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Abstract We present a new finite volume scheme for the advection-diffusion-reaction equa-
tion. The scheme is second order accurate in the grid size, both for dominant diffusion
and dominant advection, and has only a three-point coupling in each spatial direction.
Our scheme is based on a new integral representation for the flux of the one-dimensional
advection-diffusion-reaction equation, which is derived from the solution of a local bound-
ary value problem for the entire equation, including the source term. The flux therefore con-
sists of two parts, corresponding to the homogeneous and particular solution of the bound-
ary value problem. Applying suitable quadrature rules to the integral representation gives
the complete flux scheme. Extensions of the complete flux scheme to two-dimensional and
time-dependent problems are derived, containing the cross flux term or the time derivative
in the inhomogeneous flux, respectively. The resulting finite volume-complete flux scheme
is validated for several test problems.

Keywords Advection-diffusion-reaction equation · Flux · Finite volume method ·
Integral representation of the flux · Numerical flux

1 Introduction

Conservation laws are ubiquitous in continuum physics, they occur in disciplines like fluid
mechanics, combustion theory, plasma physics, semiconductor physics etc. These conser-
vation laws are often of advection-diffusion-reaction type, describing the interplay between
different processes such as advection or drift, diffusion or conduction and (chemical) reac-
tion or recombination/generation. Examples are the conservation equations for reacting flow
[21] or the drift-diffusion equations for semiconductor devices [11, 14].

Their numerical solution requires at least adequate space discretisation and time integra-
tion methods. For space discretisation there are many (classes of) methods available, such
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as finite element, finite difference, finite volume or spectral methods. We restrict ourselves
to finite volume methods (FVM); for a detailed account see e.g. [7, 17, 34]. Finite volume
methods are based on the integral formulation, i.e., the conservation law is integrated over
a disjunct set of control volumes covering the domain. The resulting (semi)discrete con-
servation law involves fluxes at the interfaces of the control volumes, which need to be
approximated. For time integration there exist many sophisticated methods, for a detailed
account see, e.g., [9].

Our objective in this paper is to present new expressions for the flux, which will
subsequently be used to derive numerical flux approximations. We require that for one-
dimensional steady equations the numerical flux has the following properties. First, it should
be unconditionally second order accurate, in particular, the flux approximation should re-
main second order accurate for highly dominant advection. This excludes the hybrid scheme
of Spalding [27], which reduces to the standard upwind scheme when diffusion is absent.
Second, the numerical flux should not produce spurious oscillations for dominant advec-
tion, as the standard central difference scheme does, and third, the flux may only depend on
neighbouring values of the unknown, resulting in a three-point scheme. The latter require-
ment rules out high resolution schemes based on flux/slope limiters [13, 34] or (W)ENO
reconstruction [25].

Our scheme is inspired by two papers by Thiart [30, 31]. In these papers a finite volume
method is combined with an exponential scheme for the flux. More specifically, the fluxes at
the cell interfaces are computed from a local boundary value problem, assuming piecewise
constant coefficients. The source term is included in the computation of the fluxes. Similar
schemes have been published in the last few decades. Without trying to be complete, we
just mention a few. Allen and Southwell [1] and Il’in [10] introduced an exponentially fitted
scheme, which is a hybrid central difference-upwind scheme such that the difference scheme
locally has the same (exponential) solutions as the corresponding differential equation; see
also [5] for a detailed account. An improvement of this scheme is proposed by El-Mistikawy
and Werle [6]. These exponentially fitted schemes are a special case of the so-called locally
exact schemes. The basic idea is to represent the solution in two adjacent intervals in terms
of an approximate Green’s function; see [17] and references therein. Exponentially fitted
schemes are nowadays widely used to simulate advection-diffusion-reaction problems from
continuum physics, especially to compute numerical solutions of the drift-diffusion model
for semiconductor devices. For this application these schemes are known as the Scharfetter-
Gummel scheme; see e.g. [3, 4, 24]. An extension of this scheme is due to Miller [16], who
included the recombination term in the fluxes. A further extension to systems is presented in
[33], where the avalanche generation source term is included in the numerical flux vector.

Our scheme is an extension of the schemes by Thiart. We derive an integral representa-
tion for the flux from the solution of a local boundary value problem (BVP) for the entire
equation, including the source term, but we do not restrict ourselves to (locally) constant
coefficients. As a consequence, the flux has a homogeneous and an inhomogeneous compo-
nent, corresponding to the homogeneous and the particular solution of the boundary value
problem, respectively. Suitable quadrature rules are applied to derive the numerical flux.
The inclusion of the inhomogeneous flux will be of importance when advection dominates
diffusion.

Extension of our scheme to two-dimensional equations is not just the separate application
in x- and y-direction. Instead, in order to accurately resolve the two-dimensional structure
of the solution, we include the cross flux in the flux approximation. This means that for
the computation of the x-component of the numerical flux, say, we put all y-derivatives in
the right hand side and solve the resulting quasi-one-dimensional BVP. Therefore, the x-
component of the flux will contain a part of the y-component. Mutatis mutandis, we derive



J Sci Comput (2011) 46: 47–70 49

the y-component of the flux. The resulting scheme is an upwind weighted space discretisa-
tion.

Likewise, for time-dependent problems, we include the time derivative in the source term
and solve the resulting quasi-stationary BVP to derive the numerical flux. Consequently, the
numerical flux contains the time derivative, resulting in an implicit ODE system. This semi-
discretisation has usually much smaller dissipation and dispersion errors than the standard
semidiscretisation, at least for smooth solutions. For high wave number solutions, as they
might occur in discontinuities, say, also our scheme is prone to significant dispersion errors.
For time integration of the semidiscretisation we can use any suitable method. In this paper
we choose the trapezoidal rule.

Our scheme is suitable to discretise a large class of advection-diffusion-reaction equa-
tions. Especially for dominant advection the scheme will perform well. The discretisation
gives accurate approximations for smooth solutions, but also steep interior/boundary layers
can be represented well. However, we have to exclude discontinuities, since the solution on
which the flux is based is assumed to be continuous across a cell interface. Typical appli-
cations would be the numerical computation of the detailed structure of a flame front for
laminar flames or of a pn-junction in semiconductor devices. Applications in fluid dynamics
are restricted to incompressible or weakly compressible flow. We like to emphasise that the
method is also suitable to solve pure advection-reaction problems, provided the solution is
smooth.

We have organised our paper as follows. The finite volume method is briefly summarised
in Sect. 2. In Sect. 3 we derive an integral representation for the flux, in terms of a Green’s
function, which will be used in Sect. 4 to derive the numerical flux approximation. The com-
bined complete flux-finite volume scheme is presented in Sect. 5. Extension of the method
to two-dimensional and time-dependent equations is presented in Sect. 6 and Sect. 7, re-
spectively. To test the scheme, we apply it in Sect. 8 to several model problems. Finally, we
end with a summary and conclusions in Sect. 9.

2 Finite Volume Discretisation

In this section we outline the FVM for a generic conservation law of advection-diffusion-
reaction type, defined on a domain in Rd (d = 1,2,3). Therefore, consider the following
equation

∂ϕ

∂t
+ ∇ · (uϕ − ε∇ϕ) = s, (2.1)

where u is a velocity or an electric field (flow/drift), ε ≥ εmin > 0 a diffusion/conduction
coefficient and s a source term. The unknown ϕ can be, e.g., the temperature or the concen-
tration of a species in a reacting flow. The parameters ε and s are usually functions of the
unknown ϕ, however, for the sake of discretisation we will consider these as given functions
of the spatial coordinate x and the time t . The vector u has to be computed from (flow) equa-
tions corresponding to (2.1) and is also considered to be a function of x and t . Equations of
this type arise, e.g., in combustion theory [21] or plasma physics [23].

Associated with (2.1) we introduce the flux vector f , defined by

f := uϕ − ε∇ϕ. (2.2)
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Fig. 1 A two-dimensional
control volume �j, j= (i, j),
with its four adjacent cells �k .
The circles denote grid points xj
and xk; the arrows denote the
normal components of the
numerical flux (F ·n)j,k

Equation (2.1) then reduces to ∂
∂t

ϕ +∇·f = s. Integrating this equation over a fixed domain
� ⊂ Rd we obtain the integral form of the conservation law, i.e.,

d

dt

∫
�

ϕ dV +
∮

�

f ·ndS =
∫

�

s dV, (2.3)

where n is the outward unit normal on the boundary � = ∂�. This equation is the basic
conservation law, which reduces to (2.1) provided ϕ is smooth enough.

In the FVM we cover the domain with a finite number of disjunct control volumes or
cells �j and impose the integral form (2.3) on each of these cells. The index j is an index
vector for multi-dimensional problems. We restrict ourselves to rectangular cells and adopt
the cell-centred approach [34], i.e., we choose the grid points xj where the variable ϕ has
to be approximated in the cell centres. Consider as an example the two-dimensional cell �j

in Fig. 1, for which (2.3) can be written as

d

dt

∫
�j

ϕ dA +
∑

k∈N (j)

∫
�j,k

f ·nds =
∫

�j

s dA, (2.4)

where N (j) is the index set of neighbouring grid points of xj and where �j,k is the segment
or edge of the boundary �j = ∂�j connecting the adjacent cells �j and �k. The orientation
of �j is counterclockwise. Approximating all integrals in (2.4) by the midpoint rule, we
obtain the following semi-discrete conservation law for ϕj(t) ≈ ϕ(xj, t), i.e.,

ϕ̇j(t)Aj +
∑

k∈N (j)

(F ·n)j,k �j,k = sj(t)Aj, (2.5)

where Aj is the area of �j, �j,k the length of �j,k, ϕ̇j(t) ≈ ∂
∂t

ϕ(xj, t) and sj(t) = s(xj, t).
Furthermore, (F ·n)j,k is the normal component on �j,k, directed from xj to xk, at the
interface point xj,k := 1

2 (xj + xk) ∈ �j,k of the numerical flux vector F , approximating
f ·n(xj,k, t). Obviously, for stationary problems all time derivatives in (2.4) and (2.5) can
be discarded.

The FVM has to be completed with expressions for the numerical flux. We require that
(F ·n)j,k depends on ϕ and a modified source term s̃ in the neighbouring grid points xj and
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xk, i.e., we are looking for an expression of the form

(F ·n)j,k = αj,kϕj − βj,kϕk + dj,k(γj,ks̃j + δj,ks̃k), (2.6)

where dj,k := |xj − xk|. The variable s̃ includes the source term and additional terms like
the cross flux or time derivative, when appropriate. Substitution of (2.6) into (2.5) leads to a
linear system for stationary problems or an implicit ODE system for time-dependent prob-
lems. The derivation of expressions for the numerical flux is detailed in the next sections.

3 Integral Representation for the Flux

In this section we restrict ourselves to one-dimensional steady conservation laws, for which
the flux is given by

f = uϕ − εϕ′, (3.1)

where the prime (′) denotes differentiation with respect to x. Our objective is to derive
an integral representation for this flux, based on a Green’s function. The derivation is a
modification of the theory in [8].

The derivation of the expression for the flux fj+1/2 at the cell edge xj+1/2 = 1
2 (xj +xj+1)

is based on the following model BVP
(
uϕ − εϕ′)′ = s, xj < x < xj+1, (3.2a)

ϕ(xj ) = ϕj , ϕ(xj+1) = ϕj+1. (3.2b)

We like to emphasise that fj+1/2 corresponds to the solution of the inhomogeneous BVP
(3.2), implying that fj+1/2 not only depends on u and ε but on s as well.

In the following, we need the variables λ, P ,  and S, defined by

λ := u

ε
, P := λ�x, (x) :=

∫ x

xj+1/2

λ(ξ)dξ, S(x) :=
∫ x

xj+1/2

s(ξ)dξ, (3.3)

with �x := xj+1 − xj . We refer to the variables P and  as the (numerical) Peclet func-
tion and Peclet integral, respectively, generalising the well-known (numerical/grid) Peclet
number [17, 34]. Integrating (3.2a) from xj+1/2 to x ∈ (xj , xj+1) we get the integral balance

f (x) − fj+1/2 = S(x). (3.4)

Using the definition of  in (3.3), it is clear that expression (3.1) for the flux can be rewritten
as

f = −ε
(
ϕ e−

)′
e. (3.5)

Substituting (3.5) in (3.4) and integrating the resulting equation from xj to xj+1 we obtain
the following expression for the flux fj+1/2:

fj+1/2 = f h
j+1/2 + f i

j+1/2, (3.6a)

f h
j+1/2 = −(

e−j+1ϕj+1 − e−j ϕj

)/∫ xj+1

xj

ε−1e− dx, (3.6b)

f i
j+1/2 = −

∫ xj+1

xj

ε−1e−S dx
/∫ xj+1

xj

ε−1e− dx, (3.6c)
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Fig. 2 The Bernoulli function B (left) and the function W (right)

where f h
j+1/2 and f i

j+1/2 are the homogeneous and inhomogeneous part, corresponding to
the homogeneous and particular solution of (3.2), respectively.

Assume first that u, ε and s are constant on the interval [xj , xj+1]. In this case we can
determine all integrals in (3.3). The Peclet function reduces to the Peclet number, i.e., P =
u�x/ε. Furthermore, (x) = λ(x − xj+1/2) and S(x) = s(x − xj+1/2). Substituting these
expressions in (3.6b) and (3.6c) and evaluating all integrals involved, we find

f h
j+1/2 = − ε

�x

(
B(P )ϕj+1 − B(−P )ϕj

)
, (3.7a)

f i
j+1/2 =

(
1

2
− W(P )

)
s �x, (3.7b)

where we have introduced the functions B and W , defined by

B(z) := z

ez − 1
, W(z) := ez − 1 − z

z(ez − 1)
; (3.8)

see Fig. 2. The function B is the generating function of the Bernoulli numbers [28], in short
referred to as the Bernoulli function. Note that W satisfies 0 ≤ W(z) ≤ 1 and W(−z) +
W(z) = 1. Clearly, the inhomogeneous flux f i

j+1/2 is of importance when |P | 	 1, i.e., for
advection dominated flow. For the constant coefficient homogeneous flux we introduce the
function

f h
j+1/2 = F h(ε/�x,P ;ϕj ,ϕj+1) = αj+1/2(ε/�x,P )ϕj − βj+1/2(ε/�x,P )ϕj+1, (3.9)

to denote the dependence of f h
j+1/2 on the parameters ε/�x and P and on the function

values ϕj and ϕj+1; cf. (2.6). The constant coefficient homogeneous flux is often used as
approximation of the flux (2.2); see, e.g., [20].

We will next generalise the constant coefficient fluxes (3.7a) and (3.7b) for the case of
variable u, ε and s. Let 〈a, b〉 denote the usual inner product of two functions a = a(x) and
b = b(x) defined on (xj , xj+1), i.e.,

〈a, b〉 :=
∫ xj+1

xj

a(x)b(x)dx. (3.10)



J Sci Comput (2011) 46: 47–70 53

Introducing the average ̄j+1/2 := 1
2 (j +j+1) and using the relation j+1 −j = 〈λ,1〉,

we can rewrite the expression (3.6b) for the homogeneous flux as

f h
j+1/2 = −e−̄j+1/2

(
e−〈λ,1〉/2ϕj+1 − e〈λ,1〉/2ϕj

)
/〈ε−1, e−〉. (3.11)

It is even possible to formulate this expression as a modification of the constant coefficient
homogeneous flux (3.7a), in the following way

f h
j+1/2 = F h

( 〈λ, e−〉/〈λ,1〉
〈ε−1, e−〉 , 〈λ,1〉;ϕj ,ϕj+1

)
. (3.12)

Our numerical approximation of the homogeneous flux will be based on (3.12).
The inhomogeneous flux can be written as a weighted average of the variable S as fol-

lows:

f i
j+1/2 = −〈ε−1S, e−〉

〈ε−1, e−〉 . (3.13)

Substituting the expression for S in (3.6c) and changing the order of integration we find the
following alternative representation for the inhomogeneous flux

f i
j+1/2 = �x

∫ 1

0
G(σ)s

(
x(σ )

)
dσ, σ (x) := x − xj

�x
, (3.14)

where σ = σ(x) is the normalised coordinate on [xj , xj+1] and x = x(σ ) its inverse, and
where G(σ) is the Green’s function for the flux, given by

G(σ) =
{

�x
∫ σ

0 ε−1(x(η)) e−(x(η)) dη/〈ε−1, e−〉 for 0 ≤ σ ≤ 1
2 ,

−�x
∫ 1

σ
ε−1(x(η)) e−(x(η)) dη/〈ε−1, e−〉 for 1

2 < σ ≤ 1,
(3.15)

with x(η) := xj + η�x. Note that G relates the flux to the source term and is different from
the usual Green’s function, which relates the solution to the source term; see e.g. [17]. For
the special case of constant u and ε this Green’s function reduces to

G(σ ;P ) =
{

1−e−Pσ

1−e−P for 0 ≤ σ ≤ 1
2 ,

− 1−eP (1−σ)

1−eP for 1
2 < σ ≤ 1;

(3.16)

see Fig. 3. Note that we use the notation G = G(σ ;P ) to denote the dependence on the
numerical Peclet number P . For constant s we can evaluate the integral in (3.14) and recover
the constant coefficient flux (3.7b).

The Green’s function (3.16) for the flux has the following properties. First, it is discontin-
uous at σ = 1

2 , corresponding to x = xj+1/2, with jump G( 1
2 −;P )−G( 1

2+;P ) = 1. Second,
for |P | 	 1, the average value on the half interval upwind of σ = 1

2 , i.e., the interval [0, 1
2 ]

for u ≥ 0 and [ 1
2 ,1] for u < 0, is much larger than the average on the downwind half, which

means that for dominant advection the upwind value of the source term is the relevant one.
On the other hand, for dominant diffusion, i.e., |P | is small, the average value 1

2 − W(P )

is close to 0, implying that the inhomogeneous flux is not important. Finally, it satisfies the
symmetry property G(σ ;P ) = −G(1 − σ ;−P ).
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Fig. 3 Green’s function for the flux for P > 0 (left) and P < 0 (right)

When only u(x) = Const �= 0 on [xj , xj+1], the expression (3.14) for the inhomogeneous
flux can be written as

f i
j+1/2 = �x

∫ 1

0
G(σ ; 〈λ,1〉)s(x(σ ))dσ, (3.17)

with G(σ ;P ) the constant coefficient Green’s function defined in (3.16) and where σ is a
weighted normalised coordinate defined by

σ(x) :=
∫ x

xC

λ(ξ)dξ/〈λ,1〉. (3.18)

Note that σ ′ > 0 implying that σ is monotonically increasing from 0 to 1 indeed.
To summarise, the flux fj+1/2 is the superposition (3.6a) of the homogeneous flux f h

j+1/2,
given in (3.12), and the inhomogeneous flux f i

j+1/2. For the latter flux we approximate u(x)

on [xj , xj+1] by a constant and employ the representation (3.17), with G(σ ;P ) defined
in (3.16).

4 Derivation of the Numerical Flux

In this section we give quadrature rules for the inner products 〈λ,1〉 and 〈a, e−〉, (a =
λ, ε−1). This readily gives an approximation of (3.12). Moreover, we propose an approxi-
mation for the integral in (3.17). Our objective is to obtain a numerical flux approximation
that is second order accurate, uniformly in the local Peclet numbers.

First, we introduce the average āj+1/2, the weighted average ãj+1/2 and the upwind value
au,j+1/2 of a variable a = a(x) as follows

āj+1/2 := 1

2
(aj + aj+1), (4.1a)

ãj+1/2 := W(−P̄j+1/2)aj + W(P̄j+1/2)aj+1, (4.1b)

au,j+1/2 :=
{

aj if ūj+1/2 ≥ 0,

aj+1 if ūj+1/2 < 0.
(4.1c)
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The weights in the expression for ãj+1/2 are determined by the average Peclet number
P̄j+1/2. Note that the weighted average ãj+1/2 reduces to the ordinary average āj+1/2 for
P̄j+1/2 → 0 and to au,j+1/2 for |P̄j+1/2| → ∞. This is also apparent from the following rela-
tion

ãj+1/2 = 2W(|P̄j+1/2|) āj+1/2 + (
1 − 2W(|P̄j+1/2|)

)
au,j+1/2, (4.2)

which can be readily verified from (4.1). In the derivation of the numerical flux that follows,
we need the ‘product rule’

ãj+1/2b̃j+1/2 = (̃ab)j+1/2 − W(P̄j+1/2)W(−P̄j+1/2)(aj+1 − aj )(bj+1 − bj ). (4.3)

A similar rule for āj+1/2 can be easily derived substituting P̄j+1/2 = 0 in (4.3).
For the inner product 〈λ,1〉 we use the standard trapezoidal rule, which can be written as

〈λ,1〉 = P̄j+1/2 − 1

12
λ′′(ξ)�x3, ξ ∈ (xj , xj+1). (4.4)

In the derivation of the trapezoidal rule (4.4) we have replaced λ by its linear interpolant
on [xj , xj+1], however, this is not a suitable approach for the inner products 〈a, e−〉. In-
stead, we approximate both a and  by their linear interpolants, resulting in the following
generalised trapezoidal rule

〈a, e−〉
〈1, e−〉 = ãj+1/2 + Ej+1/2(a), |Ej+1/2(a)| < C�x2, (4.5)

for some C > 0, which holds provided a is twice and P once continuously differentiable on
(xj , xj+1). For a proof of this rule see [8].

For the homogeneous flux (3.12) we need to evaluate the first argument of F h. Applying
the quadrature rules (4.4), (4.5) and the product rule (4.3), with a = ε and b = ε−1, we can
derive the following second order approximation

〈λ, e−〉/〈λ,1〉
〈ε−1, e−〉

.= 1

P̄j+1/2

λ̃j+1/2

˜(ε−1)j+1/2

.= λ̃j+1/2

λ̄j+1/2

ε̃j+1/2

�x
. (4.6)

Note that λ̃j+1/2/λ̄j+1/2 → 1 and ε̃j+1/2 → ε̄j+1/2 for P̄j+1/2 → 0; cf. (4.2). Substituting this
expression in (3.12) we obtain the homogeneous numerical flux

F h
j+1/2 = F h

(
Ej+1/2

�x
, P̄j+1/2;ϕj ,ϕj+1

)
, Ej+1/2 := λ̃j+1/2

λ̄j+1/2
ε̃j+1/2, (4.7)

which is in fact the constant coefficient flux defined in (3.7a) and (3.9), with ε and P replaced
by Ej+1/2 and P̄j+1/2, respectively.

For the inhomogeneous flux we note that the Green’s function G(σ ;P ) has a clear bias
towards the upwind side of the interval when |P | 	 1. For that reason we replace s(x(σ ))

in (3.17) by its upwind value and evaluate the resulting integral exactly. This way we obtain
for the inhomogeneous numerical flux

F i
j+1/2 =

(
1

2
− W(P̄j+1/2)

)
su,j+1/2 �x, (4.8)
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which is the constant coefficient flux (3.7b) with P and s replaced by P̄j+1/2 and su,j+1/2,
respectively.

The final numerical flux Fj+1/2 is the superposition of the homogeneous part F h
j+1/2 and

the inhomogeneous part F i
j+1/2, i.e.,

Fj+1/2 = F h
j+1/2 + F i

j+1/2, (4.9)

with F h
j+1/2 and F i

j+1/2 given in (4.7) and (4.8), respectively; see also [8]. We refer to the
flux approximation in (4.7)–(4.9) as the complete flux (CF) scheme.

5 The Finite Volume-Complete Flux Scheme

To derive the final scheme, we combine the complete flux approximation in (4.7)–(4.9) with
the discrete conservation law for (3.2a), given by

Fj+1/2 − Fj−1/2 = sj�x, (5.1)

cf. (2.5). The numerical flux at the cell interface xj+1/2 can be written as

Fj+1/2 = αj+1/2 ϕj − βj+1/2 ϕj+1 + �x(γj+1/2 sj + δj+1/2 sj+1), (5.2a)

where the coefficients αj+1/2, βj+1/2 etc. are defined by

αj+1/2 := Ej+1/2

�x
B−

j+1/2, βj+1/2 := Ej+1/2

�x
B+

j+1/2, B±
j+1/2 := B(±P̄j+1/2),

γj+1/2 = max

(
1

2
− W+

j+1/2,0

)
, δj+1/2 = min

(
1

2
− W+

j+1/2,0

)
,

W+
j+1/2 := W(P̄j+1/2), (5.2b)

cf. (2.6). The formulae for γj+1/2 and δj+1/2 hold provided the grid size is small enough
such that sgn(ūj+1/2) = sgn(P̄j+1/2), which we henceforth assume. A similar expression
holds for the numerical flux Fj−1/2 at the cell interface xj−1/2. Substituting these in the
discrete conservation law (5.1) we obtain

−aW,j ϕj−1 + aC,j ϕj − aE,j ϕj+1 = bW,j sj−1 + bC,j sj + bE,j sj+1, (5.3)

referred to as the finite volume-complete flux (FV-CF) scheme, with the coefficients aW,j ,
bW,j etc. defined by

aW,j := αj−1/2, aE,j := βj+1/2, aC,j := αj+1/2 + βj−1/2,

bW,j := γj−1/2 �x, bE,j := −δj+1/2 �x, bC,j = (1 − γj+1/2 + δj−1/2)�x. (5.4)

Note that bW,j , bE,j , bC,j ≥ 0 and bW,j + bC,j + bE,j = (1 + W+
j+1/2 − W+

j−1/2)�x. The FV-
CF scheme has a three-point coupling for both ϕ and s, resulting in the following linear
system

Aϕ = Bs + b, (5.5)



J Sci Comput (2011) 46: 47–70 57

where ϕ and s are the vector of unknowns and source terms, respectively, and where the
vector b contains the boundary data. Both matrices A and B are tridiagonal. For the special
case of constant u and ε, we can easily prove that aW,j , aE,j ≥ 0 and aC,j = aW,j + aE,j , and
as a consequence the matrix A is an M-matrix, provided not both boundary conditions are
of Neumann type.

In our numerical examples in Sect. 8 we compare the CF scheme for the flux approx-
imation with the homogeneous flux (HF) scheme, which only includes the homogeneous
component (4.7). This means that γj+1/2 = δj+1/2 = 0 in (5.2a) and hence bW,j = bE,j = 0
and bC,j = �x in (5.3).

It is instructive to consider some limiting cases of the FV-CF scheme. First, we take
u = 0, i.e., we consider the equation −(εϕ′)′ = s. In this case P̄j±1/2 = 0 and consequently
the inhomogeneous fluxes vanish, resulting in the second order central difference scheme

− 1

�x

(
ε̄j+1/2(ϕj+1 − ϕj ) − ε̄j−1/2(ϕj − ϕj−1)

) = sj �x. (5.6)

Another limiting case is ε = 0, corresponding to the reduced equation (uϕ)′ = s. For this
equation we have to distinguish between u > 0 and u < 0. In the former case, P̄j±1/2 → +∞
and the FV-CF scheme (5.3) reduces to

ujϕj − uj−1ϕj−1 = 1

2
(sj−1 + sj )�x. (5.7a)

In the latter case, P̄j±1/2 → −∞, giving the scheme

uj+1ϕj+1 − ujϕj = 1

2
(sj + sj+1)�x. (5.7b)

Both schemes in (5.7) can be interpreted a second order cell-vertex FVM [18] with the
control volumes moved over a distance 1

2�x in the upwind direction. Here we see why it
is important that our flux approximation includes the source term. Standard methods like
the HF scheme omit the inhomogeneous flux, so that the schemes in (5.7) further reduce to
ujϕj − uj−1ϕj−1 = sj�x for u > 0 or uj+1ϕj+1 − ujϕj = sj�x for u < 0, which is just the
first order upwind scheme for the reduced advection-reaction equation.

From these observations we conclude that the FV-CF scheme (5.3) can be interpreted as
a combination of the central difference scheme (5.6) and the schemes (5.7), the combination
determined by the (average) Peclet numbers P̄j±1/2.

6 Extension to Two-dimensional Conservation Laws

In this section we extend the derivation to two-dimensional steady conservation laws. In par-
ticular, we derive the expression for the x-component of the numerical flux (the derivation
of the y-component is similar) and present the final scheme. For ease of notation, we use the
compass notation; see Fig. 4. Thus, ϕC should be understood as ϕi,j , fe as fi+1/2,j etc.

The flux corresponding to (2.1) is given by

f = f1ex + f2ey =
(

uϕ − ε
∂ϕ

∂x

)
ex +

(
vϕ − ε

∂ϕ

∂y

)
ey . (6.1)

We outline the derivation of the x-component of the numerical flux F1,e at the eastern edge of
the control volume �C; see Fig. 4. The derivation of the y-component F2,n of the numerical
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Fig. 4 Control volume �C and
corresponding stencil using
compass notation

flux at the northern edge is completely analogous and is therefore omitted. Analogous to the
derivation in Sect. 3, the numerical flux F1,e follows from the quasi-one-dimensional BVP

∂

∂x

(
uϕ − ε

∂ϕ

∂x

)
= sx, xC < x < xE, y = ye, (6.2a)

ϕ(xC) = ϕC, ϕ(xE) = ϕE, (6.2b)

where the modified source term sx is defined by

sx := s − ∂f2

∂y
. (6.2c)

The derivation of the expression for the numerical flux is essentially the same as in the
one-dimensional case, the main difference being the inclusion of the cross flux term ∂f2/∂y

in the source term. In the computation of sx we replace ∂f2/∂y by its central difference
approximation and for f2 we take the homogeneous numerical flux. A similar procedure
applies to the y-component of the flux. Putting everything together, we obtain the two-
dimensional complete flux scheme on the next page.

The stencil of the flux approximation for F1,e is depicted in Fig. 4. Assume first that
ūe > 0. Then F1,e depends on ϕ in the grid points xC and xE, on s in the central point xC

and on the homogeneous fluxes F h
2,n and F h

2,s and through these fluxes again on ϕ in xN

and xS. For ūe < 0, F1,e again depends on ϕC and ϕE, but this time on the source term sE

and the homogeneous fluxes F h
2,En and F h

2,Es, inducing a further dependency on ϕNE and
ϕSE. Thus, in addition to the direct neighbours, F1,e depends on a few other values of ϕ,
determined by the local upwind direction; cf. (2.6).
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Two-dimensional CF scheme

Peclet function

P1 := u�x/ε P2 := v�y/ε

(Weighted) average

āe := 1
2 (aC + aE) ān := 1

2 (aC + aN)

ãe := W(−P̄1,e)aC + W(P̄1,e)aE ãn := W(−P̄2,n)aC + W(P̄2,n)aN

Homogeneous flux

F h
1,e = F h( P̃1,e

P̄1,e

ε̃e
�x , P̄1,e;ϕC, ϕE

)
F h

2,n = F h( P̃2,n
P̄2,n

ε̃n
�y , P̄2,n;ϕC, ϕN

)

Source term with cross wind diffusion

sx,C = sC − 1
�y (F h

2,n − F h
2,s) sy,C = sC − 1

�x (F h
1,e − F h

1,w)

Upwinded source term

sx,u,e =
⎧⎨
⎩

sx,C if ūe ≥ 0

sx,E if ūe < 0
sy,u,n =

⎧⎨
⎩

sy,C if v̄n ≥ 0

sy,N if v̄n < 0

Inhomogeneous flux

F i
1,e = ( 1

2 − W(P̄1,e)) sx,u,e �x F i
2,n = ( 1

2 − W(P̄2,n)) sy,u,n �y

Complete flux

F1,e = F h
1,e + F i

1,e F2,n = F h
2,n + F i

2,n

Next, we formulate the discretisation scheme based on this flux approximation. Introduc-
ing flux differences like

δxF1,C := 1

�x
(F1,e − F1,w), δyF2,C := 1

�y
(F2,n − F2,s), (6.3)

it is clear that the discrete conservation law (2.5) can be written as

δxF1,C + δyF2,C = sC. (6.4)

All numerical fluxes in (6.4) contain a difference of a homogeneous cross flux. Therefore,
substituting the numerical fluxes defined above in (6.4) we obtain the discretisation

γ2,s δxF
h
1,S + (1 − γ2,n + δ2,s) δxF

h
1,C − δ2,n δxF

h
1,N

+ γ1,w δyF
h
2,W + (1 − γ1,e + δ1,w) δyF

h
2,C − δ1,e δyF

h
2,E

= (1 − γ2,n + δ2,s − γ1,e + δ1,w) sC + γ2,s sS − δ2,n sN + γ1,w sW − δ1,e sE, (6.5)

where the coefficients γ2,s etc. are defined by

γ1,e := max

(
1

2
− W(P̄1,e),0

)
, δ1,e = min

(
1

2
− W(P̄1,e),0

)
, (6.6a)

γ2,n := max

(
1

2
− W(P̄2,n),0

)
, δ2,n = min

(
1

2
− W(P̄2,n),0

)
. (6.6b)

The scheme contains a combination of at most six flux differences, three in x-direction and
three in y-direction. Consequently, the discretisation stencil involves the twelve fluxes and
nine grid points indicated in Fig. 4.
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It is instructive to consider the constant coefficient case, i.e., we assume that u, v and ε

are constant. Using the property W(z) + W(−z) = 1, we can show that the scheme (6.5)
reduces to

(
1

2
+ W(|P2|)

)
δxF

h
1,C +

(
1

2
− W(|P2|)

)
δxF

h
1,uy,C +

(
1

2
+ W(|P1|)

)
δyF

h
2,C

+
(

1

2
− W(|P1|)

)
δyF

h
2,ux,C

= (
W(|P1|) + W(|P2|)

)
sC +

(
1

2
− W(|P2|)

)
suy,C +

(
1

2
− W(|P1|)

)
sux,C, (6.7)

where xux,C is the grid point located upwind (w.r.t. u) of xC, i.e., xux,C = xW if u ≥ 0 and
xux,C = xE if u < 0; likewise for xuy,C. Note that the scheme is a weighted average of flux
differences at the central point xC and at the grid points xux,C and xuy,C located upwind
of xC.

Finally, we consider two limiting cases. First,we take u = v = 0, i.e., we consider the
diffusion-reaction equation −ε∇2ϕ = s. In this case, P1 = P2 = 0 resulting in the standard
central difference approximation, which can be written as

δxF
h
1,C + δyF

h
2,C = sC, (6.8a)

F h
1,e = − ε

�x
(ϕE − ϕC), etc. (6.8b)

The numerical flux in this scheme is the central difference approximation of the diffusive
flux −ε∇ϕ. The other limiting case is ε = 0, corresponding to the advection-reaction equa-
tion u · ∇ϕ = s. In this case scheme (6.7) reduces to the two-dimensional cell-vertex FVM
[18, 19]

1

2

(
δxF

h
1,C + δxF

h
1,uy,C

) + 1

2

(
δyF

h
2,C + δyF

h
2,ux,C

) = 1

2
(suy,C + sux,C), (6.9a)

F h
1,e = uϕ̄u,e, etc., (6.9b)

cf. (5.7). The numerical flux is the upwind approximation of the advective flux uϕ and the
additional flux differences at xux,C and xuy,C prevent that the scheme reduces to the first
order upwind scheme.

From (6.7)–(6.9) we conclude that the constant coefficient scheme (6.7) is a weighted
average of the central difference approximation (6.8) and the scheme (6.9), the weighting
determined by the Peclet numbers.

7 Extension to Time-dependent Conservation Laws

Next, we extend the scheme to time-dependent conservation laws, restricting ourselves to
one space dimension. The semidiscrete conservation law for ϕj (t) ≈ ϕ(xj , t) reads

ϕ̇j (t)�x + Fj+1/2(t) − Fj−1/2(t) = sj (t)�x, (7.1)

where ϕ̇j (t) ≈ ∂ϕ/∂t (xj , t) and sj (t) = s(xj , t); cf. (2.5). In the following we will omit the
explicit dependence on the variable t .
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For the numerical flux Fj+1/2 in (7.1) we have two options. We can simply take the flux
(5.2a) derived from the corresponding BVP (3.2), and henceforth referred to as the station-
ary complete flux (SCF) scheme. Alternatively, we can include ∂ϕ/∂t in the numerical flux,
if we determine Fj+1/2 from the quasi-stationary BVP

∂

∂x

(
uϕ − ε

∂ϕ

∂x

)
= s − ∂ϕ

∂t
, xj < x < xj+1, (7.2a)

ϕ(xj ) = ϕj , ϕ(xj+1) = ϕj+1, (7.2b)

thus including the time derivative in the source term. We can once more apply the theory in
Sects. 3 and 4, to arrive at the following expression for the numerical flux

Fj+1/2 = αj+1/2 ϕj − βj+1/2 ϕj+1 + �x
(
γj+1/2 (sj − ϕ̇j ) + δj+1/2 (sj+1 − ϕ̇j+1)

)
, (7.3)

referred to as the transient complete flux (TCF) scheme, where the coefficient αj+1/2, βj+1/2

etc are defined in (5.2b); cf. (5.2a). A similar expression holds for the numerical flux Fj−1/2.
Substituting these in the semidiscrete conservation law (7.1) we obtain the FV-TCF semi-
discretisation, given by

bW,j ϕ̇j−1 + bC,j ϕ̇j + bE,j ϕ̇j+1 − aW,j ϕj−1 + aC,j ϕj − aE,j ϕj+1

= bW,j sj−1 + bC,j sj + bE,j sj+1, (7.4)

with the coefficients aW,j , bW,j etc. defined in (5.4).
The resulting semi-discretisation for the vector of unknowns ϕ is either the ODE system

ϕ̇�x + Aϕ = Bs + b1, (7.5a)

for the SCF scheme, or the implicit ODE system

Bϕ̇ + Aϕ = Bs + b2, (7.5b)

for the TCF scheme, with the matrices A and B as defined in Sect. 5 and with b1 and b2

containing boundary data. In [32] we have shown that for dominant advection, i.e., |P | large,
the semidiscretisation (7.5b) has much smaller dissipation and dispersion errors than (7.5a),
provided the solution is smooth. For high wave number solutions both semi-discretisations
suffer from severe damping and dispersion. On the other hand, for dominant diffusion, dissi-
pation and dispersion errors for both (7.5a) and (7.5b) are comparable. For time integration
we require an A-stable, one-step method. Our choice is the trapezoidal rule; see, e.g., [15].

Analogous to the stationary scheme (5.3), the semidiscretisation (7.4) reduces to the cen-
tral difference discretisation

ϕ̇j �x − 1

�x

(
ε̄j+1/2(ϕj+1 − ϕj ) − ε̄j−1/2(ϕj − ϕj−1)

) = sj �x, (7.6)

for the diffusion-reaction equation ϕt − (εϕx)x = s and to the cell-vertex FVM

1

2
(ϕ̇j−1 + ϕ̇j )�x + ujϕj − uj−1ϕj−1 = 1

2
(sj−1 + sj )�x if u > 0, (7.7a)

1

2
(ϕ̇j + ϕ̇j+1)�x + uj+1ϕj+1 − ujϕj = 1

2
(sj + sj+1)�x if u < 0, (7.7b)

for the advection-reaction equation ϕt + (uϕ)x = s. All semidiscretisations are second order
accurate in space.
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8 Numerical Examples

In this section we apply several flux approximations to five model problems to assess their
(order of) accuracy. We consider both diffusion-dominated and advection-dominated flow.

Example 1 Advection-diffusion-reaction equation with boundary layer at outflow.
We solve the BVP [34]

(
uϕ − εϕ′)′ = s, 0 < x < 1, (8.1a)

ϕ(0) = 0, ϕ(1) = 1, (8.1b)

with velocity u(x) = 1 − b sinπx and source term s chosen such that the exact solution is
given by

ϕ(x) = a sin(πx) + e(x−1)/ε − e−1/ε

1 − e−1/ε
. (8.2)

Note that for 0 < ε � 1 the solution has a thin boundary layer of width ε near x = 1. We
take the following parameter values: a = 0.2, b = −0.95 and ε = 1 (dominant diffusion)
or ε = 10−5 (dominant advection). Let h = �x = 1/(N − 1) be the grid size, with N the
number of grid points. To determine the accuracy of a numerical solution we compute the
average error eh := ‖ϕ −ϕ∗‖1/N , where ϕ∗ denotes the exact solution restricted to the grid,
as a function of the reciprocal grid size h−1. Table 1 shows eh and the reduction factors
eh/eh/2 for ε = 1. Clearly, eh/eh/2 → 4 for h → 0 for both the HF and CF scheme, and
consequently, both schemes display second order convergence behaviour for h → 0. The
numerical errors are approximately the same for both schemes. However, the situation is
quite different for the case ε = 10−5 shown in Table 2. In this case eh/eh/2 → 2 for h → 0
for the HF scheme, which means that the method is only first order convergent, in agreement
with the observation that the HF-scheme reduces to the first order upwind scheme for the
advection-reaction equation; see Sect. 5. The CF-scheme still displays second order con-
vergence behaviour, which is consistent with the reduction of the CF-scheme to the scheme
(5.7) for the advection-reaction equation. Obviously, the CF-solution is in this case much
more accurate than the HF-solution.

Table 1 Example 1, errors for
diffusion-dominated flow.
Parameter values are: a = 0.2,
b = −0.95 and ε = 1

h−1 CF HF

eh eh/eh/2 eh eh/eh/2

10 2.201 × 10−3 3.69 1.823 × 10−3 3.81

20 5.967 × 10−4 3.84 4.779 × 10−4 3.90

40 1.553 × 10−4 3.92 1.224 × 10−4 3.95

80 3.963 × 10−5 3.96 3.098 × 10−5 3.97

160 1.001 × 10−5 3.98 7.794 × 10−6 3.99

320 2.515 × 10−6 3.99 1.955 × 10−6 3.99

640 6.303 × 10−7 3.99 4.894 × 10−7 4.00

1280 1.578 × 10−7 1.224 × 10−7



J Sci Comput (2011) 46: 47–70 63

Table 2 Example 1, errors for
advection-dominated flow.
Parameter values are: a = 0.2,
b = −0.95 and ε = 10−5

h−1 CF HF

eh eh/eh/2 eh eh/eh/2

10 2.146 × 10−3 3.82 1.977 × 10−2 1.86

20 5.613 × 10−4 3.91 1.061 × 10−2 1.93

40 1.436 × 10−4 3.95 5.504 × 10−3 1.97

80 3.632 × 10−5 3.98 2.801 × 10−3 1.99

160 9.121 × 10−6 4.00 1.411 × 10−3 2.00

320 2.280 × 10−6 4.02 7.070 × 10−4 2.01

640 5.669 × 10−7 4.05 3.525 × 10−4 2.02

1280 1.399 × 10−7 1.746 × 10−4

Example 2 Advection-diffusion-reaction equation with interior layer.
We solve the BVP [17]

(
uϕ − εϕ′)′ = s, 0 < x < 1, (8.3a)

ϕ(0) = ϕ′(1) = 0, (8.3b)

where the velocity u and the source term s are given by

u(x) = (1 + x)3, s(x) = smax

1 + smax(2x − 1)2
, (8.4)

respectively. The velocity is a smoothly varying function of x whereas the source term has
a sharp peak at x = 1

2 , causing a steep interior layer, provided 0 < ε � 1; see Fig. 5.
For this BVP there is no exact solution available. In order to assess the order of accuracy

of both schemes, we compute numerical approximations of ϕ( 1
2 ) with increasingly smaller

grid sizes and apply Richardson extrapolation to these results; see e.g. [22]. More precisely,
let

ϕ

(
1

2

)
= ϕh + eh = ϕh/2 + eh/2 = ϕh/4 + eh/4, h = �x, (8.5)

where ϕh denotes the numerical approximation of ϕ( 1
2 ) computed with grid size h and eh

the corresponding (global) discretisation error, etc. Assuming the following error expansion

eh = Chp + O
(
hq

)
, q > p, (8.6)

we can derive the following relation for the order of accuracy p:

2p .= ϕh/2 − ϕh

ϕh/4 − ϕh/2
=: rh. (8.7)

The rh-values are presented in Table 3. From this table it is evident that for dominant dif-
fusion, i.e., ε = 10−1, both the HF and CF scheme are second order convergent for h → 0.
On the other hand, for dominant advection, i.e., ε = 10−8, the HF scheme shows first order
convergence for h → 0, whereas the CF scheme is still second order convergent. The large
entries for h−1 = 10,20 in the last column of the table indicate that the approximation (8.7)
is not yet valid, or equivalently, the higher order terms in (8.6) can not be neglected, and
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Fig. 5 Example 2, the source term s (left) and the corresponding (numerical) solution (right) of (8.3). Para-
meter values are ε = 10−8, smax = 102 and h−1 = 20

Table 3 Example 2, the
rh-values as a function of h−1,
for maximum source term
smax = 102

h−1 ε = 10−1 ε = 10−8

HF CF HF CF

10 4.41 6.76 2.39 2.36×101

20 4.54 6.00 1.97 −2.92×102

40 4.08 3.65 1.96 2.57

80 4.02 3.62 1.98 4.00

160 4.00 3.77 1.99 4.00

320 4.00 3.88 1.99 4.00

640 4.00 3.94 2.00 4.00

1280 4.00 3.97 2.00 4.00

more importantly, that the CF-solution is already rather accurate even on these coarse grids.
This is confirmed in Fig. 5 which shows the HF and CF solutions compared to the reduced
solution (RS) of the problem (uϕ)′ = s, ϕ(0) = 0 on a rather coarse grid (h−1 = 20).

Example 3 Advection-diffusion equation with steep inlet profile and rotating flow.
Consider the following boundary value problem [17, 26]

∇ · (uϕ − ε∇ϕ) = 0, −1 < x < 1, 0 < y < 1, (8.8a)

ϕ(x,0) = 1 + tanh(α(2x + 1)), −1 ≤ x ≤ 0 (inlet), (8.8b)
∂ϕ

∂y
(x,0) = 0, 0 < x ≤ 1 (outlet), (8.8c)

ϕ(x, y) = 1 − tanh(α), (x = ±1, 0 ≤ y ≤ 1) and (−1 ≤ x ≤ 1, y = 1), (8.8d)

where the (solenoidal) velocity field is given by

u := (u, v) = (
2y

(
1 − x2

)
,−2x

(
1 − y2

))
. (8.9)

A steep interior layer is specified at the inlet, which should be advected with the rotating
flow, at least for ε sufficiently small. For ε = 0 the outlet profile should be the exact mirror
image of the interior layer at the inlet, whereas for small ε > 0 the outlet profile is less steep
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Fig. 6 Example 3, solution of boundary value problem (8.8) for α = 10 and ε = 10−8 computed with
�x = �y = 2.5 × 10−2. Top: HF scheme, bottom: CF scheme

Table 4 Example 3, the
rh-values as a function of h−1

for α = 10

h−1 ε = 10−2 ε = 10−8

HF CF HF CF

20 3.12 −1.93 1.49 5.73

40 3.72 1.97 2.26 4.42

80 3.93 3.07 3.15 4.11

160 3.98 3.56 3.29 4.04

320 4.00 3.78 2.77 4.01

640 4.00 3.89 2.38 4.01

due to diffusion. Numerical solutions of (8.8) for ε = 10−8 and α = 10 are displayed in
Fig. 6. Clearly, the HF solution is far too smooth, due to numerical diffusion, whereas the
outlet profile of the CF solution is hardly distorted. Apparently, inclusion of the cross flux
terms in the numerical fluxes reduces numerical diffusion considerably.

To determine the order of accuracy, we apply Richardson extrapolation to numerical
approximations of ϕ( 1

2 , 1
2 ), i.e., we compute the quotients rh defined in (8.7) with ϕh the

numerical approximation of ϕ( 1
2 , 1

2 ) computed with grid sizes �x = �y = h. The results
are presented in Table 4. From this we may conclude, that the CF scheme is second order
convergent for h → 0 for both diffusion dominated flow (ε = 10−2) and advection domi-
nated flow (ε = 10−8). The HF scheme however is second order for diffusion dominated
flow only; it reduces to first order for dominant advection.
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Fig. 7 Example 4, solution of boundary value problem (8.10) for β = 10, smax = 102 and ε = 10−8 com-
puted with �x = �y = 2.5 × 10−2. Top: HF scheme, bottom: CF scheme

Example 4 Advection-diffusion-reaction equation with rotating flow.
Consider the following modification of the BVP (8.8) in Example 3, i.e.,

∇ · (uϕ − ε∇ϕ) = s, −1 < x < 1, 0 < y < 1, (8.10a)

ϕ(x,0) = 0, −1 ≤ x ≤ 0 (inlet), (8.10b)
∂ϕ

∂y
(x,0) = 0, 0 < x ≤ 1 (outlet), (8.10c)

ϕ(x, y) = 0, (x = ±1, 0 ≤ y ≤ 1) and (−1 ≤ x ≤ 1, y = 1), (8.10d)

where the velocity field is defined in (8.9) and where the source term is given by

s(x, y) = 1

2

smax

1 + smax(x ′)2

(
1 − tanh2

(
β

(
1

2

√
2 − y ′

)))
,

(
x ′, y ′) := 1

2

√
2(x + y,−x + y). (8.11)

In this example there is no inlet profile, instead, the solution is generated by a source term
which has a sharp peak near (x ′, y ′) = (0, 1

2

√
2), i.e., at (x, y) = (− 1

2 , 1
2 ). Thus, the solution

is created in the second quadrant (x < 0, y > 0). Numerical solutions for β = 10, smax =
102 and ε = 10−8 are given in Fig. 7. The solution profile ϕ(0, y) along the centre line is
compared with the solution ϕ(x,0) (0 ≤ x ≤ 1) at the outlet. Since ε = 10−8 and virtually
s = 0 in the first quadrant (x, y > 0), advection is the only relevant transport term in (8.10a),
implying that both solution profiles should be almost the same. This is clearly true for the
CF solution, however, the HF outlet profile is too much smeared out, this due to cross wind
diffusion.
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Table 5 Example 5, errors for
the advection-reaction equation.
Parameter values are: u = 0.95,
and τ = 4 × 10−2

h−1 TCF SCF

eh eh/eh/2 eh eh/eh/2

20 4.645 × 10−2 1.64 5.743 × 10−2 1.19

40 2.831 × 10−2 1.97 4.837 × 10−2 1.21

80 1.436 × 10−2 2.75 4.011 × 10−2 1.30

160 5.221 × 10−3 3.48 3.078 × 10−2 1.40

320 1.502 × 10−3 3.83 2.198 × 10−2 1.52

640 3.918 × 10−4 3.95 1.445 × 10−2 1.65

1280 9.923 × 10−5 8.742 × 10−3

Example 5 Advection-reaction equation.
Consider the following model IBVP for hyperbolic-relaxation equations [29]

∂ϕ

∂t
+ ∂

∂x
(uϕ) = − 1

τ
ϕ(1 − ϕ), 0 < x < 1, t > 0, (8.12a)

ϕ(x,0) = a(x) = 0.8, 0 < x < 1, (8.12b)

ϕ(0, t) = b(t) = 0.8 + 0.2 sin(2πt), t > 0, (8.12c)

where u > 0 is the flow velocity and where τ � 1 is a relaxation time. We choose uτ � 1,
which means that the time scale of advection is much larger than τ . Using the method of
characteristics, see e.g. [12], we can solve the IBVP (8.12) to find

ϕ(x, t) =
⎧⎨
⎩

(
1 + (

1
ϕ1

− 1
)
et/τ

)−1
, ϕ1 = a(x − ut) for x ≥ ut,

(
1 + (

1
ϕ2

− 1
)
ex/(uτ)

)−1
, ϕ2 = b(t − x/u) for x < ut .

(8.13)

The oscillating boundary condition (8.12c) generates a wave propagating in the positive
x-direction. The ODE dϕ/dt = − 1

τ
ϕ(1 − ϕ) corresponding to (8.12a), which holds along

the characteristics, has a stable equilibrium ϕ = 0 and an unstable ϕ = 1. The effect of the
source term is therefore that the constant state ahead of the wave approaches 0, whereas a
narrow peak near ϕ(x, t) = 1 is created.

We have computed numerical solutions of (8.12) using the SCF and TCF scheme, in com-
bination with the trapezoidal rule for time integration. We choose the following parameter
values: u = 0.95 and τ = 4 × 10−2, and moreover, we take �x = �t =: h. To determine the
accuracy of a numerical solution we compute the average error eh := h‖ϕ −ϕ∗‖1 at t = 0.5,
where ϕ∗ denotes the exact solution restricted to the grid, as a function of the reciprocal grid
size h−1. Table 5 shows eh and the reduction factors eh/eh/2. Clearly, for the TCF scheme
eh/eh/2 → 4 for h → 0, implying that the discretisation method is second order. However,
the SCF discretisation does not even display first order convergence, and the corresponding
solutions have a much larger discretisation error due to dissipation errors; see [32].

As an example, we show in Fig. 8 the numerical solutions computed with the TCF and
SCF scheme, respectively, computed for h−1 = 1280. Obviously, the SCF scheme suffers
from severe damping, resulting in a far too small maximum, whereas for the TCF scheme
the peak near the maximum is well resolved.
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Fig. 8 Example 5, numerical solution of IBVP (8.12) at t = 0.5 for u = 0.95 and τ = 4 × 10−2 computed
with h−1 = 1280. Left: TSC scheme, right: SCF scheme

9 Summary, Conclusions and Future Research

We have derived an integral representation for the flux of the one-dimensional advection-
diffusion-reaction equation from a local BVP for the entire equation, including the source
term. As a consequence, the flux consists of two parts, i.e., a homogeneous and an inho-
mogeneous part, corresponding to the homogeneous and particular solution of the BVP,
respectively. A new representation of the inhomogeneous flux in terms of a Green’s func-
tion is given. Combining this integral representation with suitable quadrature rules, we could
derive expressions for the numerical flux. Obviously, also the numerical flux consists of a
homogeneous and an inhomogeneous part. The inhomogeneous part turns out to be very im-
portant for dominant advection, since it ensures that the flux approximation remains second
order. The resulting finite volume scheme turns out to be second order accurate, uniformly
in the local Peclet numbers, virtually never generates spurious oscillations, and moreover,
has only a three-point coupling.

For two-dimensional problems we have to include the cross flux term in the inhomoge-
neous flux. This means that, say for the discretisation of the x-component f1 of the flux, we
have to solve a quasi-one dimensional BVP, where the source term contains the cross flux
term ∂f2/∂y; see (6.1). The finite volume method obtained this way usually gives very accu-
rate approximations of steep (interior) layers, in case of dominant advection, and has a com-
pact nine-point stencil. However, (small) spurious oscillations cannot always be excluded.
A remedy to this could be to take a combination of the complete and the homogeneous
fluxes. This is topic of further research.

As a second extension, we applied the complete flux scheme to time-dependent problems.
The key idea is to include the time derivative in the inhomogeneous flux, i.e., the flux is
determined from a quasi-stationary BVP where the source term contains the time derivative.
The resulting semidiscretisation is an implicit ODE system and usually has small dissipation
and dispersion errors, see [32]. Spurious oscillations in the semidiscrete solution can occur,
and have to be controlled by a (dissipative) time integration method.

Currently, we are extending our research in the following directions. First, we combine
the integral representation of the flux with Gauss quadrature rules to derive higher order
schemes; first results are presented in [2]. Second, we analyse several time integration meth-
ods when combined with the complete flux scheme; in particular we investigate exponen-
tial time integrators. Finally, we extend the complete flux scheme to advection-diffusion-
reaction systems, where the equations are coupled through an advection and a diffusion
matrix. Preliminary results are promising and will be reported elsewhere.
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