Skip to main content

Advertisement

Log in

Enamel Microstructure in Cetacea: a Case Study in Evolutionary Loss of Complexity

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

A Correction to this article was published on 14 September 2019

This article has been updated

Abstract

Enamel microstructure of 34 species in eight odontocete families is described and categorized according to structural complexity (from no or prismless enamel to highly arranged enamel in decussating layers), then correlated with parameters of ecology, life history, and occlusal function. Overall, more complex dental structure in extant and extinct cetaceans is associated with smaller, more numerous teeth in taxa that bite or grasp smaller, harder prey with longer, narrower jaws and have more oral processing. Enamel complexity loosely correlates with mechanical properties, but measurement of compressive strength is complicated by the presence of cementum overlying or in place of crown enamel. Given the presence of Hunter-Schreger bands and other indices of high microstructural complexity in archaic cetaceans (with presumed plesiomorphic characters), the absence of complex enamel, as well as more generally of gross dental form, signals a loss of complexity in various cetacean lineages. Nonetheless, it is difficult to draw robust or reliable inferences regarding either cetacean phylogeny or dental function given the pattern of presumed loss of tooth complexity, and the confounding presence of numerous exceptions (taxa with complex teeth despite limited use, or with thin, weakly developed enamel and soft, simple teeth despite high occlusal function). Although retention of a complex feature implies its continued adaptive value, and thus selection for the underlying genetic and developmental bases for that complexity, loss of complexity can simply follow absence of function. Loss of complex traits presumably relates to accumulated mutations and economic efficiency, but unfolds with no distinct pattern of distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed for this study are included in the publication or available from the authors upon reasonable request.

Change history

  • 14 September 2019

    Credit for the <Emphasis Type="Italic">Basilosaurus</Emphasis> tooth photograph in Figure 9a: Aaron Miller, Ancient Earth Trading Company LLC. Also, please note that individual teeth shown in both Figure 2 and Figure 9 were not the specific sources of accompanying enamel photomicrographs.

References

  • Adami C (2002) What is complexity? BioEssays 24(12):1085–1094

    PubMed  Google Scholar 

  • Adami C, Ofria C, Collier TC (2000) Evolution of biological complexity. Proc Natl Acad Sci USA 97(9):4463–4468

    CAS  PubMed  Google Scholar 

  • Aigler SR, Jandzik D, Hatta K, Uesugi K, Stock DW (2014) Selection and constraint underlie irreversibility of tooth loss in cypriniform fishes. Proc Natl Acad Sci USA 111(21):7707–7712

    CAS  PubMed  Google Scholar 

  • Alloing-Séguier L, Lihoreau F, Boisserie J-R, Charruault A-L, Orliac M, Tabuce R (2014) Enamel microstructure evolution in anthracotheres (Mammalia, Cetartiodactyla) and new insights on hippopotamoid phylogeny. Zool J Linn Soc 171:668–695

    Google Scholar 

  • Arthur WB (1999) On the evolution of complexity. In: Cowan GA, Pines D, Meltzer D (eds) Complexity. Perseus, Cambridge, pp 65–81

    Google Scholar 

  • Bergqvist LP (2003) The role of teeth in mammal history. Brazil J Oral Sci 2(6):249–257.

    Google Scholar 

  • Berta A, Lanzetti A, Ekdale EG, Deméré TA (2016) From teeth to baleen and raptorial to bulk filter feeding in mysticete cetaceans: the role of paleontological, genetic, and geochemical data in feeding evolution and ecology. Integr Comp Biol 56(6):1271–1284

    PubMed  Google Scholar 

  • Best RC, da Silva VMF (1989) Amazon River dolphin, boto Inia geoffrensis (de Blainville, 1817). In: Ridgway SH, Harrison RJ (eds) Handbook of Marine Mammals, Vol. 4: River Dolphins and the Larger Toothed Whales. Academic Press, San Diego, pp 1–23

    Google Scholar 

  • Bonner JT (1988) The Evolution of Complexity by Means of Natural Selection. Princeton University Press, Princeton

    Google Scholar 

  • Boyde A (1965) The structure of developing mammalian dental enamel. In: Stack MV, Fearnhead RW (eds) Tooth Enamel. Wright and Sons, Bristol, pp 163–167

    Google Scholar 

  • Boyde A (1967) The development of enamel structure. Proc R Soc Med Lond 60: 923–928

    CAS  Google Scholar 

  • Boyde A (1971) Comparative histology of mammalian teeth. In: Dahlberg A (ed) Dental Morphology and Evolution. University of Chicago Press, Chicago, pp 81–94

    Google Scholar 

  • Boyde A (1976) Amelogenesis and the structure of the enamel. In: Cohen B, Kramer IR (eds) Scientific Foundations of Dentistry. W. Heinemann Medical Books, London, pp 335–352

    Google Scholar 

  • Boyde A (1980) Histological studies of dental tissues of odontocetes. Rep Internatl Whal Comm 3:65–88

    Google Scholar 

  • Boyde A (1984) Airpolishing effects on enamel, dentine, cement, and bone. Br Dent J 156:287–291

    CAS  PubMed  Google Scholar 

  • Carlson SJ (1990) Vertebrate dental structures. In: Carter JG (ed) Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends. Van Nostrand Carter, New York, pp 531–556

    Google Scholar 

  • Carlson SJ, Krause DW (1985) Enamel ultrastructure of multituberculate mammals: an investigation of variability. Contrib Mus Paleontol Univ Mich 27:1–50

    Google Scholar 

  • Carpenter K, White D (1986) Feeding in the archaeocete whale Zygorhiza kochii (Cetacea: Archaeoceti). Mississippi Geol 7:1–14

    Google Scholar 

  • Carter JT (1948) Comparison of microscopic structure of the enamel in the teeth of Zeuglodon osiris Dames, and of Prosqualodon davidi Flynn. Trans Zool Soc Lond 26:192–193

    Google Scholar 

  • Committee on Taxonomy, Society for Marine Mammalogy (2017) List of marine mammal species and subspecies, www.marinemammalscience.org, consulted on 27 July 2018

  • Conway Morris S (2003) Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge

    Google Scholar 

  • Cooper LN, Thewissen JGM, Hussain ST (2009) New middle Eocene archaeocetes (Cetacea: Mammalia) from the Kuldana Formation of northern Pakistan. J Vertebr Paleontol 29(4):1289–1299

    Google Scholar 

  • Crompton AW, Hiiemae K (1969) Functional occlusion in tribosphenic molars. Nature 222:678–679

    CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the Origin of Species. John Murray, London

    Google Scholar 

  • Deméré TA, McGowen MR, Berta A, Gatesy J (2008) Morphological and molecular evidence for a stepwise transition from teeth to baleen in mysticete whales. Syst Biol 57:15–37

    PubMed  Google Scholar 

  • Edmonds B (1999) What is complexity? - the philosophy of complexity per se with application to some examples in evolution. In: Heylighen F, Boller J, Riegler A (eds) The Evolution of Complexity. Kluwer, Dordrecht, pp 1–18

    Google Scholar 

  • Eldredge N, Gould SJ (1972). Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf THM (ed) Models in Paleobiology. Freeman, San Francisco, pp 82–115

    Google Scholar 

  • Fahlke JM (2012) Bite marks revisited: evidence for middle-to-late Eocene Basilosaurus isis predation on Dorudon atrox (both Cetacea, Basilosauridae). Palaeontol Electron 15:1–16.

    Google Scholar 

  • Fahlke JM, Bastl KA, Semprebon GM, Gingerich PD (2013) Paleoecology of archaeocete whales throughout the Eocene: dietary adaptations revealed by microwear analysis. Palaeogeogr Palaeoclimatol Palaeoecol 386:690–701.

    Google Scholar 

  • Fontaine P-H (2007) Whales and Seals: Biology and Ecology. Schiffer, Atglen PA

    Google Scholar 

  • Fordyce RE (2017) Cetacean evolution. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of Marine Mammals, Third Ed. Academic Press, San Diego, pp 180–185

    Google Scholar 

  • Fordyce RE, Muizon C de (2001) Evolutionary history of cetaceans: a review. In: Mazin J-M, Buffrenil V de (eds) Secondary Adaptations of Tetrapods to Life in Water. Verlag Dr. Friedrich Pfeil, Munich, pp 169–233

  • Fostowicz-Frelik L (2003) An enigmatic whale tooth from the upper Eocene of Seymour Island, Antarctica. Pol Polar Res 24:13–28

    Google Scholar 

  • Freitas R, Gómez-Marin C, Wilson JM, Casares F, Gómez-Karmeta JL (2012) Hoxd13 contribution to the evolution of vertebrate appendages. Dev Cell 23(6):1219–1229

    CAS  PubMed  Google Scholar 

  • Gaskin DE (1982) The Ecology of Whales and Dolphins. Heinemann Educational, Portsmouth

    Google Scholar 

  • Gatesy J, Geisler JH, Chang J, Buell C, Berta A, Meredith RW, Springer MS, McGowen MR (2013) A phylogenetic blueprint for a modern whale. Mol Phylogen Evol 66(2):479–506

    Google Scholar 

  • Geisler JH, Boessenecker RW, Brown M, Beatty BL (2017) The origin of filter feeding in whales. Curr Biol 27(13):2036–2042

    CAS  PubMed  Google Scholar 

  • Gershenson C, Lenaerts T (2008) Evolution of complexity. Artific Life 14(3):241–243

    Google Scholar 

  • Gingerich PD, Russell DE (1981) Pakicetus inachus, a new archaeocete (Mammalia, Cetacea) from the early-middle Eocene Kuldana Formation of Kohat (Pakistan). Contrib Mus Paleontol Univ Mich 25(11):235–246

    Google Scholar 

  • Goodwin B (1994) How the Leopard Changed Its Spots: The Evolution of Complexity. Charles Scribner’s Sons, New York

    Google Scholar 

  • Gould SJ, Lewontin R (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci 205:581–598

    CAS  PubMed  Google Scholar 

  • Gore AV, Tomins KA, Iben J, Ma L, Castanova D, Davis A, Parkhurst A, Jeffery WR, Weinstein BM (2018) An epigenetic mechanism for cavefish eye degeneration. Nat Ecol Evol 2:1155–1160

    PubMed  PubMed Central  Google Scholar 

  • Grant P (1986) Ecology and Evolution of Darwin’s Finches. Princeton University Press, Princeton

    Google Scholar 

  • Guatelli-Steinberg D (2016) What Teeth Reveal About Human Evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Gwinnett AJ (1967) The ultrastructure of “prismless” enamel of permanent human teeth. Arch Oral Biol 12(3):381–387

    CAS  PubMed  Google Scholar 

  • Heylighen F (1999) The growth of structural and functional complexity during evolution. In: Heylighen F, Bollen J, Riegler A (eds) The Evolution of Complexity. Kluwer, Dordrecht, pp 1–18

    Google Scholar 

  • Heyning JE (1984) Functional morphology involved in intraspecific fighting of the beaked whale, Mesoplodon carlhubbsi. Can J Zool 62:1645–1654

    Google Scholar 

  • Heyning JE, Mead JG (1996) Suction feeding in beaked whales: morphological and observational evidence. Nat Hist Mus LA County Contrib Sci 464:1–12

    Google Scholar 

  • Hillson S (2005) Teeth. In: Cambridge Manuals in Archaeology. Cambridge University Press, Cambridge, p 373

    Google Scholar 

  • Hocking DP, Marx FG, Fitzgerald EMG, Evans AR (2017a) Ancient whales did not filter feed with their teeth. Biol Lett 13:2017348

    Google Scholar 

  • Hocking DP, Marx FG, Park T, Fitzgerald EMG, Evans AR (2017b) A behavioural framework for the evolution of feeding in aquatic mammals. Proc R Soc B 284:20162750

    PubMed  Google Scholar 

  • Ishiyama M (1984) Comparative histology of tooth enamel in several toothed whales. In: Fearnhead RW, Suga S (eds) Tooth Enamel IV. Elsevier, New York, pp 432–436

    Google Scholar 

  • Ishiyama M (1987) Enamel structure in odontocete whales. Scan Micro 1(3):1071–1079

    CAS  Google Scholar 

  • Karlsen K (1962) Development of tooth germs and adjacent structures in the whalebone whale (Balaenoptera physalus L). Hvalrådets Skrifter 45:1–56

    Google Scholar 

  • Koenigswald W von (1997) Evolutionary trends in the differentiation of mammalian enamel ultrastructure. In: Koenigswald W von, Sander PM (eds) Tooth Enamel Microstructure. Balkema, Rotterdam, pp 203–225

  • Koenigswald W von (2000) Two different strategies in enamel differentiation: Marsupialia versus Eutheria. In: Teaford MF, Smith MM, Ferguson MW (eds) Development, Function, and Evolution of Teeth. Cambridge University Press, Cambridge, pp 107–118

  • Koenigswald W von, Clemens WA (1992) Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics. Scan Microsc 6:195–218

  • Koenigswald W von, Kalthoff DC, Semprebon GM (2010) The microstructure of enamel, dentine and cementum in advanced Taeniodonta (Mammalia) with comments on their dietary adaptations. J Vertebr Paleontol 30(6):1797–1804

  • Koenigswald, W von, Martin T, Pfretzschner HU (1993) Phylogenetic interpretation of enamel structures in mammalian teeth: possibilities and problems. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Placentals. Springer-Verlag, New York, pp 303–313

    Google Scholar 

  • Koenigswald W von, Pfretzschner H (1991) Biomechanics in the enamel of mammalian teeth. In: Schmidt-Kittler N, Vogel K (eds) Constructional Morphology and Evolution. Springer-Verlag, Berlin, pp 113–125

  • Koenigswald W von, Sander PM (1997) Glossary of terms used for enamel microstructures. In: Koenigswald W von, Sander PM (eds) Tooth Enamel Microstructure. Balkema, Rotterdam, pp 267–280

  • Köhler R, Fordyce RE (1997) An archaeocete whale (Cetacea: Archaeoceti) from the Eocene Waihao Greensand, New Zealand. J Vertebr Paleontol 17(3):574–583

    Google Scholar 

  • Kohlsdorf T, Wagner GP (2006) Evidence for the reversibility of digit loss: a phylogenetic study of limb evolution in Bachia (Gymnophthalmidae: Squamata). Evolution 60(9):1896–1912

    PubMed  Google Scholar 

  • Kruse S, Caldwell DK, Caldwell MC (1999) Risso’s dolphin, Grampus griseus (Cuvier 1812). In: Ridgway SH, Harrison RJ (eds) Handbook of Marine Mammals Vol 6: Second Book of Dolphins and the Porpoises. Academic Press, San Diego, pp 183–212

    Google Scholar 

  • Lawn BR, Lee JJ (2009) Analysis of fracture and deformation modes in teeth subjected to occlusal loading. Acta Biomater 5(6):2213–2221

    PubMed  Google Scholar 

  • Layne JN (1959) Feeding adaptations and behavior of a freshwater dolphin, Inia geoffrensis. Anat Rec 134(3):598

    Google Scholar 

  • LePage M (2008) Evolution myths: natural selection leads to ever greater complexity. New Sci 198(2652):75–76

    Google Scholar 

  • LePage M (2017) Did blind cavefish evolve by breaking the laws of evolution? New Sci 3148:14

    Google Scholar 

  • Loch C, Duncan W, Simões-Lopes PC, Kieser JA, Fordyce RE (2013a) Ultrastructure of enamel and dentine in extant dolphins (Cetacea: Delphinoidea and Inioidea). Zoomorphology 132(2):215–225

    Google Scholar 

  • Loch C, Grando LJ, Kieser JA, Simões-Lopes PC (2011) Dental pathology in dolphins (Cetacea: Delphinidae) from the southern coast of Brazil. Dis Aquat Org 94(3):225–234

    Google Scholar 

  • Loch C, Grando LJ, Schwass DR, Kieser JA, Fordyce RE, Simões-Lopes PC (2013b) Dental erosion in South Atlantic dolphins (Cetacea: Delphinidae): a macro and microscopic approach. Mar Mamm Sci 29(2):338–347

    Google Scholar 

  • Loch C, Kieser JA, Fordyce RE (2015) Enamel ultrastructure in fossil cetaceans (Cetacea: Archaeoceti and Odontoceti). PLoS One 10:e116557

    Google Scholar 

  • Loch C, Simões-Lopes PC (2013) Dental wear in dolphins (Cetacea: Delphinidae) from southern Brazil. Arch Oral Biol 58: 134–141

    PubMed  Google Scholar 

  • Loch C, Swain MV, Fraser SJ, Gordon KC, Kieser JA, Fordyce RE (2014) Elemental and chemical characterization of dolphin enamel and dentine using X-ray and Raman microanalyses (Cetacea: Delphinoidea and Inioidea). J Struct Biol 185(1):58–68

    CAS  PubMed  Google Scholar 

  • Loch C, Swain MV, van Vuuren LJ, Kieser JA, Fordyce RE (2013c) Mechanical properties of dental tissues in dolphins (Cetacea: Delphinoidea and Inioidea). Arch Oral Biol 58(7):773–779

    PubMed  Google Scholar 

  • Losos JB (2010) Adaptive radiation, ecological opportunity, and evolutionary determinism. Am Nat 175(6):623–639

    PubMed  Google Scholar 

  • Lucas P, Constantino P, Wood B, Lawn B (2008) Dental enamel as a dietary indicator in mammals. BioEssays 30(4):374–385

    PubMed  Google Scholar 

  • Lucas PW (2004) Dental Functional Morphology: How Teeth Work. Cambridge University Press, New York

    Google Scholar 

  • Maas MC, Thewissen JGM (1995) Enamel microstructure of Pakicetus (Mammalia: Archaeoceti). J Paleontol 69(6):1154–1163

    Google Scholar 

  • Martin T (1997) Incisor enamel microstructure and systematics in rodents. In: Koenigswald W von, Sander PM (eds) Tooth Enamel Microstructure. Balkema, Rotterdam, pp 163–176

  • Marx FG, Hocking DP, Park T, Ziegler T, Evans AR, Fitzgerald EMG (2016a) Suction feeding preceded filtering in baleen whale evolution. Mem Mus Vic 75:71–82

    Google Scholar 

  • Marx FG, Lambert O, Uhen MD (2016b) Cetacean Paleobiology. John Wiley & Sons, Oxford

    Google Scholar 

  • Marx FG, Tsai C-H, Fordyce RE (2015) A new early Oligocene toothed ‘baleen’ whale (Mysticeti: Aetiocetidae) from western North America: one of the oldest and the smallest. R Soc Open Sci 2:150476

    PubMed  PubMed Central  Google Scholar 

  • Maughan H, Masel J, Birky CW, Nicholson WL (2007) The roles of mutation accumulation and selection in loss of sporulation in experimental populations of Bacillus subtilis. Genetics 177(2):937–948

    PubMed  PubMed Central  Google Scholar 

  • McGowen MR, Spaulding M, Gatesy J (2009) Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol Phylogen Evol 53:891–906

    CAS  Google Scholar 

  • McShea DW (1991) Complexity and evolution: what everybody knows. Biol Philos 6:303–324.

    Google Scholar 

  • McShea DW (1993) Evolutionary change in the morphological complexity of the mammalian vertebral column. Evolution 47(3):730–740

    PubMed  Google Scholar 

  • McShea DW (2001) The minor transitions in hierarchical evolution and the question of a directional bias. J Evol Biol 14:502–518

    Google Scholar 

  • McShea DW, Brandon RN (2010) Biology’s First Law: The Tendency for Diversity and Complexity to Increase in Evolutionary Systems. University of Chicago Press, Chicago

    Google Scholar 

  • Moran D, Softley R, Warrant EJ (2015) The energetic cost of vision and the evolution of eyeless Mexican cavefish. Sci Adv 1(8):e1500363

    PubMed  PubMed Central  Google Scholar 

  • Myrick AC (1991) Some new and potential uses of dental layers in studying delphinid populations. In: Pryor K, Norris KS (eds) Dolphin Societies: Discoveries and Puzzles. University of California Press, Los Angeles, pp 251–279

    Google Scholar 

  • Nweeia, MT, Eichmiller FC, Hauschka PV, Donahue GA, Orr JR, Ferguson SH, Watt CA, Mead JG, Potter CW, Dietz R, Giuseppetti AA, Black SR, Trachtenberg AJ, Kuo WP (2014) Sensory ability in the narwhal tooth organ system. Anat Rec 297:599–617

    Google Scholar 

  • O’Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo Z-X, Meng J, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post-K-Pg radiation of placentals. Science 339(6120):662–667

    PubMed  Google Scholar 

  • O’Malley MA, Wideman JG, Ruiz-Trillo I (2016) Losing complexity: the role of simplification in macroevolution. Trends Ecol Evol 31(8):608–621

    PubMed  Google Scholar 

  • Osterauer, R, Marschner, L, Betz, O, Gerberding, M, Sawasdee, B, Cloetens, P, Haus, N, Sures, B, Triebskorn, R, Köhler H-R (2010) Turning snails into slugs: induced body plan changes and formation of an internal shell. Evol & Dev 12(5):474–483

    Google Scholar 

  • Page CE, Cooper N (2017) Morphological convergence in ‘river dolphin’ skulls. PeerJ 5:e4090.

    PubMed  PubMed Central  Google Scholar 

  • Peredo CM, Pyenson ND, Boersma AT (2017a) Decoupling tooth loss from the evolution of baleen in whales. Front Mar Sci 4:67. doi.https://doi.org/10.3389/fmars.2017.00067

  • Peredo CM, Pyenson ND, Uhen MD, Marshall CM (2017b) Alveoli, teeth, and tooth loss: understanding the homology of internal mandibular structures in mysticete cetaceans. PLoS One 12(5):e0178243

    PubMed  PubMed Central  Google Scholar 

  • Perrin W, Myrick A (1980) Age determination of toothed whales and sirenians. Rep Internatl Whal Comm 3:1–229

    Google Scholar 

  • Pilleri G, Gihr M, Kraus C (1970) Feeding behaviour of the Gangetic dolphin, Platanista gangetica, in captivity. Invest Cetacea 2:69–73

    Google Scholar 

  • Pfretzschner HU (1993) Enamel microstructure in the phylogeny of the Equidae. J Vertebr Paleontol 13(3):342–349

    Google Scholar 

  • Recknagel H, Kamenos NA, Elmer KR (2017) Common lizards break Dollo’s law of irreversibility: genome-wide phylogenomics support a single origin of viviparity and re-evolution of oviparity. Mol Phylogen Evol 127:579–588

    Google Scholar 

  • Rensberger JM (1997) Mechanical adaptation in enamel. In: Koenigswald W von, Sander PM (eds) Tooth Enamel Microstructure. Balkema, Rotterdam, pp 237–257

  • Ridgway SH, Harrison RJ (eds) (1989) Handbook of Marine Mammals, Vol 4: River Dolphins and Larger Toothed Whales. Academic Press, San Diego

  • Ridgway SH, Harrison RJ (eds) (1994) Handbook of Marine Mammals, Vol 5: First Book of Dolphins. Academic Press, San Diego

  • Ridgway SH, Harrison RJ (eds) (1999) Handbook of Marine Mammals, Vol 6: Second Book of Dolphins and the Porpoises. Academic Press, San Diego

  • Sahni A (1981) Enamel ultrastructure of fossil Mammalia: Eocene Archaeoceti from Kutch. J Paleontol Soc India 25: 33–37

    Google Scholar 

  • Sahni A, Koenigswald W von (1997) The enamel structure of some fossil and recent whales from the Indian subcontinent. In: Koenigswald W von, Sander PM (eds) Tooth Enamel Microstructure. Balkema, Rotterdam, pp 177–191

  • Scott EC (1979) Dental wear scoring technique. Am J Phys Anthropol 51(2):213–217

    Google Scholar 

  • Siler CD, Brown RM (2011) Evidence for repeated acquisition and loss of complex body form characters in an insular clade of Southeast Asian semi-fossorial skinks. Evolution 65(9):2641–2663

    PubMed  Google Scholar 

  • Slijper EJ (1962) Whales: The Biology of Cetaceans. Basic Books, New York

    Google Scholar 

  • Stone G, French V (2003) Evolution: have wings come, gone and come again? Curr Biol 13(11):436–438

    Google Scholar 

  • Thewissen JGM, Hieronymus TL, George JC, Suydam R, Stimmerlmayr R, McBurney D (2017) Evolutionary aspects of the development of teeth and baleen in the bowhead whale. J Anat 230(4):549–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thewissen JGM, Sensor JD, Clementz MT, Bajpai S (2011) Evolution of dental wear and diet during the origin of whales. Paleobiology 37(4):655–669

    Google Scholar 

  • Uhen MD (2000) Replacement of deciduous first premolars and dental eruption in archaeocete whales. J Mammal 81:123–133

    Google Scholar 

  • Ungar PS (2010) Mammal Teeth: Origin, Evolution, and Diversity. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Ungar PS (2017) Evolution’s Bite: A Story of Teeth, Diet, and Human Origins. Princeton University Press, Princeton

    Google Scholar 

  • Wagner GP, Altenberg L (1996) Complex adaptations and the evolution of evolvability. Evolution 50:967–976

    PubMed  Google Scholar 

  • Wagner GP, Schwenk K (2000) Evolutionarily stable configurations: functional integration and the evolution of phenotypic stability. In: Hecht MK, MacIntyre RJ, Clegg MT (eds) Evolutionary Biology 31:155–217

    Google Scholar 

  • Wainwright PC (1991) Ecomorphology: experimental functional anatomy for ecological problems. Am Zool 31(4):680–693

    Google Scholar 

  • Werth AJ (2000a) A kinematic study of suction feeding and associated behaviors in the long-finned pilot whale, Globicephala melas (Traill). Mar Mamm Sci 16(2):299–314

    Google Scholar 

  • Werth AJ (2000b) Marine mammals. In: Schwenk K (ed) Feeding: Form, Function and Evolution in Tetrapod Vertebrates. Academic Press, New York, pp 475–514

    Google Scholar 

  • Werth AJ (2003) How did odontocetes get so many teeth? Proc 15th Bienn Conf Biol Mar Mamm:175

  • Werth AJ (2006a) Mandibular and dental variation and the evolution of suction feeding in Odontoceti. J Mammal 87(3):579–588

    Google Scholar 

  • Werth AJ (2006b) Odontocete suction feeding: experimental analysis of water flow and head shape. J Morphol 267(12):1415–1428

    PubMed  Google Scholar 

  • Werth AJ (2007) Adaptations of the cetacean hyolingual apparatus for aquatic feeding and thermoregulation. Anat Rec 290(6):546–568

    Google Scholar 

  • Werth AJ (2012) Avoiding the pitfall of progress and associated perils of evolutionary education. Evol Educ Outreach 5(2):249–265

    Google Scholar 

  • Werth AJ (2014) Vestiges of the natural history of development: historical holdovers reveal the dynamic interaction between ontogeny and phylogeny. Evol Educ Outreach 7:12:1–11

    Google Scholar 

  • Werth AJ, Beatty BL, Pyenson N (2007) Do odontocetes masticate? Investigating evidence from tooth wear, homodonty, and enamel microstructure. J Vertebr Paleontol 27(3, suppl):74A

    Google Scholar 

  • Werth AJ, Shear WA (2014) The evolutionary truth about living fossils. Am Sci 102(6):434–443.

    Google Scholar 

  • Werth AJ, Stern DN (1992) Functional influences in the evolution and devolution of odontocete enamel. J Vertebr Paleontol 12(3, suppl):59A

    Google Scholar 

  • Werth AJ, Wood CB (1999) Phylogenetic versus functional influences in odontocete enamel prism structure. Am Zool 39(5):82A

    Google Scholar 

  • Williams GC (1997) The Pony Fish’s Glow and Other Clues to Plan and Purpose in Nature. Basic Books, New York

    Google Scholar 

  • Wood CB, Dumont ER, Crompton AW (1999a) New studies of enamel microstructure in Mesozoic mammals: a review of enamel prisms as a mammalian synapomorphy. J Mammal Evol 6(2):177–213

    Google Scholar 

  • Wood CB, Rougier GW (2005) Updating and recoding enamel microstructure in Mesozoic mammals: in search of discrete characters for phylogenetic reconstruction. J Mammal Evol 12(3/4):433–460

    Google Scholar 

  • Wood CB, Rougier GW, Werth AJ (2003) New data on enamel microstructure in Mesozoic mammals: patterns and updates. J Vertebr Paleontol 23(3, suppl):60A

    Google Scholar 

  • Wood CB, Werth AJ, Shah-Hosseini S (1999b) Enamel Hunter-Schreger bands in Inia (Cetacea, Odontoceti) and Basilosaurus (Cetacea, Archaeoceti): functional versus phylogenetic influences. J Vertebr Paleontol 19(3, suppl):72A

    Google Scholar 

  • Würsig B, Thewissen JGM, Kovacs KM (2017) Encyclopedia of Marine Mammals, Third Ed. Academic Press, San Diego

    Google Scholar 

  • Yahyazadehfar M, Bajaj D, Arola DD (2013) Hidden contributions of the enamel rods on the fracture resistance of human teeth. Acta Biomater 9(1):4806–4814

    CAS  PubMed  Google Scholar 

  • Yan J, Zhou K, Yang G (2005) Molecular phylogenetics of ‘river dolphins’ and the Baiji mitochondrial genome. Mol Phylogen Evol 37(3):743–750

    CAS  Google Scholar 

  • Yedid G, Ofria CA, Lenski RE (2008) Historical and contingent factors affect re-evolution of a complex feature lost during mass extinction in communities of digital organisms. J Evol Biol 21(5):1335–1357

    CAS  PubMed  Google Scholar 

  • Yu Y-TN, Kleiner M, Velicer GJ (2016) Spontaneous reversions of an evolutionary trait loss reveal regulators of an sRNA that controls multicellular development in the myxobacteria. J Bacteriol 198(23):3142–3151

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are especially grateful to the late Doris Stern and Jules A. Kieser for assistance and inspiration. We thank colleagues who helped with SEM or other data collection and interpretation, as well as discussion of dentition in cetaceans and other mammals, including C.B. Wood, A.W. Crompton, Mary Maas, Brian Beatty, Wighart von Koenigswald, Hans Thewissen, Nick Pyenson, Jim Mead, Butch Rommel, John Heyning, Kurt Schwenk, Guillermo Rougier, Sina Shah-Hosseini, Ziedonis Skobe, Robin Pinto, Greg Early, Judy Chupasko, Maria Rutzmoser, Dan Branton, Phil Gingerich, David Kong, and Stanley Yang. We gratefully acknowledge institutions that made this study possible, including Boston’s Forsyth Dental Center and New England Aquarium, Harvard University Museum of Comparative Zoology, Providence College, Smithsonian Institution’s National Museum of Natural History, University of Otago, Massey University, Instituto Estadual de Pesquisas Científicas e Tecnológicas do Estado do Amapá and Universidade Federal de Santa Catarina. We also acknowledge scientific/technical assistance from staff at the University of Otago Micro and Nanoscale Imaging (OMNI) facility, in particular Liz Girvan. CL acknowledges the University of Otago Faculty of Dentistry for a Sir Thomas Kay Sidey Research Grant. Finally, we thank two anonymous reviewers whose suggestions greatly improved this manuscript’s content and presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Werth.

Ethics declarations

All specimens were obtained according to relevant regulations.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werth, A.J., Loch, C. & Fordyce, R.E. Enamel Microstructure in Cetacea: a Case Study in Evolutionary Loss of Complexity. J Mammal Evol 27, 789–805 (2020). https://doi.org/10.1007/s10914-019-09484-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-019-09484-7

Keywords

Navigation