
to compute the physical variables Ui+ 1

2
on the cell interface instead of the Roe average.

Upwind-biased interpolation uses only or mainly information from one side of the shock
for the grid point near the shock, while the Roe average uses information equally from both
sides. Intuitively, the former would be less prone to disturbance and oscillations than the
latter in steady state calculations. In the upwind-biased interpolation, we choose the physical
variable on the cell interface Ui+ 1

2
= U(1) when ui+ 1

2
≥ 0 (here u denotes the velocity in the

Euler equations) and Ui+ 1
2

= U(2) when ui+ 1
2

< 0, where U(1) and U(2) are the interpolated
values on the cell interface, which are computed by the first order or the second order one-
sided interpolation, or the higher order upwind-biased WENO interpolation (e.g. the fifth
order WENO interpolation for the fifth order WENO scheme and the seventh order WENO
interpolation for the seventh order WENO scheme). We emphasize that the order of accuracy
of the final WENO scheme does not depend on the order of interpolation here, therefore we
can use, e.g. the first order interpolation here and still obtain high order accuracy for the
final WENO scheme. The detailed formulae are listed below.

The first order:

U(1) = Ui,

U(2) = Ui+1.
(3.1)

The second order:

U(1) = (3Ui − Ui−1)/2,

U(2) = (3Ui+1 − Ui+2)/2.
(3.2)

We could also use upwind-biased WENO interpolation procedure. The WENO interpo-
lation procedure [10, 13] is similar to that of WENO reconstruction outlined in Sect. 2.1.
Using the same stencil Sr = (xi−r , xi−r+1, . . . , xi+s) as in the WENO reconstruction proce-
dure, the physical variable at the cell interface Ui+1/2 is interpolated. For example,

ÛWENOI

i+ 1
2

=
r−1∑

k=0

ωkÛ
k

i+ 1
2

(3.3)

where Û k

i+ 1
2

is the lower order interpolation on each substencil given by

Û k

i+ 1
2

=
r−1∑

j=0

ckjUi−k+j . (3.4)
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In the following, we list the WENO interpolation procedure for U(1) on the left-biased
stencil. The formulae to interpolate U(2) is similar which is interpolated on the right-biased
stencil.

(a) The fifth order weighted interpolation (r = 3).
In the case of r = 3, the linear fifth order interpolation is given by

Ui+ 1
2

= 1

128
(3Ui−2 − 20Ui−1 + 90Ui + 60Ui+1 − 5Ui+2). (3.5)

The three third order interpolations from the three substencils are

U 0
i+ 1

2
= 1

8
(3Ui−2 − 10Ui−1 + 15Ui),

U 1
i+ 1

2
= 1

8
(−Ui−1 + 6Ui + 3Ui+1),

U 2
i+ 1

2
= 1

8
(3Ui + 6Ui+1 − Ui+2).

The linear weights are given by

c0 = 1

16
, c1 = 10

16
, c2 = 5

16
, (3.6)

and the smoothness indicators are

IS0 = 1

4
(Ui−2 − 4Ui−1 + 3Ui)

2 + 13

12
(Ui−2 − 2Ui−1 + Ui)

2,

IS1 = 1

4
(Ui−1 − Ui+1)

2 + 13

12
(Ui−1 − 2Ui + Ui+1)

2,

IS2 = 1

4
(3Ui − 4Ui+1 + Ui+2)

2 + 13

12
(Ui − 2Ui+1 + Ui+2)

2.

(b) The seventh order weighted interpolation (r = 4).
In the case of r = 4, the linear seventh order interpolation is given by

Ui+ 1
2

= 1

1024
(−5Ui−3 + 42Ui−2 − 175Ui−1 + 700Ui + 525Ui+1 − 70Ui+2 + 7Ui+3).

(3.7)
The four fourth order interpolations from the four substencils are

U 0
i+ 1

2
= 1

48
(−15Ui−3 + 63Ui−2 − 105Ui−1 + 105Ui),

U 1
i+ 1

2
= 1

48
(3Ui−2 − 15Ui−1 + 45Ui + 15Ui+1),

U 2
i+ 1

2
= 1

48
(−3Ui−1 + 27Ui + 27Ui+1 − 3Ui+2),

U 3
i+ 1

2
= 1

48
(15Ui + 45Ui+1 − 15Ui+2 + 3Ui+3).
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The linear weights are given by

c0 = 1

64
, c1 = 21

64
, c2 = 35

64
, c3 = 7

64
, (3.8)

and the smoothness indicators are

IS0 = Ui−3(79788Ui−3 − 566568Ui−2 + 680328Ui−1 − 273336Ui)

+ Ui−2(1027692Ui−2 − 2523384Ui−1 + 1034568Ui)

+ Ui−1(1610892Ui−1 − 1378728Ui) + 308748U 2
i ,

IS1 = Ui−2(38028Ui−2 − 232488Ui−1 + 228168Ui − 71736Ui+1)

+ Ui−1(401292Ui−1 − 847224Ui + 277128Ui+1)

+ Ui(492012Ui − 364968Ui+1) + 79788U 2
i+1,

IS2 = Ui−1(79788Ui−1 − 364968Ui + 277128Ui+1 − 71736Ui+2)

+ Ui(492012Ui − 847224Ui+1 + 228168Ui+2)

+ Ui+1(401292Ui+1 − 232488Ui+2) + 38028U 2
i+2,

IS3 = Ui(308748Ui − 1378728Ui+1 + 1034568Ui+2 − 273336Ui+3)

+ Ui+1(1610892Ui+1 − 2523384Ui+2 + 680328Ui+3)

+ Ui+2(1027692Ui+2 − 566568Ui+3) + 79788U 2
i+3.

This new local characteristic decomposition procedure can be applied to different
variants of WENO schemes, such as the one using the smoothness indicator proposed
in [20], the one using the mapped technique proposed in [7] and the improved WENO
scheme in [2].

In following, we denote the original WENO scheme given by Jiang and Shu [8]
as WENO, the mapped WENO scheme in [7] as MWENO, the improved WENO
scheme in [2] as ZWENO, the WENO scheme in [20] as ZSWENO. The correspond-
ing WENO schemes using upwind-biased interpolations are denoted by U1WENO,
U1MWENO, U1ZWENO and U1ZSWENO for the first order interpolation, U2WENO,
U2MWENO, U2ZWENO and U2ZSWENO for the second order interpolation and
UWWENO, UWMWENO, UWZWENO and UWZSWENO for the full order WENO
interpolation.

4 Numerical Tests

4.1 One Dimensional Steady Shock

Our first example is a one dimensional stationary shock of the Euler equations

Ut + F(U)x = 0, (4.1)
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where U = (ρ,ρu, e)T , F(U) = (ρu,ρu2 + p,u(e + p))T . Here ρ is the density, u is the
velocity, e is the total energy, p is the pressure which is related to the total energy by e =

p

γ−1 + 1
2ρu2, the ratio of specific heat γ = 1.4.

The computational domain is x ∈ [−1,1]. It is divided into 400 uniformly spaced mesh
points. The initial condition of the flow Mach number on the left of the shock is M∞ = 2.
The shock is located at x = 0. The initial condition is given by the Rankine-Hugoniot rela-
tion [12] as follows:

U(x,0) =
{
Ul if x < 0,

Ur if x ≥ 0,
(4.2)

where
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The initial condition is also the exact solution of the steady one dimensional Euler equa-
tions. Hence, the solution should keep the same shape for t ≥ 0. However, because of the
Lax-Friedrichs flux splitting, the initial condition is not a solution of the numerical scheme.
The numerical shock will be smeared across a few grid points. Figure 1 (left) is the numeri-
cal density distribution along the computational domain obtained by the fifth order WENO
schemes. We can see that the result is essentially non-oscillatory: no noticeable oscilla-
tions can be observed. The numerical shock profile is quite sharp and appears monotone
to the eye. Even though we can not distinguish the numerical results obtained by different
WENO schemes on the global view (left figure), a significant difference can be observed
from the zoomed (right) figure. It is clear that the numerical result obtained by the WENO
and MWENO contains a post-shock oscillation. This post-shock oscillation is reduced sig-
nificantly in the result obtained by ZWENO. However, there is a higher overshoot after the

Fig. 1 Density distribution around the one dimensional steady shock of M∞ = 2 by the fifth order WENO
schemes



228 J Sci Comput (2011) 47: 216–238

Fig. 2 The evolution of the
average residue of the one
dimensional steady shock of
M∞ = 2 by the fifth order
WENO schemes

shock wave. The post-shock oscillation is removed completely with the smoothness indica-
tor proposed by Zhang and Shu in [20] (ZSWENO) and the new technique proposed in this
paper for the cases with the first order, the second order or WENO upwind-biased interpola-
tion. Figure 2 shows the evolution of the average residue for the various fifth order WENO
schemes. The average residue is defined as:

ResA =
n∑

i=1

|Ri |
N

, (4.3)

where Ri is the local residue defined as

Ri = ∂ρi

∂t
= ρn+1

i − ρn
i

�t
, (4.4)

and N is the total number of grid points. From Fig. 2, we observe that the average residue
obtained by WENO and MWENO schemes could not converge to machine zero but hangs
at a high level, around 10−2.2 for WENO and 10−2.9 for MWENO. Even though the flow
variables change very little after a short time, the non-decreasing of the average residue
after it reaches around 10−2.2 or 10−2.9 is a concern to many practitioners. One reason is
that the residue is often used as a criterion in the computation of steady state problems to
determine whether the computation should stop. If the residue could not settle down to a
lower level, one can no longer use the size of the average residue to determine when to
stop the computation, and must rely on experience including a visual comparison of the
flow variables after many time steps to make this determination. Moreover, the post-shock
oscillation is a concern in the simulation of multi-scale problems such as compressible tur-
bulence and aeroacoustics. Among the three original WENO schemes (WENO, MWENO
and ZWENO), ZWENO can settle down to machine zero for this problem. However, there
is a higher overshoot after the shock wave. Using the new technique proposed in this paper,
the average residue can settle down to machine zero. The residue obtained by MWENO
in [7] and ZWENO [2], which can improve the accuracy near high order critical points, can
also settle down to machine zero with either the smoothness indicator in [20] or the new
technique proposed in this paper.

There are four kinds of previous WENO schemes, including WENO, MWENO, ZWENO
and ZSWENO. Also, there are three kinds of interpolations for the physical variable in the
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Table 1 The (base 10) logarithm
of the residue for the one
dimensional steady shock of
M∞ = 2 by the fifth order
WENO schemes with different
convergence improvement
techniques

The accuracy order WENO MWENO ZWENO ZSWENO

of the interpolation

First −20 −20 −20 −20

Second −20 −20 −20 −20

WENO5 −20 −20 −20 −20

Fig. 3 Density distribution around the one dimensional steady shock of M∞ = 2 by the seventh order
WENO schemes

cell interface, namely the first order interpolation, the second order interpolation and the
full order WENO interpolation. If we plot all numerical results in one figure, we could not
distinguish them from each other. Hence, we just list the residue magnitudes by different
schemes in Table 1. It is clear that the residues of all WENO schemes combined with the
new technique can settle down to machine zero.

Figure 3 contains the density distribution obtained by the seventh order WENO schemes.
From the zoomed figure shown in Fig. 3(b), we can observe that there is an even stronger
post-shock oscillation for the regular seventh order WENO scheme (WENO7) compared
with the fifth order version. Fortunately, this post-shock oscillation is again completely re-
moved by the new technique in this paper (U1WENO7, UWWENO7). Figure 4 shows the
average residue of the seventh order WENO schemes. Again, the average residue from the
original WENO scheme hangs at a high level of 10−1.5. Using our new technique, it goes
approximately to machine zero.

4.2 135◦ and 120◦ Oblique Steady Shock Waves

Our second test case is a 135◦ oblique steady shock wave which is also tested for the smooth-
ness indicator in [20]. The flow Mach number on the left of the shock is M∞ = 2. The com-
putational domain is 0 ≤ x ≤ 4 and 0 ≤ y ≤ 2. The initial oblique shock passes through the
point (3,0). The domain is divided into 200 × 100 equally spaced points with �x = �y.
Instead of using a periodic boundary condition along the shock wave as in [20], we use
the theoretical shock solution in the ghost points that are defined by the Rankine-Hugoniot
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Fig. 4 The evolution of the
average residue of the one
dimensional steady shock of
M∞ = 2 by the seventh order
WENO schemes

Fig. 5 Density contours for a
135◦ oblique shock wave
obtained from the fifth order
original WENO scheme

relation [12]. Figure 5 contains the density contours obtained by the original fifth order
WENO scheme. Figure 6 contains the zoomed density distribution along the horizontal line
of y = 1 and the evolution of the average residues of different types of WENO schemes.
From the zoomed density distribution, we can observe that WENO suffers from a rather
strong post-shock oscillation similar to the 1D case. ZWENO and U1ZWENO have the
strongest overshoot after the shock wave, although the post-shock oscillation is reduced sig-
nificantly. With the smoothness indicator proposed in [20], there is still an overshoot after
the shock wave. U1WENO, U1MWENO and UWWENO offer the best results. There is no
overshoot, and the post-shock oscillation basically disappears. The residue goes approxi-
mately to machine zero. We remark that there is a strong influence of boundary condition
treatments to steady state convergence. With the periodic boundary condition, the residue of
ZSWENO can go to machine zero [20]. However, with the boundary condition in this paper,
the residue of ZSWENO still hangs at a rather high level of 10−4.4. The WENO scheme with
the new technique of this paper can settle down to 10−12, which is approximately machine
zero. In Table 2 we list the residue of different schemes. It is clear that the first order upwind
interpolation can offer the best convergence result among all schemes.

We next test another example which is a 120◦ oblique steady shock wave. The flow
condition is the same as above except for the angle of the shock wave. In this case, lines
parallel to the shock no longer land on grid points. Hence, we compute the problem in a
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Fig. 6 Zoomed density distribution (left) and the evolution of the average residue (right) for a 135◦ oblique
steady shock of M∞ = 2 by the fifth order WENO schemes

Table 2 The (base 10) logarithm
of the residue for the 135◦
oblique shock wave by the fifth
order WENO schemes

The accuracy order WENO MWENO ZWENO ZSWENO

of the interpolation

First −12.5 −12.5 −12.5 −4.5

Second −11.9 −12.3 −2.7 −3.4

WENO5 −3.2 −4.9 −12.5 −3.7

Roe average −2.9 −3.0 −12.5 −4.4

Fig. 7 Density contours for a
120◦ oblique shock wave
obtained from the fifth order
WENO scheme

larger computational domain, and use the result as an initial condition for our computation
in a smaller computational domain. In this computation, the physical values in the ghost
points are taken to be those obtained from the computation in the larger domain. Figure 7
contains the density contours obtained by the original fifth order WENO scheme. Figure 8
contains the zoomed density distribution along the horizontal line y = 3.5 and the evolution
of the average residue. From the zoomed density distribution, we observe that there are
significant post-shock oscillations obtained from all WENO schemes. Again, ZWENO has
the strongest overshoot after the shock wave, which is reduced significantly by the use of
the new technique of this paper. The average residue obtained by this new technique is also
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Fig. 8 Zoomed density distribution (left) and the evolution of the averaged residue (right) for a 120◦ oblique
steady shock of M∞ = 2 by the fifth order WENO schemes

Fig. 9 Schematic diagram of the
regular shock reflection

much lower than the original ones. For this (more difficult) test case, the residue goes close
to machine zero only for the U1ZWENO and U1MWENO cases.

4.3 Regular Shock Reflection

The regular shock reflection is a typical two dimensional steady flow which is also tested
for the smoothness indicator in [20]. The flow structure is schematically shown in Fig. 9.
The impinging shock S1 and the reflected shock S2 separate the domain into three parts I, II
and III. The corresponding physical variables are U1, U2 and U3 respectively. They can be
computed by the Rankine-Hugoniot relationship [12]. In our case, the flow Mach number in
region I is 2.9. The impinging angle is θ = 29◦. More details can be found in [20].

In this example, there are additional difficulties that can hinder the steady state conver-
gence. There are multiple shock waves which cross the boundary including at the corners of
the domain. Also, the angles between the impinging shock wave with the x-axis and the re-
flected shock wave with the x-axis are different. Hence, the lines parallel to the shock waves
cannot all land on the grid points. We have not found a completely satisfactory boundary
treatment for this example. As a result, the new technique proposed in this paper does not
work as well compared with the previous examples.

Figure 10 contains the density contours for the numerical results obtained by the fifth
order WENO, ZSWENO, U1WENO and U1ZSWENO schemes. We can observe the nu-
merical results by both WENO and U1WENO have obvious post-shock oscillations, which
are reduced significantly by ZSWENO and U1ZSWENO. This kind of post-shock oscil-
lations can be observed more clearly in the distribution of the density along the line of
y = 0.5, which is shown in the left figure of Fig. 11. Due to the reduction of the post-shock
oscillations, the convergence behavior of ZSWENO and U1ZSWENO is better than others,
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Fig. 10 Density contours for the regular shock reflection with M∞ = 2.9, θ = 29◦ by the fifth order WENO
schemes

Fig. 11 Regular shock reflection with M∞ = 2.9, θ = 29◦ by the fifth order WENO schemes. Left: zoomed
density distribution near the impinging shock S1 along the line y = 0.5. Right: the evolution of the average
residue

Table 3 The (base 10) logarithm
of the residue for the regular
shock reflection by the fifth order
WENO schemes

The accuracy order WENO ZWENO ZSWENO

of the interpolation

First −1.90 −1.90 −4.40

Second −1.70 −1.70 −2.92

WENO5 −1.69 −1.69 −2.96

Roe average −1.75 −1.75 −2.93

as shown in the right figure of Fig. 11. Other methods, including U1WENO, U1ZWENO
and UWWENO, have similar behavior as the original WENO scheme. In Table 3, we list
the residue by different schemes. We can observe that our new technique can improve the
convergence behavior but cannot achieve close to machine zero residue for this example.
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Based on our numerical tests on residue convergence, it can be observed that the WENO
schemes combined with the first order or the WENO upwind-biased interpolation have the
best convergence performance for steady state computation. The first order interpolation has
the same CPU cost as the original WENO scheme based on the Roe average, while the CPU
cost of the WENO upwind-biased interpolation is almost double that of the original WENO
scheme.

5 Accuracy test

In this section, we test the accuracy of the WENO schemes. In the first example, we have
adjusted the time step to �t = �x

5
3 for the 5th order WENO scheme so that the time dis-

cretization error will not dominate.
Because the technique that involves changing the Roe average to upwind-biased inter-

polation in the local characteristic decomposition process is relevant only for systems, our
example to test the accuracy of the scheme is for the two dimensional unsteady Navier-
Stokes equations. The Navier-Stokes equations with source terms are given by

Ut + F(U)x + G(U)y = Fv(U,∇U)x + Gv(U,∇U)y + S, (5.1)

where the exact forms of the inviscid fluxes F(U) and G(U), and the viscous fluxes
Fv(U,∇U) and Gv(U,∇U) can be found in, e.g. [18]. The computational domain is 0 ≤
x ≤ 2π and 0 ≤ y ≤ 2π . The test functions are given by: ρ = 1, u = 1 + 1

10 sin(x + y + t),
v = 1 − 1

10 sin(x + y + t), p = 1
γM2∞

, e = p

γ−1 + 1
2ρ(u2 + v2), M∞ = 0.3, and γ = 1.4.

It is the “exact solution” of (5.1) with the source term S = U
tf
t + F(Utf )x + G(Utf )y −

Fv(U
tf ,∇Utf )x − Gv(U

tf ,∇Utf )y , where the superscript tf represents the test function
listed above. The viscous terms Fv(U,∇U)x and Gv(U,∇U)y are discretized by central
difference formulae of comparable orders of accuracy. We refer to [18] for more details of
this test case.

In Table 4 we list the L1 and L∞ errors and numerical orders of accuracy at t = 1 for the
energy. We observe that all WENO schemes can achieve fifth order accuracy very quickly.
The magnitude of errors is almost the same for the various WENO schemes and different
characteristic decomposition Jacobians.

To further test the performance near smooth extrema of the WENO schemes, we compute
the shock density wave interaction problem in [17]. It describes the interaction of a Mach 3
shock with a density wave. A Mach 3 shock is initially located at x = −4 and moves toward
the right. A sine wave is superposed to the density in the right region to the shock which is
given by (ρ,u,p) = (1 + a sin(5x),0,1). The amplitude of the sine wave is a = 0.2. The
value downstream of the shock wave is computed by the Rankine-Hugoniot relation [12].

Figure 12 shows the density distribution of the numerical solutions of various fifth order
WENO schemes. Even though the procedure of the characteristic projection does not affect
the order of accuracy of the WENO scheme, the numerical result obtained by the first order
interpolation (U1WENO) is slightly worse than the original WENO scheme (WENO) near
the extrema. It is however slightly better than ZSWENO. On the other hand, the WENO
interpolation (UWWENO) is the same as the original WENO scheme.

Figures 13 shows the density distribution of the numerical solutions of various seventh
order WENO schemes. We again observe that the WENO interpolation (UWWENO7) is the
same as the original WENO scheme (WENO7). Both of them are slightly better than the
result by the first order interpolation (U1WENO7).
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Table 4 L1 and L∞ errors and numerical orders of accuracy for the energy on the two dimensional Navier-
Stokes equations. N is the number of grid points per dimension in a uniform mesh. t = 1

Method N L1 error L1 order L∞ error L∞ order

WENO 20 6.97e−5 1.62e−4
40 2.54e−6 4.78 3.76e−6 5.43
80 8.11e−8 4.97 1.33e−7 4.82

160 2.58e−9 4.97 4.46e−9 4.90
320 8.35e−11 4.95 1.45e−10 4.94

ZSWENO 20 7.38e−5 1.30e−4
40 2.53e−6 4.87 4.13e−6 4.98
80 8.17e−8 4.95 1.41e−7 4.88

160 2.64e−9 4.95 4.63e−9 4.93
320 8.39e−11 4.98 1.40e−10 5.04

MWENO 20 1.86e−5 6.51e−5
40 3.85e−7 5.59 6.35e−7 6.68
80 1.22e−8 4.98 2.03e−8 4.97

160 3.83e−10 4.99 6.39e−10 4.99
320 1.20e−11 5.00 2.00e−11 5.00

ZWENO 20 1.27e−5 3.44e−5
40 3.89e−7 5.02 6.55e−7 5.71
80 1.22e−8 4.99 2.04e−8 5.01

160 3.83e−10 5.00 6.40−10 4.99
320 1.20e−11 5.00 2.00e−11 5.00

U1WENO 20 6.97e−5 1.72e−4
40 2.54e−6 4.78 3.79e−6 5.50
80 8.11e−8 4.97 1.33e−7 4.83

160 2.58e−9 4.97 4.46e−9 4.90
320 8.35e−11 4.95 1.45e−10 4.94

U1MWENO 20 2.29e−5 7.24e−5
40 3.85e−7 5.90 6.35e−7 6.83
80 1.22e−8 4.98 2.03e−8 4.97

160 3.83e−10 4.99 6.39e−10 4.99
320 1.20e−11 5.00 2.01e−11 4.99

U1ZWENO 20 1.34e−5 3.70e−5
40 3.89e−7 5.11 6.57e−7 5.82
80 1.22e−8 4.99 2.04e−8 5.01

160 3.83e−10 4.99 6.40e−10 4.99
320 1.20e−11 5.00 2.00e−11 5.00

UWWENO 20 6.96e−5 1.61e−4
40 2.54e−6 4.78 3.76e−6 5.42
80 8.11e−8 4.97 1.33e−7 4.82

160 2.58e−9 4.97 4.46e−9 4.90
320 8.35e−11 4.95 1.45e−10 4.94
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Fig. 12 Density distribution of the Shu-Osher problem by fifth order WENO schemes with 400 grid points
at t = 1.8. The “exact” solution is obtained by the fifth order original WENO scheme with 8000 grid points.
(a) Global view, (b) Zoomed view in the boxed region, (c) Comparison among WENO, ZSWENO, U1WENO
and UWWENO, (d) Comparison among U1WENO, U1MWENO and U1ZWENO

Considering a balance between the convergence property, accuracy near smooth extrema
and the CPU cost, we recommend the original fifth order WENO scheme in [8] combined
with the first order upwind interpolation as the best method for steady state computation,
and the improved WENO scheme in [2] combined with the first order upwind interpolation
as the best method for the computation of multiscale problems.

6 Concluding Remarks

The convergence to steady state solutions of the Euler equations for WENO schemes with
the Lax-Friedrichs flux splitting is studied through numerical experiments. The numerical
experiments show that there is a slight post-shock oscillation which results in the residue
hanging at a relatively high value instead of settling down to machine zero.
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Fig. 13 Density distribution of Shu-Osher problem by the seventh order WENO schemes with 300 grid
points at t = 1.8. The “exact” solution is obtained by the fifth order original WENO scheme with 8000 grid
points. Left: Global view; right: Zoomed view in the boxed region

Through systemic numerical tests, we observe that there are many factors which may
influence the appearance of the slight post-shock oscillation. The choice of the smoothness
indicator and the local characteristic decomposition procedure are two examples.

In our earlier work [20], we proposed a new smoothness indicator that seems suitable
for the simulation in the near region of shock waves. With this new smoothness indicator,
the post-shock oscillation is removed or greatly reduced. The residue can settle down to
machine zero for some cases and can be reduced significantly for other cases. However, this
new smoothness indicator is difficult to be generalized to higher order WENO schemes, and
it may lead to accuracy degeneracy near certain high order critical points.

In this paper, we use upwind-biased interpolation to approximate the physical variables
including the velocity and enthalpy on the cell interface to compute the eigenvectors of the
Jacobian used in the local characteristic decomposition. The upwind-biased interpolation
contains the first order, the second order and the optimal order by the WENO technique. This
process does not affect the high order accuracy of the WENO schemes. With this new tech-
nique, the slight post-shock oscillation can be removed for some problems and the residue
can settle down to machine zero.

The convergence seems also to be influenced by the boundary condition and the angle
between the grid line and shock waves for the flow that contains complex shock structure.
This is a complicated issue and we have not been able to identify suitable boundary condi-
tions when the shock passes through the boundary in order to reduce the WENO residue to
machine zero. This issue is left for future study.
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