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Abstract
Many studies on bovine mammary glands focus on one stage of development. Often missing in those studies are repeated 
measures of development from the same animals. As milk production is directly affected by amount of parenchymal tissue 
within the udder, understanding mammary gland growth along with visualization of its structures during development is 
essential. Therefore, analysis of ultrasound and histology data from the same animals would result in better understanding of 
mammary development over time. Thus, this research aimed to describe mammary gland development using non-invasive and 
invasive tools to delineate growth rate of glandular tissue responsible for potential future milk production. Mammary gland 
ultrasound images, biopsy samples, and blood samples were collected from 36 heifer dairy calves beginning at 10 weeks 
of age, and evaluated at 26, 39, and 52 weeks. Parenchyma was quantified at 10 weeks of age using ultrasound imaging 
and histological evaluation, and average echogenicity was utilized to quantify parenchyma at later stages of development. 
A significant negative correlation was detected between average echogenicity of parenchyma at 10 weeks and total adipose 
as a percent of histological whole tissue at 52 weeks. Additionally, a negative correlation between average daily gain at 10 
and 26 weeks and maximum echogenicity at 52 weeks was present. These results suggest average daily gain and mammary 
gland development prior to 39 weeks of age is associated with development of the mammary gland after 39 weeks. These 
findings could be predictors of future milk production, however this must be further explored.
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Introduction

Bovine mammary gland development has been broadly 
studied, although there is limited research on longitudinal 
measures of development from individual animals because 
euthanasia of the animals is often required to collect tis-
sue samples to examine. In addition, the period between 
weaning and the first lactation is often overlooked as heif-
ers are not producing milk at this stage of development. The 
use of ultrasound technology could provide a noninvasive 
approach to monitor mammary gland development in the 
period between birth and the first lactation. Research on 
prepubertal bovine mammary gland ultrasound imaging 

is limited, therefore validation of this technology by other 
imaging methods such as histological analysis is needed.

Mammary gland growth and development is essential for 
future milk production and can be visualized using ultra-
sound technology [40]. Development of the mammary gland 
begins early in fetal life, but primarily occurs postnatally, 
particularly during the post-pubertal stage. Before puberty, 
much of the growth involves overall expansion of tissue mass 
and development of the rudimentary ductal network [22]. 
During puberty, the rudimentary ductal system undergoes 
dramatic elongation and branching [22]. Drastic changes of 
the mammary gland occur during pregnancy and lactation, 
when alveolar differentiation and maturation occurs, as well 
as further branching of the ductal system [22]. Although 
most of the secretory tissue development does not take place 
until pregnancy and early lactation, the period between birth 
and puberty is critical as it sets the foundation for puber-
tal ductal morphogenesis [22]. Further, nutritional effects 
have also been studied in post-weaned heifers although the 
data is conflicting. Research has suggested that high energy 
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diets post-weaning to produce rapid weight gains to achieve 
puberty at earlier ages can lead to lower lifetime milk pro-
ductivity through increased adiposity of the parenchyma 
limiting ductal expansion, although others have suggested 
that early breeding may be responsible for suboptimal devel-
opment [10, 12, 16, 38]. Research also suggests that there 
are epithelial-stromal interactions during development that 
both support and inhibit epithelial development therefore 
larger fat pads may be beneficial because the fat pad dic-
tates the extent of mammary epithelium expansion [1, 4, 
11, 18, 26, 27, 31, 37]. Conflicting results in this area of 
research necessitate additional research to better understand 
mammary gland development, such as the use of repeated 
ultrasound measures during development.

Ultrasonography is a useful tool to visualize and diag-
nose various physiological and pathological conditions in 
animals and is already widely used by large animal veteri-
narians during routine herd checks and animal diagnostics 
and treatments. Although very few studies have utilized 
ultrasound to visualize and measure structures and growth 
within the mammary gland, there is research that has deter-
mined that ultrasound has the potential to be a valuable tool 
in monitoring mammary gland development [1, 2, 6, 7, 32]. 
Previous research determined that parenchymal area meas-
ured in ultrasound images was related to the total amount of 
parenchymal tissue collected, indicating that ultrasound is 
effective at quantification of parenchyma in heifers [1, 11]. 
While ultrasound has been shown to be a potentially useful 
noninvasive tool for evaluation of mammary development, 
histological findings are needed to compare with ultrasound 
to establish the accuracy and reliability [26]. Additionally, 
studies which euthanized animals for tissue collection were 
unable to evaluate milk production.

Therefore, the goal of this research was to study the mam-
mary growth development using non-invasive imaging tech-
niques and investigate the relationship of image-based fea-
tures with invasive measurements obtained from histological 
tissue biopsies during the prepubertal phase of development 
in growing Holstein heifers. To this end we fed dairy calves 
two different milk replacers during the pre-weaning phase 
(first seven weeks of age) that consisted of high protein and 
high fat, compared to low protein and low fat to stimulate 
different mammary growth patterns.

Materials and methods

Calf management

All procedures were approved by the Animal Use and Care 
Committee of the University of Wisconsin – Madison 
(A006270-R01). The calves were born at the Blaine Dairy 
Cattle Center, Arlington, Wisconsin. Following a 1-week 

adaption period, 36 female Holstein calves (40 ± 5.42 kg) 
were paired by birthweight (Bw) and placed on 1 of 2 treat-
ments intended to create mammary gland growth differences 
that could be detected by ultrasound.

The high (H) nutritional value diet consisted of milk 
replacer (Cow’s Match ColdFront Protein Blend, Land 
O Lakes; 27% CP, 20% Fat) fed 1 gallon twice daily and 
ad libitum starter grain (18% CP guaranteed analysis; UW 
Calf Starter – Medicated Rum/Clar,Vita Plus, Lake Mills 
Feed and Grain Inc., Lake Mills, WI). The low (L) nutri-
tional value diet consisted of milk replacer (Herd Maker 
Protein Blend, Land O Lakes; 22% CP, 15% Fat) fed 2 
quarts twice daily. Dairy calves were raised in individual 
calf hutches and L calves were pair-fed starter grain based 
on consumption by their paired H calf. The starter refusal 
was weighed daily, and the L calves were fed the amount of 
starter the H calf consumed the previous day. Calves were 
gradually weaned from milk replacer beginning at 6 weeks 
and completely weaned by 7 weeks of age. At 8 weeks of 
age, the calves were transitioned to ad libitum grower grain 
(15% CP guaranteed analysis; Vita Plus, Lake Mills Feed 
and Grain Inc., Lake Mills, WI). At 12 weeks of age, the 
heifers were moved to the Marshfield Agricultural Research 
Station, Stratford, WI, and transitioned from grower grain 
to standard total mixed ration (TMR). The animals were 
first transitioned to a light TMR diet for 4 to 8 weeks (45% 
haylage, 27.7% ground shell corn, 16.6% corn silage, 8.8% 
soybean meal, and 1.3% vitamins and minerals). They were 
then transitioned to a medium TMR diet until 12 months of 
age (49% haylage, 42.7% corn silage, 4.0% soybean meal, 
2.8% whey, 0.8% vitamins and minerals, and 0.4% urea). At 
12 months of age the animals are transitioned to the farm’s 
breeding diet (44.1% haylage, 32.4% corn silage, 18.1% urea 
1.3% soybean meal, and 3% vitamin and minerals).

Tissue and blood collection

Mammary gland biopsies were performed on heifers at 10, 
26, 39, and 52 weeks of age. Ultrasound (Mindray Z5 Ultra-
sound, Mindray 65C15EA 6.5 MHz Micro-Convex Ultra-
sound Transducer) was used to determine the location of the 
biopsy. A scalpel was used to create a 1 to 2 cm slit through 
the skin and the capsule was dissected to allow for tissue 
cores to be taken with Integra Miltex disposable biopsy 
punches. The 2 mm punch was used at 10 weeks and the 
6 mm punch was used at 26, 39, and 52 weeks of age. The 
tissue size varied based on age and animal. At 10 weeks of 
age, the tissue collected was approximately 2 mm by 5 mm. 
At 26 weeks of age, the tissue cores were approximately 
6 mm by 1 to 2 cm, and beyond 26 weeks of age, the tissue 
was approximately 6 mm by 2 to 3 cm. Tissue was rinsed 
with saline and fixed for 24 h in 10% buffered formalin and 
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then transferred to 70% ethanol. The tissue samples were 
then sent to the University of Wisconsin – Madison Veteri-
nary School of Medicine to be embedded, sectioned, and 
stained with hematoxylin and eosin.

Coccygeal blood samples were collected at each biopsy 
as well as weekly from 8 to 14 months of age to establish 
cyclicity. Progesterone concentrations were determined by 
radioimmunoassay (MP Biomedicals).

Image analysis

Hematoxylin and eosin-stained sections were imaged at 
10 × magnification (Basler Ace 5.0 MP, Zeiss Axio Vert A1) 
and annotated using QuPath, an open-source software pack-
age for digital pathology image analysis [3]. In total, 72,201 
objects were annotated from 132 whole-mount images. 
Using QuPath, the following features were annotated and 
calculated from whole-mount images of the histology sec-
tions: percentage of ductal tissue in the whole-mount image, 
average ductal area, and average maximal ductal diameter, 
percentage of adipose tissue in the whole-mount image 
(Fig. 1).

Ultrasound videos were collected prior to biopsies and 
frames were extracted using ffmpeg [39]. One frame from 
each animal at each timepoint was chosen for analysis by 
QuPath. Average area of parenchyma tissue and fat pad as 
well as average echogenicity were calculated at 10 weeks 
of age (Fig. 1, Table 3). Because tissue boundaries are less 
clear after 10 weeks average echogenicity was used to quan-
tify parenchymal tissue density in ultrasound images at 26, 
39, and 52 weeks of age. Adipose tissue appears hyperechoic 
or brighter, compared to parenchymal tissue which appears 
more hypoechoic or darker (Fig. 1). Average echogenicity 
was calculated by averaging the echogenicity of 10 circles 
placed on the image as depicted in Fig. 1.

Statistical analyses

A linear model (R version 4.2.1, stats package version 4.2.1) 
including birthweight as a covariate was used to evaluate 
the effect of diet on area, circularity, solidity, perimeter and 
maximum and minimum diameter of parenchyma as well 
as on area, circularity, solidity, maximum and minimum 
diameter, mean echogenicity, echogenicity standard devia-
tion, minimum and maximum, and perimeter of the fat pad 
at 10 weeks of age. Circularity measures the roundness of 
an object and solidity gives a measurement of the compact-
ness of an object. A circularity value of 1 indicates a per-
fect circle and a perfectly convex shape has a solidity of 1. 
A linear mixed model (lme4 package version 1.1–30) was 
used to analyze weight, average duct area, average duct max 
diameter, total duct area / whole tissue, total adipose area / 
whole tissue, average echogenicity, echogenicity standard 
deviation, minimum and maximum echogenicity at all time-
points, which can be described as follows:

where yijkl represents the response variable of interest, µ is 
the model intercept, Di is the fixed effect of the ith diet (high 
and low), Wj is the fixed effect of the jth week (10, 26, 39 
and 52), Bw is the effect of the birthweight as a covariate, Al 
is the random effect of animal, and eijkl is the independent 
identically distributed normal error. For all models, residual 
analysis was performed to verify the model assumptions of 
normality and homogeneous variances. Pearson correla-
tions (corrr version 0.4.4) was used to assess the relationship 
between average daily gain and histological and ultrasound 
variables at each week (e.g., 10, 26, 39 and 52).

yijkl = μ + Di +Wj + (DxW)ij + BWk + Al + eijkl

Fig. 1   Annotation of an ultrasound image and histology image. Image 
A demonstrates annotation an area of parenchyma (pink), an area 
of fat pad (orange), and average echogenicity, which was averaged 
between 10 circles. Image B demonstrates annotation of the histology 

images in which adipose tissue is annotated in red and ductal struc-
tures are annotated in purple. The white bar in the ultrasound images 
measures 1  cm and the black bar in the histology images measures 
500 μm
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Results

Diet

The two treatments did not produce significant differences 
for the variables of interest in both ultrasound and histologi-
cal measurements (Table 2, Table 3).

Progesterone

Average progesterone was not significantly different between 
the L and H groups although levels of progesterone signifi-
cantly increased with age (P = 0.258, P < 0.0001; Table 1).

Histology

At 10 weeks of age, we found little adipose tissue present 
within the histology sections taken from the glandular por-
tion of the mammary gland. This is supported by ultra-
sound images in which the parenchyma is largely separate 
from the fat pad (Fig. 1, Fig. 2). At 26, 39, and 52 weeks 
of age, the growth of ductal structures into the fat pad seen 
in ultrasound images is also visible in histology images, as 
the amount of intralobular and interlobular adipose tissue is 
increased in the biopsies retrieved, compared to the 10-week 
histology images (P < 0.001, Table 2). In addition, the aver-
age duct area and average duct maximum diameter decreases 
over time (P < 0.001, Table 2).

Ultrasound

Changes in mammary gland morphology can be seen in 
ultrasound and histology images over time (Fig. 2). Echo-
genicity values ranged from 0 to 1, with 0 representing white 
and indicating adipose tissue and 1 representing black indi-
cating parenchymal tissue. At ten weeks of age, the paren-
chyma is largely contained and appears as a round hypo-
echoic region, indicating a solid mass of dense tissue. The 

fat pad is present as a hyperechoic region below the paren-
chyma. There was no significant difference in parenchymal 
area or visible fat pad area between the two treatment groups 
(P = 0.980, 0.633; Table 3). Around 10–12 weeks of age, 
ductal structures are seen emerging from the parenchy-
mal region and into the fat pad. At 26 weeks, the defined 
edges of the mammary gland are ambiguous in ultrasound 
although ductal growth is clearly visible through 39 and 
52 weeks. Due to the ambiguity of boundaries, mean echo-
genicity was utilized to quantify parenchyma at 26, 39, and 
52 weeks of age. Mean echogenicity was not significantly 
different between the two treatments at 10 weeks of age 
(P = 0.875, Table 3) and did not significantly change from 
10 to 52 weeks of age (P = 0.308, Table 2, Fig. 3).

Correlations between ultrasound and histological 
features

There is a significant negative correlation between average 
echogenicity of the parenchyma at 10 weeks of age and total 
adipose as a percent of histological whole tissue at 52 weeks 
of age (r = -0.458, P = 0.037; Fig. 4). In addition, there is a 
strong negative correlation between average daily gain at 
10 weeks and maximum echogenicity of the parenchyma at 
52 weeks (r = -0.465, P = 0.004, Fig. 4). Similarly, there is a 
negative correlation between average daily gain at 26 weeks 
and maximum echogenicity of the parenchyma at 52 weeks 
(r = -0.367, P = 0.0027, Fig. 4).

Discussion

The objective of this study was to investigate the growth 
development of mammary gland tissue of growing calves 
and study the associations between image-based features 
obtained from mammary gland ultrasound images during 
the prepubertal phase of development in Holstein heifers 
with histological analysis acquired through tissue biopsy. 
Several studies have demonstrated that ultrasound images 

Table 1   Progesterone 
Measurements from 10 to 
52 weeks of age

Mean values of progesterone and age at first cycling by diet, High (H) and Low (L), with P-values indi-
cating significance of effects of week (W), diet (D), the interaction of week*diet (W*D), and birthweight 
(Bw) on the response variables

Treatment P-values

Variables Nº H L W D W*D Bw

Progesterone concentrations 36 < 0.001 0.157 0.151 0.788
  10 Weeks 36 0.00 ± 0.00 0.00 ± 0.00
  26 Weeks 36 0.0553 ± 0.0314 0.109 ± 0.102
  39 Weeks 36 0.405 ± 0.400 0.655 ± 0.541
  52 Weeks 36 5.14 ± 1.40 7.88 ± 1.23
  Age at first cycling 36 11.0 ± 0.131 11.2 ± 0.132 0.258 0.052
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can be an effective tool to quantify specific tissues (e.g., 
parenchyma) in the mammary gland [2, 7, 11, 13, 17, 19, 
20, 24, 32, 33]. These studies have demonstrated that ultra-
sound images may also generate relevant qualitative fea-
tures of these tissues, such as parenchymal area in young 

heifers as well as echogenicity, which can be used as an 
indicator of tissue composition (e.g., protein, fat).

In 10-week-old heifers, the mammary gland appeared as 
an oval to fusiform hypoechoic area largely separate from 
the fat pad. This changes dramatically by 26 weeks of age 

Fig. 2   Appearance of ultrasound images near the teat displaying the 
development of the ductal tree (1a-4a), the approximate area of the 
biopsy outlined in white (1b-4b), and histology images (1c-4c) at var-
ious stages of growth. All images are from the same animal (Emily) 

at 10  weeks (1a-1c), 26 weeks  (2a-2c), 39 weeks (3a-3c), and 52 
weeks (4a-4c). The white bar in the ultrasound images measures 1 cm 
and the black bar in the histology images measures 500 μm. Biopsies 
were performed on the same 36 animals for all 4 timepoints
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as ducts are extending into the fat pad (Fig. 2). This ductal 
development continues through 39 and 52 weeks of age. 
As the ductal structures expand outward into the fat pad, 
the overall echogenicity of the mammary gland would 
increase due to the higher echogenic value of adipose tis-
sue. Although a difference in average echogenicity was 
not observed between treatments and between timepoints, 
the maximum echogenic value did increase from 0.392 at 
10 weeks of age to 0.463 at 52 weeks of age. The increase 
in max echogenicity over time in both groups is consistent 
with the increase in adipose tissue as well as the decrease in 
the percentage ductal area seen in histology images (Fig. 2). 
Overall, the ductal area as a percentage of the whole tissue 
did not significantly change over time, ranging from 6.8% to 
9.2%, suggesting that with the increase in mammary gland 
size, there is also an increase in ductal numbers, as the 
average ductal area and average maximum ductal diameter 
decrease over time. This increase in ductal numbers can also 
be visualized in the histology images shown in Fig. 2. It is 
presently unclear how these structural changes within the 
mammary gland influence future milk production.

There is an interesting significant negative correla-
tion between average echogenicity of the parenchyma at 
10 weeks of age and total adipose as a percent of whole tis-
sue at 52 weeks of age (r = -0.458, P = 0.037; Fig. 4). This 
suggests that higher values of parenchymal echogenicity at 
10 weeks of age is correlated with less overall adipose tissue 
at 12 months of age. In addition, there are strong negative 
correlations between average daily gain at 10 weeks as well 
as average daily gain at 26 weeks and maximum echogenic-
ity at 52 weeks (r = -0.465, r = -0.367; P = 0.004, 0.0027; 
Fig. 4). This could suggest that average daily gain prior to 
39 weeks of age is associated with the development of the 
mammary gland after 39 weeks of age and these effects 
could have long-lasting impacts on future milk production, 

although it is unclear what those impacts may be. Higher 
parenchymal echogenicity at 10 weeks may be due to earlier 
growth of the ductal structures into the mammary fat pad 
because ductal structures tend to have lower echogenicity 
therefore any ductal growth into the mammary fat pad would 
increase parenchymal echogenicity and decrease overall 
echogenicity of the fat pad. Additional research is required 
to investigate the long-term effects of early development and 
whether ultrasound is a reliable method for predicting future 
lactation performance.

The presented data associations suggest that animals with 
higher body growth rates early on in life may have better 
utilized dietary nutrients and changed the rate and the timing 
of ductal growth into the mammary fat pad. In our experi-
ment, the grain intake was not fully restricted to low calves 
due to animal welfare concerns combined with a large sam-
ple size (200 calves total, 36 biopsied) and extreme winter 
period. Limiting grain intake in low nutritional plan may not 
have been enough to dramatically limit tissue development. 
Although we did not find effect of nutritional strategies 
on mammary tissue, the association with ADG regardless 
the dietary effect may suggest such pattern. Other studies 
have showed dramatic increased mammary gland growth 
due to enhanced diets preweaning and stunted mammary 
development with high energy diets post-weaning [15, 34]. 
One study found that calves fed milk replacer with higher 
protein and fat content had increased estrogen receptor 1 
expression intensity [15]. Because the estrogen receptor 
is involved in insulin-like growth hormone signaling, it is 
thought that enhanced feeding primes the mammary gland 
to better respond to mammogenic hormone stimulation [15, 
28]. The molecular and hormonal interactions involved in 
mammary gland growth are complex and not yet fully under-
stood, although these results suggest that mammary gland 
growth and development is highly responsive to nutrition, 

Table 2   Histological and 
Ultrasound Measurements from 
10 to 52 weeks of age

Mean values of histological and ultrasound variables of interest listed by diet, High (H) and Low (L), with 
P-values indicating significance of effects of week (W), diet (D), the interaction of week*diet (W*D), and 
birthweight (Bw) on the response variables. Echogenic values range from 0 (white) to 1 (black)

Treatment P-values

Variables Nº H L W D W*D Bw

Weight (kg) 126 258 ± 5.18 260 ± 5.26 < 0.001 0.945 0.998 0.030
Average daily gain (kg/day) 126 0.988 ± 0.046 0.854 ± 0.048 < 0.001 0.903 0.706 0.406
Average duct area (µm) 126 9.32 ± 0.066 9.16 ± 0.067 < 0.001 0.269 0.490 0.297
Average duct max diameter (µm) 124 5.04 ± 0.037 4.97 ± 0.038 < 0.001 0.446 0.672 0.195
Duct area/whole tissue (%) 126 8.50 ± 0.60 7.90 ± 0.60 0.156 0.760 0.946 0.266
Adipose area/whole tissue (%) 126 21.6 ± 1.70 23.9 ± 1.80 < 0.001 0.591 0.914 0.183
PAR average echogenicity 126 0.240 ± 0.009 0.219 ± 0.010 0.308 0.675 0.792 0.401
PAR echogenicity SD 126 0.040 ± 0.002 0.041 ± 0.002 0.886 0.155 0.069 0.003
PAR echogenicity min 126 0.102 ± 0.007 0.099 ± 0.008 0.303 0.751 0.613 0.853
PAR echogenicity max 126 0.447 ± 0.014 0.415 ± 0.014 0.101 0.480 0.833 0.515
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therefore additional research is required to better understand 
the long-term effects of stunted or enhanced growth.

Mammary development evaluation by the noninvasive 
method of ultrasound could complement current methods 
of replacement heifer selection as well as provide research-
ers an alternative to culling of animals to assess tissue 
development. The image-based features extracted from the 
mammary gland tissue could be used in combination to a 
series of variables such as genomics, weather, body growth 
development, and diet to predict the lactation potential of 
dairy cattle. Building management tools for early decision 
is critical to create profitable and sustainable dairy pro-
duction systems. The economic and environmental costs 
to raise a heifer that will not be an efficient cow due to 

lack of glandular tissue could be avoided if phenotyping 
technologies can generate large-scale and precise animal 
measurements. Besides, there is a tremendous value for 
these type of phenotypes for genetic selection in livestock 
animals. Although genomic prediction can rank animals 
based on lactation potential, environmental effects play a 
critical role on future performance as unexpected events 
such as health issues, heat-stress, suboptimal nutrition may 
negatively affect the performance of animals, including the 
ones with high genetic potential [9, 14–16, 35, 36].

The development of non-invasive tools to evaluate glan-
dular tissue may also contribute with lactation monitoring 
in humans. Human and bovine mammary gland develop-
ment and microstructure are quite similar, and ultrasound 
has been used to evaluate breast maturation at puberty 
with success, indicating that the sensitivity of ultrasound 
enables the visualization of changes consistent with the 
start of pubertal breast development that prior evaluation 
methods such as palpitation or staging did not pick up [5, 
20, 30]. There has been limited research on human breast 
development and lactation potential and so the develop-
ment of ultrasound as a method to evaluate glandular tissue 
may allow for the development of much needed evidence-
based interventions and development of postpartum plans 
for individuals prior to parturition to avoid common issues 
associated with low milk production. Ultrasound is typi-
cally used to diagnose breast disorders such as growths, 
abscesses, and lesions in lactating and nonlactating breasts 
and can be very effective in identifying abnormalities [20, 
21, 23, 25, 29]. Few studies have utilized ultrasound to 
image and investigate the structure and function of lactat-
ing human breasts. One study did find that there was no 
relationship between milk production and the proportion 
of glandular, proportion of adipose tissue, or the size of 
ducts [30]. Although the mentioned study is a great refer-
ence and a starting point for further research, the sample 
size was small and did not follow individuals’ pre-preg-
nancy or pre-partum through the lactation. Some individu-
als cannot breastfeed due to a lack of glandular tissue or 
experience delayed onset of lactation for any number of 
reasons including stress, malnutrition, genetics, and other 
environmental effects. Although there was no relationship 
between milk production and the proportion of glandular 
tissue and adipose tissue, further investigation is required 
to completely understand milk production and the com-
plex mechanism of lactation in humans [8]. In addition, 
time points representing the age beyond the data collected 
in our study are necessary to understand when mammary 
tissue development stabilize for variables that presented 
linear trend. Longer longitudinal studies following indi-
viduals from pre-pregnancy or prepartum through the end 
of lactation could provide insight into lactation success 
or failure and the factors that affect lactation even before 

Table 3   10-Week Ultrasound Measurements

Measurements of ultrasound variables of interest at 10 weeks of age 
compared between diet (D) treatments, High (H) and Low (L), with 
corresponding P-values. Echogenic values range from 0 (white) to 1 
(black). PAR indicates parenchyma and FP indicates fat pad. A cir-
cularity value of 1 indicates a perfect circle and a perfectly convex 
shape has a solidity of 1

Treatment P-values

Variables Nº H L D

PAR area (cm2) 27 1.18 ± 0.125 1.19 ± 0.130 0.980
PAR circularity 26 0.564 ± 0.027 0.633 ± 0.027 0.056
PAR solidity 27 0.854 ± 0.016 0.892 ± 0.016 0.091
PAR min diameter 

(cm)
27 0.893 ± 0.00057 0.825 ± 0.0772 0.579

PAR max diameter 
(cm)

27 1.87 ± 0.00120 1.94 ± 0.162 0.744

PAR perimeter (cm) 27 5.13 ± 0.00265 4.80 ± 0.356 0.488
PAR echogenicity 

mean
27 0.207 ± 0.021 0.203 ± 0.022 0.875

PAR echogenicity 
SD

27 0.047 ± 0.006 0.044 ± 0.006 0.823

PAR echogenicity 
min

27 0.072 ± 0.016 0.083 ± 0.017 0.608

PAR echogenicity 
max

27 0.400 ± 0.034 0.372 ± 0.036 0.529

FP area (cm2) 27 2.08 ± 0.324 1.87 ± 0.339 0.633
FP circularity 27 0.525 ± 0.044 0.535 ± 0.045 0.866
FP solidity 26 0.835 ± 0.022 0.816 ± 0.023 0.521
FP min diameter 

(cm)
27 1.21 ± 0.000987 1.18 ± 0.136 0.898

FP max diameter 
(cm)

27 2.53 ± 0.0014 2.44 ± 0.201 0.733

FP perimeter (cm) 27 8.21 ± 0.00711 6.68 ± 0.962 0.232
FP echo mean 26 0.590 ± 0.021 0.622 ± 0.022 0.272
FP echogenicity SD 26 0.105 ± 0.004 0.107 ± 0.004 0.747
FP echogenicity 

min
26 0.217 ± 0.027 0.199 ± 0.028 0.622

FP echogenicity 
max

26 0.855 ± 0.016 0.875 ± 0.016 0.358
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Fig. 3   Means of histological and ultrasound variables with a significant effect (P < 0.05) in relation to week. Echogenic values range between 0 
and 1 (0 = black and 1 = white). l = linear effect, q = quadratic effect, and W = weeks
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it begins. Thus, a study as ours can serve as a model to 
study lactation potential through the use of non-invasive 
imaging tools.

Conclusions

In the present study, nutritional strategies implemented early 
on in life did not alter the mammary gland development 
measured by ultrasound and histological images from 10 to 
52 weeks of age. Our results did not agree with most of the 
published literature, where low nutritional plans were more 
restrictive. Image-based features obtained from ultrasound 
images can be used to assess mammary gland development, 
and these features are associated with tissue development 
measured through histological images. Such finding will 
allow for the development of predictive analytics using 

ultrasound images as potential inputs to evaluate the devel-
opment of mammary gland fat pad and ducts. Additional 
studies should be performed to evaluate when the tissue 
development reaches the plateau for variables that presented 
a linear effect in relation to weeks of age, and to increase the 
image dataset for future validation of ultrasound image fea-
tures as predictors of parameters obtained from tissue biop-
sies, as histological images. The 36 animals followed in this 
study will continue to be followed through their first lacta-
tion. With additional data from these animals it may be pos-
sible to determine whether our findings could be predictors 
of future milk production.
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