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Abstract

Computer experiments are performed on total cross sections for capture of both elec-
trons from helium targets at 100-10000 keV. Employed are four quantum-mechanical
perturbative four-body distorted wave methods (one of the first and three of the sec-
ond order). The goal is to determine the cross section sensitivity to the perturbation
strengths in distorted waves from the second-order methods. The perturbation strength
is parametrized by the Sommerfeld factor (the quotient of the nuclear charge and the
relative velocity of the colliding particles). At each fixed impact energy, the sought
sensitivity is monitored by gradually modifying the nuclear charges in the Sommerfeld
factors. These factors reside in the Coulomb distortions of the unperturbed channels
states. The focus is on the electronic distortions through the eikonal Coulomb logarith-
mic phases and the full Coulomb waves. The logarithmic phases are the constituents
of the compound phases for the net charges of the two heavy scattering aggregates
in relative motions. A striking perturbation strength sensitivity of the obtained total
cross sections is recorded.

Keywords Ion-atom collisions - Double electron capture - Coulomb distortion effects

1 Introduction

For electronic transitions in heavy ion-atom collisions at intermediate and high impact
energies E, single capture (SC) and double capture (DC) are of high relevance not
only in fundamental atomic physics, but also in X-ray astronomy, plasma physics,
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thermonuclear fusion, particle transport physics, design of heavy ion accelerators,
etc. As an example, consider a beam of «—particles traversing a gaseous medium
in e.g. a cloud chamber. For most of their track, the o —particle projectiles steadily
keep their initial charge equal to 2. The stopping power distribution (energy loss per
traversed distance) is mainly flat from the entrance to the medium all the way toward
the o —particle range Rp, which depends on the initial value of E. However, as the
maximal penetration depth or range Rp is approached, the situation becomes more
involved.

Alpha particles are sufficiently slowed down close to the range Rp, where they
deposit most of their remaining energies. This is manifested by the appearance of
a sharply maximized stopping power in the lineshape form of a characteristic peak,
called the Bragg peak. Near this maximum energy loss, the produced track contains
helium singly charged ions He™ and neutral helium atoms He. These are respectively
due to SC and DC by o —particles from the surrounding gas. Moreover, at the end of the
track, as shown by Henderson [1-3], Rutherford [4] and Jacobsen [5], while colliding
with the medium, the Het ions, formed by SC, are converted to alpha particles. The
latter process, known as electron loss (projectile ionization) alternates with electron
capture thousands of times in the immediate vicinity of the Bragg peak.

Ultimately, the neutral helium atoms would prevail within barely the last cou-
ple of centimeters of the track. These helium atoms can be created by two different
events. For instance, one encounter through DC can occur when o —particles scat-
ter on an atom/molecule G contained in the rest gas of the traversed medium as
He>* + G — He + G>*. Another pathway is through two sequential SC collisions,
first as He’™ + G — He™ + Gt and subsequently as Het + GT — He + G>*.
Instead of the latter process, formation of helium atoms can be due to collisions of the
He™ projectiles and another target (say é+) viaHet + G — He + G

Ever since these first cutting edge experiments with rearrangement collisions [1-5],
all the subsequent measurements of DC in e.g. the He?t + He collisions, had to rule
out the contributions due to SC by Het from the background gases. It is possible that
this issue could be at least partly responsible for an unusually large discrepancy by a
factor of 20 between the total cross sections Q for DC by o —particles from helium
atoms measured at 4.0 and 4.08 MeV in the experiments by Schuch et al. [6] and
Afrosimov et al. [7], respectively.

More recently, Zastrow et al. [8] reported on an experiment on DC in the He™ +He
collisions. They developed a procedure for discriminating between the mentioned
two channels for DC. This was done at the Joint European Torus (JET) tokamak by
injecting neutral helium beam into the helium plasma.! By analyzing the emitted X-ray
lines, these authors concluded that their cross section datum Q measured at £ =118
keV was solely due to the resonant transition (ground-to-ground state 1 s> — 1s52) as
Het + 4He(ground) — 4He(ground) + 4He2* with no detectable contribution from
the process “He™ + “He(ground) — *He(excited) 4+ “He?™.

The result for Q obtained by Zastrow et al. [8] is about 2 to 3 times larger
than the data of e.g. DuBois [9, 10] from an ’ion beam into gas experiments’ for
4He?t + “He(ground) — “He(X) 4+ “*He?*, where ¥ denotes the sum of the helium

! Plasma is the state of ionized gases.
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final states (ground and excited). The cross section Q from Ref. [8] is in fair agreement
with the four-body boundary-corrected first Born (CB1-4B) method [11], but overes-
timates the corresponding result by the close-coupling (CC) method [12] by a factor
between 2 to 3. The CB1-4B method is a perturbative method valid at intermediate and
high energies, implying that its good performance at £ =118 keV might be fortuitous.
Another surprise here is the inability of the non-perturbative CC method (applicable
at intermediate energies) to reproduce the measured cross section at £ =118 keV [8].

Cross sections for charge exchange are essential for diagnostics of fusion plasmas
through determining the ion temperature, collective velocities and impurity density.
An enhanced accuracy of these critical parameters impacts strongly on the estimates of
the cooling rate of the tokamak plasmas. In particular, charge exchange spectroscopy
(CXS) helps interpret and understand the structures in the generated X-ray spectral
lines from the laboratory fusion plasmas found routinely in the JET and in the Tokamak
Fusion Test Reactor (TFTR) [13, 14], as well as in the non-terrestrial sources (e.g. in
the Sun, the Moon, Venus and comets) [15-22]. For example, in X-ray astrophysics
(one of the newest branches of astrophysics), it has been recognized for about a quarter
of a century now that SC by energetic multiply charged heavy ions (in the solar wind)
from neutral atoms or molecules (in comets) represents the dominant process for the
cometary X-ray emission [15].

In the JET tokamak plasmas, using the injected helium neutral beams, besides the
plasma ions He™ and He?*, it occurs that DC may also involve the partially or fully
ionized impurity ions. One of the major concerns in fusion research is the presence
of the bare ion impurities in the core of tokamak plasmas. In the core environment,
the impurity light ions of nuclear charges below 10 are fully ionized. However, the
problem is that the bare ion impurities cannot be detected directly. Nevertheless, there
is an indirect way of detection. This is where atomic rearrangement collisions come to
the rescue by means of CXS, as one of the two most effective experimental methods
for detecting the bare ion impurities in the core plasma (the other method is based on
three-body recombination).

As stated, the ionic impurities too can capture electrons from the injected neutral
atom beams (one electron from H, one or two electrons from He). After capture, the
formed multiply charged ion impurities are in their excited states. Detection of the
ensuing X-ray spectral lines resulting from radiative decays of these unstable states is
a signature of the presence of the bare ion impurities in the plasma core. This indirect
detection of bare ion impurities clearly illustrates the inverse problem nature of the
pertinent measurement, the proper understanding/interpretation of which necessitates
a theory. Herein, the effect (detection of X-ray emission line spectra) is known, but its
cause is unknown. Thus, it is the theory that identifies the cause (creation of excited
states by the mechanism of electron capture) which, through decays, produces the
observed X-ray emission lines.

To emphasize, measurements of total cross sections (state-selective, state-summed)
are enabled by detecting and subsequently parametrizing the emitted X-rays from the
excited states formed by charge exchange. This is a meeting point of charge exchange
collisions and spectroscopy, as transpired in the name ’charge exchange spectroscopy’,
CXS. An absorptive pure Lorentzian-shaped resonance spectral line is quantified by the
main three parameters. These are the position (energy or frequency), width (inversely
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proportional to the lifetime of the decaying excited state) and height or intensity (pro-
portional to the Lorentzian area), which itself is directly proportional to the abundance
or concentration or density of the atomic systems that emitted the rays.

This remark brings us to one of the essential features of fusion plasma. It is the
determination of the temperature and density of the bare ion impurities. Such plasma
characteristics can be extracted from the just mentioned parameters of the emitted
X-ray lines (widths and intensities). Thus, the estimated intensities and Doppler-
broadened widths of the spectral lines provide the sought temperature and density
of the bare ion impurities, respectively.

High-temperature tokamak fusion plasmas are maintained by nuclear collisions
involving fusion of deuterium and tritium nuclei with production of energetic
a—particles and neutrons. Of particular importance is to obtain adequate informa-
tion about the v —particle distributions and confinement in hot tokamak plasmas from
nuclear fusion reactors. This can be provided by DC in e.g. the He’t + Li colli-
sions. Further, DC events invoking multiply charged nitrogen as well as neon ions
in the N9+ + He and Ne?*+ + He collisions, respectively, are currently examined by
means of CXS in the Axially Symmetric Divertor Experiment (ASDEX) and ASDEX-
Upgrade (ASDEXU or AUG). The overall umbrella of this endeavor, the International
Thermonuclear Experimental Reactor (ITER), located in Southern France, represents
the culmination of more than 100 fusion reactors built since the 1950s. The plasma
temperature in the ITER must be about 150 million °C, which is ten times higher than
the temperature of the core of the Sun.

By late 2025, the ITER is projected to achieve a ten-fold gain in the output thermal
power of the fusion plasma. About 50 MW of thermal power absorbed in the input
by the plasma is anticipated to yield about 500 MW of the output heat from fusion
for nearly 500 s. As a fusion-based new source of energy, the ITER is a terrestrial
replica of a similar process, which powers the Sun and other stars. According to the
theory of Bethe [23-26], the intense heat at the core of the Sun forces light nuclei to
fuse together, after overcoming the repulsive Coulomb barrier by way of quantum-
mechanical tunneling. No less than 35 nations across the world participate to research
on the ITER during the last 35 years. This can also be appreciated from the recent
overview of the results (obtained at the ASDEXU tokamak), as published by more
than 400 authors from 20 different countries (Europe, America, Asia) [14].

While fusing together in the core (center) of the Sun, the sum of the masses of
e.g. two hydrogen nuclei does not give the mass of the formed helium nucleus (alpha
particle). Rather, the outcome is about 99.3% of the mass of an alpha particle. The
missing 0.7% of the combined mass is converted to energy. This is dictated by the Ein-
stein relation E = mc?, according to which any loss of mass m must be compensated
by creation of the corresponding energy E (where c is the speed of light). Given this
fact and the enormous density of protons in the core of the Sun, it follows that about
4.26 million tons of the Sun mass are converted into energy and heat every second.
The ensuing mass-energy conversion rate (luminosity) amounts to 3.846 x 102°W,
as produced by the Sun in merely one second. This is sufficient to supply the energy
needs of the entire World for nearly 8 days. Most of this emitted Solar energy is in the
visible and infrared part of the electromagnetic spectrum of radiation, with about 1%
shared by the radio, ultraviolet and X-ray spectral bands.
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Itis also important that, prior to being ionized, a large fraction of the injected neutral
beam (e.g. H, He) reaches the core of the tokamak. This is possible when the injected
neutral beam does not interact too much with the cold plasma near the wall of the
tokamak. Such a condition is secured by neutral beams of sufficiently high impact
energy E. However, for CXS to be effective, charge exchange cross sections Q should
be detectable (i.e. not too small). These cross sections decrease rapidly beyond the
adiabatic Massey peak (i.e. above about 100 keV/amu). Therefore, the impact energies
E of the injected neutral beams of hydrogen and helium atoms should optimally
be between 100 keV/amu up to a few MeV/amu. Precisely this energy span (100
keV-10 MeV) is of the main relevance to the presently addressed four-body quantum-
mechanical perturbative distorted wave theories for DC in the « — He collisions.

Many inputs to the unprecedented *fusion quest’ for a new sustainable, carbon-free,
global energy supply through plasma physics proved to be essential. Among these,
atomic collision physics with its CXS diagnostic methodology ranks high. Such a
status should serve as an impetus for further advances in theoretical modelings of
charge exchange phenomena at intermediate and high impact energies. One of the
goals of atomic collision physics within the fusion plasmas and other mentioned cross-
disciplinary applications is to enhance the accuracy of the cross section data bases.
The sought accuracy is especially missing for DC in both theory and measurements
[27-30]. For DC, the existing quantum-mechanical four-body (4B) distorted wave
perturbative theories are in large mutual disparity. Quite unexpectedly, some of these
methods, known as successful for SC, are in sharp disagreement with the measured
total cross sections for DC.

Besides the CB1-4B method, we shall also consider the continuum distorted wave
(CDW-4B) [31], the boundary-corrected continuum intermediate state (BCIS-4B) [32]
and the Born distorted wave (BDW-4B) methods [33]. For arbitrary charges of the pro-
jectile and target nuclei, these four theories have both the initial and final scattering
functions with the correct outgoing and incoming spherical wave boundary conditions
at infinitely large inter-particle distances. The goal of the present study is to examine
the quantitative extent of the actual influence of the Coulomb distortions on the unper-
turbed channel wave functions as a function of E. To that end, the original nuclear
charges are modified.

The perturbation strength, which is gauged by the Sommerfeld factor (a ratio of a
nuclear charge and an incident velocity v) is gradually diminished. The net effect on Q
caused by this weakening of the Coulomb distorted waves is monitored as a function
of E. This has two goals:

e (i) To allow a smooth passage from one to another method (BCIS-4B — CB1-4B,
CDW-4B — BDW-4B), thus permitting the cross-validation of different computing
programs that should give the same numerical results for Q in the pertinent limiting
cases.

e (ii) To determine the energy region where it is essential to retain the electronic
Coulomb logarithmic phases. These phases are the purely electronic parts of the
distortions due to the relative motion of heavy scattering aggregates, associated
with the charge of a free nucleus and the net charge of the heliumlike system.

Atomic units will be used throughout unless noted otherwise.
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2 Theory

We examine the problem of double capture or DC by a nucleus P of charge Z, and
mass Mp > 1 from a heliumlike atom with a nucleus T of charge Z; of mass My > 1,
as schematized by the process:

Zo + (Zr; e1,€2)i —> (Zpser,e2)fr + Zr, (D

where ey is the k th electron (k = 1,2). The small parentheses indicate the bound
states with the usual sets of the quantum numbers {i, f}.

The two-electron initial and final bound states with their corresponding energies are
{pi(x1,x2), ¢r(s1,52)} and {El.T, E‘;-}, respectively. Here, x4 and sy are the position
vectors of the k th electron relative to Z; and Zp, respectively. The position vector
of Zp relative to Zy is R, which is connected to the electronic coordinates by R =
X1 —81 =X2 — 8.

Further, let r; and r s be the position vectors of P and T relative to the centers-
of-masses of the atomic systems (Zr; ey, e2); and (Zp; ey, e3) y, respectively. In the
entrance and exit channels, the initial and final unperturbed states of the whole system
are &; = g;e'kiTi and @ =9 fe_ik-f "T'f, respectively. The momentum vector of P
with respect to (Zr; ey, e2); is k; and the momentum vector of (Zp; ey, e3) s relative
toTisky.

Taking the target to be at rest, the relative velocity of the two colliding aggregates
becomes the incident velocity of Zp. The incident velocity vector v is directed along the
unit vector Z of the Z-axis (v = vZ)inthe arbitrary Galilean XOYZ coordinate system.
Thus, vector R acquires its two-component form as R = {p, Z} = p+ Z with vector
p lying in the collisional XOY plane so that p - v = 0. The vectorial projection p of R
onto the XQY plane should not be confused with the impact parameter since we treat
the nuclear motion quantum-mechanically as opposed to using classical straight-line
trajectories.

In distorted wave theories for process (1), the unperturbed states ®; ¢ are modified
by the correlation effects between the two scattering aggregates. Such correlations
lead to the Coulomb distortions of ®; ¢. This amounts to multiplying ®; by the
Coulomb distortion factors. The actual distortion can come from the Coulomb inter-
actions between the free nuclear charges and the electrons or from the nuclear-nuclear
Coulomb potential (or both) in one or two channels. The electron-nucleus attractive
Coulomb potentials {—Zp/sx, —Z1/xx} (k = 1, 2) in the entrance and exit channels
yield the full Coulomb wave functions that multiply ®; 7, respectively.

The repulsive nucleus-nucleus Coulomb potential Vpr = ZpZ1/R also leads to the
full Coulomb wave functions. They too, as a part of the overall correlation effect,
multiply the unperturbed states ®; . Such nuclear Coulomb wave functions reduce
to their logarithmic phases e (#PZ1/V)In(LvRF1v-R) Thege Jatter phases are valid at all
distances because of the heavy reduced mass u = MpMp/(Mp + Mp) > 1 of nuclei
P and T colliding predominantly in the forward (eikonal) direction. We explicitly
checked numerically for process (1) with Z, = Z; = 2 that computations with the
full internuclear Coulomb waves and their eikonal phases give the same total cross
sections Q to within 2-3 decimal places.
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The same type of the mentioned reduction also applies to the asymptotic forms
Zpy(Zr — 2)/R and Zi(Zp — 2)/R of the initial and final perturbation poten-
tials V; = ZpZr/R — Zp/s1 — Zp/s2 and Vy = ZpZ1/R — Zy/x1 — Zr/x2,
respectively. Here, the screened nuclear charges Z; — 2 and Zp — 2 are the
net charges of the two-electron systems (Zr;eq,ez); and (Zp;er,ez)s in the
entrance and exit channels, respectively. The Coulomb phase for the relative

motion of heavy scattering aggregates {Zp, (Zr; e1, e2);} and {(Zp; e1, €2) 5, Z1} is
{eflZp(ZT=2)/vIIn(uvR—pv-R) ' o—ilZ1(Zp=2)/vIIn(uvR+pv-R)} " regpectively.

From the product eilZp(Zr=2)/v]n(uvR—pv-R) oi[Z1(Zp=2) /v]lin(uvR+pv-R) (o
tained in the transition amplitude and total cross section @, the part
el (ZpZt/v)In(uvR—pv-R) o1 (Z1Zp) /0)In(1v R+1-R) qye to Vi disappears [27]. The remain-
ders in that product are the purely electronic logarithmic phases e ~#(2Zp/V)In(vR—v-R)
and ¢! ?Z1/V)In(R+v-R) Herein, as well as in the other similar Coulomb logarithmic
terms, mass p can be left out because it leads to an unimportant phase of unit ampli-
tude. In the phases {e ! 2Zp/VIN(WR=v-R) '6i(2Z1/v)In(wR+v-R)} the doubled Sommerfeld
factors 2Zp /v and 2Z+ /v appear because of the presence of two electrons in heliumlike
atoms.

For convenience, regarding the general hetero-nuclear case of process (1) with
Zy # Zr, the post CB1-4B and BCIS-4B methods as well as the prior BDW-4B
and CDW-4B methods will be addressed. Generally, there is a post-prior discrepancy,
i.e. the inequality of the post and prior cross sections (Qlf; #* Qi_f)' However, the
illustrations from Sect. 3 are for the homo-nuclear case (Zp = Zr), dealing specifically
with completely symmetric DC in the o + He(1s2) — He(1s%) + « collisions. In this
circumstance, there is no post-prior discrepancy, when the same type of the ground-
state helium wave function is used in the entrance and exit channels. This is confirmed
presently using the computer programs from the CB1-4B, BCIS-4B, BDW-4B and
CDW-4B methods.

The extent of the Coulomb distortion effect is quantified by the perturbation
strength, which represents the Sommerfeld factors Zp/v and Z/v. We want to find
out how these distortions vary with changes in the perturbation strengths. To that end,
Zp/v and Zp/v are replaced by AZp/v and AZ;/v (A > 0) in the initial and final
Coulomb distortions, respectively. Such changes are made in the BCIS-4B, BDW-4B
and CDW-4B methods, but not in the CB1-4B method.

Moreover, ®; ¢ and V; ¢ are intact, i.e. they do not depend on A. Further, there is
no A—dependence either in the perturbation potentials Zp(2/R — 1/s1 — 1/s2) and
Zr(2/R — 1/x1 — 1/x2) from the prior and post forms of the transition amplitudes
in the BCIS-4B method. This particular design permits to formally recover the exact
numerical values of the cross sections in the CB1-4B method by utilizing the indepen-
dent computer program in the BCIS-4B method to which the limit A — 0 is applied.
In the same limit A — 0, it should also be possible to obtain the cross sections in the
BDW-4B method from the separate computer program in the CDW-4B method.

As stated in Sect. 1, the present goal is twofold: (i) to assess the overall effect of the
perturbation strengths in the Coulomb distortion factors at different impact energies
and (ii) to verify whether the same cross sections can be obtained when passing from
one to another distorted wave method by using different computer programs. Such
a task can be accomplished by monitoring the sensitivity of the predicted total cross
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sections Q to variation of the scaling parameter X in the interval 0 < A < 1. This
can be done in any distorted wave theory. To exemplify, the current illustrations are
reported using the A—modified BCIS-4B, BDW-4B and CDW-4B methods.

In the post form of the transition amplitude Ti(BCIS_4B)+, the Sommerfeld factor
Zyp/v is present in each of the two full electronic Coulomb wave functions in the
entrance channel through the Gauss confluent hypergeometric functions (the Kum-
mer functions) and the corresponding Euler gamma functions in the normalization
constants. These Coulomb distortions of ®; are due to the potentials —Zp/s; and
—Zp/s2, 1.e. to the interactions between Z, and e; (k = 1, 2). The other Coulomb
distortion of ®; comes from the internuclear potential Z1Zp/R. As mentioned, in the

heavy mass limit Mp1 > 1, this latter distortion is given by the logarithmic phase
ei(ZpZT/v) In(vR—v-R ).

In the exit channel described by Ti(fBCIsfztBH, the Sommerfeld factor 2Z /v appears

in the electronic Coulomb logarithmic phase ¢! @Z1/V)InWR+v-R) - Aq noted, this dis-
tortion of ® ; stems from the final compound distortion e HZ1(Zp=2)/v]In WR+v-R) e
the asymptote Zr(Zp — 2)/R of Vy at R — oo. Thus, the latter Coulomb logarith-
mic phase describes the relative motion of the heavy scattering aggregates Zr and
(Zp; e1, e2) y in the final state of the complete system.

In the transition amplitude Y}(fBCIS%BH, there appears the following product of the
initial and the complex-conjugated final logarithmic phases:

ei(ZpZT/v) In(vR—v-R )ei[ZT(Zp72)/v] In (WR+v-R)

)ZivPTe—Zi(ZT/U) In (vR+v»R ) , Vpr = ZPUZT . (2)

= (pv

The factor (pv)?"PT is the only contribution from the Coulomb internuclear potential
ZpZy/R. The phase (pv)%VPT disappears from the total cross section QE?CIS_“BH.
As such, this cross section is computed from the pure electronic matrix element. It is
therein that the Sommerfeld factors Zp /v and 2Zy/v are replaced by their modified
counterparts AZp/v and 2A Z /v in the pertinent distortions that are the initial two full
Coulomb waves and the final R—dependent Coulomb logarithmic phase, respectively.

Thus, for process (1), in order to compute QS?CIS_“BH, we can employ the matrix

element Ri(?CIS*“BH, which differs from Ti}BCIS*A‘BH only in the absence of the

nucleus-nucleus eikonal phase (pv)2iver,

There exists a product of the type (2) also in Ti(fCBFA‘BH. Specifically,
this transition amplitude contains the logarithmic Coulomb phase distortions
eilZp(Z1=2)/v]In WR—v-R) 414 e—ilZ1(Zp—2)/v]In (WR+v-R) ®; and CDf, respectively.
The former and the latter distortions stem from the descriptions of the relative
motions of heavy collision aggregates {Zp, (Z1; €1, €2);} and {(Zp; e, e2) r, Z1} in
the entrance and exit channels, respectively. These distortions appear in TifBHB”
through the product:

ei[Zp(ZT—Z)/v] In(vR—v-R )ei[ZT(Zp—Z)/v] In(vR+v-R)

%ivig—2iE I (WR+VR) g Zr — Zp = Zp(Zr — 2)‘
v v

= (pv) 3)
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In QE?.B"“BH, the factor (pv)*"i vanishes and 7,5 ~*»* is reduced to RE;BI"‘BH,

which is the electronic matrix element in the CB1-4B method.
In the same vein, the cross sections QS;}"DW*‘LB)* Q<CDW B~ are com-
puted by means of the corresponding electronic matrix elements Rl.(lngW_“B)_ and

RS;DW 4B)- , respectively. These matrix elements differ from the original transition
amplitudes T(BDW “B)~ and Tl.(-CDW_4B)_ merely in dropping the non-contributing

phases (,ov)ZZZP(ZT’z)/” and (pv)?%P21/V respectively [27].
The matrix elements Ri(](,-:B] _4B)+, REBCIS_4B)+, Ri(BDW_4B)_ and
share the following common exponential term from the product of the plane waves in

D; <I>} [27-30]:

R i(CDW—4B)—

(c/‘if Zeik,'~r,'+ikf-rf

:eia~(S|+sz)+iﬂ~(x|+x2) — e2iﬂ~R—iv‘(s1+sZ) — e—2ia~R—iv‘(x1+x2) (4)
+ —
n—v'v n+vov
o = _—, ==, o = —
2 B 2 +8
Q)
AE; AE;
+ if - if
Vi =14 —= v =1 —= AL = Ey —E]

Here, 5 is the transverse momentum vector, which is perpendicular to the incident
velocity (n-v = 0).In (4), the electronic translation factor (ETF) for e 7 are v-(s1+52)
and v - (x1 + x2). They cannot be neglected and their importance rapidly increases
with the augmented incident velocity v. After these preliminary remarks, we can pass
now to the main working formulae for the CB1-4B, BCIS-4B, BDW-4B and CDW-4B
methods.

2.1 The post form of the CB1-4B method

(CBl 4B)+(r,)

(CBI=4B)+, 2
= [dy , 6
Qiy (ag) / 2mv ©
R(cm 4B)+(n) // dxdx,dR (R +v - R)™ 21%’5 B(CBI —4B)t @)
BCBI-4B)+ _ (s1,82)| Z E _ i _ i (x1,x2) (8)
i =g@r(st, 52 "R n u $ilX1, X2).

Here, the original nuclear charges Zp 1 for processes (20) and (21) with no scaling
parameter A are used and thus the Sommerfeld factor £ from (7) is given by (3). Stated
equivalently, if Zp r were respectively replaced by AZp 1 in the CB1-4B method, then
its exact version would correspond to A = 1.

@ Springer



Journal of Mathematical Chemistry

2.2 The post form of the BCIS-4B method

(_I}BCC)ILS—4B)+(7’) 2
(BCIS—4B)+, 2 if,
0 el = fan| =LA ©)

RV ) =Np s / / / dsidsydR (vR+v-R)“2MTE BEGE (10)

2 1 1
(BCIS—4B)
By, = ¢}(31,S2)[ZT<E o x—zﬂw(xl,xz)

x 1 F1(idvp, 1,ivsy +iv-81) 1 F1(idvp, 1,ivsy +iv-s87), (11

Nej = [N7* G|

7 7 (12)
N™(wp) = e P20 +idvp) , vp = TP , Vr = TT
2.3 The prior form of the BDW-4B method
RBDOW—4B) M) 2
(BDW—4B)— , 2 if A
Qifa (ap) = /dﬂ o ; (13)

R ™) =—Np, / / dx dxadR (vR+v - R)ZHTE BN (14)

B = g1,
x {1F1(ivp, 1,ivsy 4+ iv - 52) Vi 9 (X1, X2) - Vg 1 Fi(ive, 1, ivs) +iv-s1)
+ 1 FiGve, 1, ivs +iv-s1) Vi (x1,x2) - Vg, 1 F1(ve, 1, ivs2 —l—iv-sz)}.

(15)
2.4 The prior form of the CDW-4B method
R(COW—4B)— M) 2
(CDW—4B)— , 2 if,x
O ag) = / R (16)
R ") = —NeaNrs / / dxdx2dR & B, (17)
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B Z gt s, 52)

X 1 Fi(idve, 1,ivxy +iv-x1) 1 Fi(iAve, 1, ivxy +iv - x3)
x {1F1(ive, 1,ivsy +iv-52) Vo i (x1,X2) - Vi, 1 Fi(ive, 1, ivs) +iv-s7)

4+ 1F1(ivp, 1,ivs1 +iv - 81) Va0 (x1, X2) - Vo, 1Fi(ive, 1, ivsy +iv - 52)},
(18)

N = |N**(,\vT)|2, N~ (wr) = e ™20 (1 4+ idvyp). (19)

3 Results and discussion

We shall now illustrate the theme from Sect. 2 in the exemplified case of DC by
a—particles from helium targets at intermediate and high impact energies E:

‘He?t + *He(1s?) —> *He(1s?) + ‘He? . (20)

The presently employed CB1-4B, BCIS -4B, BDW-4B and CDW-4B methods for
process (20) use the one-parameter wave functions of Hylleraas [34] for the initial ¢; =
(1.6875/m)e~16875(x1+32) and the final oy = (1.6875/7)e ™ 10873G1+52) ground states

of helium atoms. The multiple numerical integrations in the cross sections Q ;?B 1=4B)+

QE?CIS%BH, QS?DW%B)* and QECDW%B)* are computed by means of the adaptive

Gauss-Legendre quadrature rule. The same number of the quadrature points is used
per axis with no division of the integration bounds. In the CDW-4B methods, the
Gauss-Mehler quadrature rule is employed for the azimuthal angle ¢ € [0, 2] of
vectors in the momentum state representation of the integrand.

In the literature, only two reports [8, 35] give the experimental data on total cross
sections Q for the ground-to-ground state transition in process (20). All the other
available measured cross sections Q are for the state-summed transitions with no
information on any of the final bound states [6, 7, 9, 10, 36-45]:

‘He?t + *He(1s?) —> *He(X) + *He?t. Q1)

Symbol ¥ denotes the contribution from the sum of all the final bound states of the
newly formed helium atom in the exit channel of process (21).
The theme of Sect. 2 is the perturbation strength sensitivity of QEfBCIS_“BH,

QEEDW_4B) ~ and Q}C-DW_4B)_. The perturbation strength sensitivity of these cross

sections is monitored by gradual changes in the Sommerfeld factors AZp/v and A Z1 /v
(A > 0) from the Coulomb distortions in the entrance and exit channels, respectively.
By definition, the BCIS-4B and CB1-4B methods become identical for A = 0 for
process (20) because the Sommerfeld factor £ from (3) is equal to zero for all homo-
nuclear collisions (Zp = Zt). Moreover, in the case of arbitrary Zp and Zy in process
(1), the CDW-4B and BDW-4B methods must coincide for A = 0. The specific values
of the non-negative parameter A are selected from the interval 0 < A < 1.
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The results of the computations are presented in Table 1 and Figs. 1-6. Figures 1
and 2 as well as 4 and 5 are on the theoretical results alone. On the other hand, Figs. 3
and 6 are on both theories and measurements. The BCIS-4B and CB1-4B methods
are in Table 1 as well as on Figs. 1-3. The CDW-4B and BDW-4B methods are on
Figs. 4-6.

The case with A = 1 corresponds to the exact BCIS-4B method (no scaling of
nuclear charges). By gradually diminishing parameter 2, it should be possible to assess
the rate of convergence of QS?CIS%BH to the exact values of QE?BI%BH. This is
shown in Table 1 for A € {1.0, 0.75, 0.5, 0.001, 0.00001} as well as in Figs. 1-3 for
A € {1.0, 0.75, 0.5, 0.001}. The number of the Gauss-Legendre integration points
per axis was 192 (BCIS-4B, CB1-4B: A = 1) and 96 (BCIS-4B: A # 1).

The results for Q7> >+ (A = 0.00001) and Q"' ~*** (exact) in the 6th and
7th columns of Table 1, respectively, are in full agreement to within the displayed
3-4 decimal places. Corroborated with Table 1, the curves for A € (0, 1) in Figs. 1
and 2 display the deviations of Q(BCIS 4B)+ (A # 1) from Q(BCIS%B) + (A =1). The

farther the parameter A from 1, the closer the cross section Q(BCIS 4B)+ (A # 1) tothe

exact Q(CBI B+ In particular, the circles for the BCIS-4B method (A = 0.00001)
are seen 1n Figs. 1 and 2 to completely coincide with the full red line for the exact
CB1-4B method (the same circles are obtained also for A = 0.001). This outcome
cross-validates the adequacy of the different computer programs from the BCIS-4B
and CB1-4B methods.

Figure 3 is similar to Fig. 2 except for inclusion of the experimental data from
various measurements. Overall, as has previously been established [27-30, 32], the
BCIS-4B method (exact, A = 1) compares more favorably with the experimental data
than the CB1-4B method (exact). The situation observed in the BCIS-4B method for
e.g. A = 0.5 at 100-2000 keV suggests that it might be of interest to consider some
effective nuclear charges Ze‘cf dependent on the incident velocity v. Below 1000 keV,
this could improve the standmg of the BCIS-4B method relative to the experimental
data.

As announced, Figs. 4-6 are on the relationship between the CDW-4B and BDW-4B
methods. The subject is the passage from QE?DW_4B)_ to QE?DW_4B)_ as a function
of A for the given energy E. The displayed results refertoA = 1and A = 0.00001. Both
the BDW-4B and CDW-4B methods employ the same number of the Gauss-Legendre
integration points per axis: 192 (A = 1) and 96 (A = 0.00001). It is seen in Figs. 4
and 5 that the CDW-4B method is much more sensitive than the BDW-4B method
to changes in the perturbation strengths. Therein, a marked difference exists between
0 CPW=4B)= (3 — 1) and Q(CDW *B)= (x = 0.00001) at all energies E. On the other

if
hand, above 1000 keV, the cross sections Q(BDW 4B)— (A = 1) and Q(BDW 4B)+

(A = 0.00001) are in excellent agreement. For & = 0.00001, Figs. 4 and 5 show that
the CDW-4B and BDW-4B methods give the indistinguishable total cross sections.
Such a finding establishes the reliability of the different computer programs for the
CDW-4B and BDW-4B methods.

Finally, Fig. 6 is an adaptation of Fig. 5 with an added aspect consisting of com-
parisons of theories and experimental data. Here too, at 100-2000 keV, it might be
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Table 1 Total cross sections Q(cm2) as a function of impact energy E(keV) for double charge exchange
4He2t + 4Ht:(I S) — 4He(1 S) + 4He2* asin process (20). This table is on deducing QEJCCBF“BH (exact)

from the independent computer program for QE?CISAB) +

in which the original Sommerfeld factors Zp /v
and 2Zt /v are replaced by AZp /v and 21 ZT /v, respectively. The values of X are: 1, 0.75, 0.5, 0.001 and
0.00001. The results for Q;?CIS_Z‘BH (A = 0.00001) and QE;BI_4B)+ (exact) are in perfect agreement at

100-7000 keV. Notation 2.3431,-17 means 2.3431 x 10~17

Method ~ BCIS-4B BCIS-4B BCIS-4B BCIS-4B BCIS-4B CBI1-4B

A 1 0.75 0.5 0.001 0.00001 1

EIQ

100 2343117 8556517 2413416  3.6023,-16  3.5900,-16  3.5898,-16
110 2482117 8302117 2115116  3.0576,-16  3.0487-16  3.0486,-16
117.5 2559417  7.9912-17  19149.16  2.7203,-16  2.7133,-16  2.7132,-16
125 2.6023,-17  7.6233-17 1733916 2431116  2.4256-16  2.4256,-16
137.5 2.5992,-17 6955417 1471416  2.0336-16  2.0300-16  2.0299,-16
150 2525817 6281117 1251616 1717316 1714816  1.7148-16
162.5 24098,-17 5637917  1.0677,-16 1461916  1.4603,-16  1.4603,-16
175 2271517  5.0425-17  9.1379-17 1253316  1.2523-16  1.2523-16
187.5 2.1236,-17  4.5006,-17  7.8468-17  1.0811-16  1.0805-16  1.0805,-16
200 1.9735-17  4.0126-17 6760817 9376917  93737-17  9.3737-17
225 1.6835-17  3.1870-17  5.0686,-17  7.1553-17 7155617  7.1556,-17
250 1420417  2.5347-17  3.8479-17  5.5494-17  55513-17 5551317
300 9.9278,-18  1.6187,-17 2294817 3471017 3473817  3.4738,-17
350 6.8720-18  1.0511-17 1424017 2262817 2265317  2.2653,-17
400 4758018  6.9468-18  9.1388-18  1.5242-17  15263-17 1526317
450 3312218 4.6719-18  6.0366,-18  1.0547,-17  1.0563-17  1.0563,-17
500 2324218 3.1943,-18  4.0878,-18  7.4650,-18  7.4772-18  7.4774-18
550 1.6458,-18 2218118  2.8289,-18  5.3877-18 5397018  5.3971-18
600 1176718 1562618  19956-18  3.9551-18  3.9623-18  3.9624-18
625 9.9852,-19  1.3182-18  1.6870,-18  3.4083,-18  3.4146-18  3.4146,-18
650 8.4935-19  1.1157,-18  1.4319,-18  2.9475-18  2.9530,-18  2.9531,-18
700 6.1885,-19  8.0654,-19  1.0433-18 2226218  2.2305-18  2.2306,-18
750 4550219 5898719  7.7064-19  1.7019-18  1.7053-18  1.7053,18
800 3.3748,-19 4360819 5764319 1315418  1.3180-18  1.3181,-18
825 29156,-19 3763919  50071,-19  1.1608,-18  1.1632-18  1.1632,-18
850 2.5239,-19 3256619  4.3612,-19  1.0269-18  1.0290-18  1.0290,-18
900 1.9026,-19 2455019  3.3345-19  8.0898-19  8.1064,-19  8.1066,-19
950 1445219 1.8672-19 2574219  64271-19 6440419  6.4406,-19
1000 1.1056,-19 1432019  2.0052-19  5.1460-19  5.1567,-19  5.1568,-19
1250 3.1909,20  4.2357,20  6.4457,20  1.8691,-19  1.8732-19  1.8732-19
1500 1.0549,20  14548,20 2411420  7.7367,20  7.7540,20  7.7542,-20
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Table 1 (continued)

Method ~ BCIS-4B BCIS-4B BCIS-4B BCIS-4B BCIS-4B CB1-4B

A 1 0.75 0.5 0.001 0.00001 1

EIQ

1750 3.8905-21 5617121  1.0122,-20  3.5347,-20  3.5428,-20  3.5428,-20
2000 1569521 2383621  4.6523,-21 1745420  1.7494,20  1.7495,-20
2250 6.8248,-22  1.0934,21 2301621  9.1787,-21  9.2005,-21  9.2007,-21
2500 3.1631,-22 5353422 1210221  5.0862-21  5.0985-21  5.0986,-21
2750 1.5488,22 2770922  6.6982,-22 2945921 2953121  2.9532,-21
3000 7956423  1.5045-22  3.8735-22 1772221 1776621  1.7766,21
3250 4263923 8516723 2326722  1.1019,21  1.1046,21  1.1046,21
3500 2372723 5.0004,23  1.4445-22  7.0518,-22  7.0696,22  7.0697,-22
3750 1.3659,23  3.0314,23 9231923  4.6300,-22  4.6418,:22  4.6419,-22
4000 8.1083,-24  1.8919,-23  6.0544,23  3.1101,22  3.1181,-22  3.1181,-22
4250 4950724 1213223  4.0654,-23  2.1324,22  2.1379,22  2.1379,-22
4500 3.1019,24  7.9689,-24  2.7887,-23 1489322 1493222  1.4932,22
4750 1.9907,-24 5333824 1947923  1.0578,22  1.0605-22  1.0605,-22
5000 1.3064,24  3.6210,24  1.3809,-23  7.6285-23  7.6484,23  7.6486,-23
5500 5081325  1.7554,24 7241924  4.1332,-23  4.1441,-23  4.1442,23
6000 2.0484.-25 0466925  4.0691,-24 2348523  2.3547,23  2.3548,23
6500 1.5520,-25  5.4166,-25 2414324 1390123  1.3937,23  1.3938,-23
7000 8.6628,26  2.8915-25  1.4345-24 8523924 8546424  8.5467,-24

beneficial for the BDW-4B method to choose some effective nuclear charges Z§f£ as
a function of v. This might be especially influential in the CDW-4B method which
exhibits a very strong dependence on the Sommerfeld factors on the incident velocity.
Of course, all the potential modelings of the nuclear charges Zgﬁ(v) in the Coulomb
distortions should duly respect the correct boundary conditions. These critical con-
ditions are not preserved in Fig. 6 for A = 0.00001 in the CDW-4B and BDW-4B
methods. The implication is that in such a case the favorable performance of these
methods relative to the measurements should be considered as fortuitous.

Similarly, as per Fig. 4 at 100-2000 keV, the BCIS-4B method fares better with
measurements for e.g. A = 0.5 than for A = 1, even though the former value of
the scaling parameter violates the correct boundary conditions. This outcome in the
BCIS-4B method with the fictitious value A = 0.5 in the Sommerfeld factor for the
perturbation strength should also be viewed as fortuitous.

It is not merely a good performance of a theory relative to measurements that should
be of relevance for validation of the predictions. Prior to testing against measurements,
it should be secured that theoretical methods obey the first principles of physics. One
such principle is preservation of the initial and final correct boundary conditions for
both the total scattering wave functions and the corresponding perturbation potentials,
as is indeed the case for the physical value A = 1 in the presently examined theories.
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Double Electron Capture by Alpha Particles from He: Extracting CB1-4B from BCIS-4B by
Weakening the Initial Two Coulomb Wave Functions & the Final Coulomb Phase: BCIS-4B
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Fig. 1 Total cross sections Q(cm2) as a function of impact energy E(keV) for double capture (o + He)
in process (20). Quantities D;‘,—A;BCIS— 4p and D}" A:BCIS_4p T€ from the full electronic Coulomb wave
functions and the electronic Coulomb logarithmic phase, respectively. This figure is on the relationship
between the post cross sections Q;BC[S_4B)+ and QECBI_4B)+. The general program for the BCIS-4B
method is modified only in the Sommerfeld factors Zp/v — AZp/v (in the initial two electronic full
Coulomb waves) and 2Zt/v — 2AZt/v (in the final electronic Coulomb phase). The exact BCIS-4B
method is with A = 1 (full black line). The BCIS-4B method for A between 0 and 1 is with A = 0.75 (full
blue line), 2 = 0.5 (full cyan line) and A = 0.001 (circles, the same also with A = 0). The BCIS-4B method

for A = 0.001 (circles) coincides with the exact CB1-4B method (full red line). For details, see the main
text (Color figure online)

@ Springer



Journal of Mathematical Chemistry

Double Electron Capture by Alpha Particles from He: Extracting CB1-4B from BCIS—-4B by

Weakening the Initial Two Coulomb Wave Functions & the Final Coulomb Phase: BCIS-4B
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Fig. 2 Total cross sections Q(cm2) as a function of impact energy E(keV) for double capture (o + He)
in process (20). Quantities D;‘,—A;BCIS— 4p and D}" A:BCIS_4p T€ from the full electronic Coulomb wave
functions and the electronic Coulomb logarithmic phase, respectively. This figure is on the relationship
between the post cross sections Q;BC[S_4B)+ and QECBI_4B)+. The general program for the BCIS-4B
method is modified only in the Sommerfeld factors Zp/v — AZp/v (in the initial two electronic full
Coulomb waves) and 2Zt/v — 2AZt/v (in the final electronic Coulomb phase). The exact BCIS-4B
method is with A = 1 (full black line). The BCIS-4B method for A between 0 and 1 is with A = 0.75 (full
blue line), & = 0.5 (full cyan line) and A = 0.001 (circles, the same also with A = 0). The BCIS-4B method
for A = 0.001 (circles) coincides with the exact CB1-4B method (full red line). Figure 2 is the enlarged
panel (d) of Fig. 1. For details, see the main text (Color figure online)
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Double Electron Capture by Alpha Particles from He: Extracting CB1-4B from BCIS-4B by

Weakening the Initial Two Coulomb Wave Functions & the Final Coulomb Phase: BCIS-4B
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Fig. 3 Total cross sections Q(cmz) as a function of impact energy E (keV) for double capture in the o 4+ He
collisions. Theoretical results are for process (20) for which the initial and final ground state helium wave
functions are represented by the one-parameter wave function of Hylleraas [34]. This is the case only in
two measurements of Zastrow et al. [8] and Schoffler et al. [35]. All the remaining measured cross sections
are for capture into any final bound non-autoionizing state of helium in process (21). The lines (specified
on the figure itself) represent the theoretical results from the BCIS-4B and CB1-4B methods. Experimental
data: O [6], e [7], B [8], & [9], V [10], % [35], @ [35], O [36], A [37], M [38], A [39], ¥ [40], ¢ [41], o
[42], 4 [43], < [44], > [45]. Only the symbols H [8] and e (filled small red circles) [35] are for process (20):
He(1s2) — He(1s2), whereas all the other symbols are for process (21): He(lsz) — He(X). For details,
see the main text (Color figure online)
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Cross Sections for Double Electron Capture by a—Particles from He: CDW-4B & BDW-4B
Weakening the Final Two Coulomb Waves: CDW-4B & the Final Coulomb Phase: BDW-4B

f: CDW-4B, 2Zv™" f: CDW-4B, 2Z,v"' & BDW-4B, 2AZ v’
T T T T T
10"° 10"° .
o+He(1s%) — He(1s?)+a
Both Methods: No Scaling
107"° 107"® A=1 .
NA NA
€ €
o o
<] <]
[=4 s =3 =
S 1072 S 107 .
o o
[ [
(2] (2]
2 2
o o
S S
107 107 R
CDW-4B: Full Red line
102’|-  Dashed Red Line, Scaling: % = 0.00001 10\~ BDW-48: Full Blue Line -
1 1 Il L 1 Il
10° 10° 10 10° 10° 10*
(a) Impact Energy E(keV) (c) Impact Energy E(keV)

= {T(1-Zg/)e™/ PN F (Zp/v,1,ivs, +iv's,) F,(Z /v, 1,ivs *iv's,) , D

- — 2iAZ_Iv
2H1V'S, taBow-ap ~ (VRAVR)TT

+
D\,BDW—4EI
* =D* - - i TZ_/(2v}y2 _p I - T

D\;CDW—AB_Di,BDW—AB s Di,x;cDW—AB_{F(1+'7‘ZT/V)e TR FL( l)\ZT/V.’I. ivx —iv-x,) F o ( |7\ZT/v,1, ivX,=iv-x,)

. BDW-4B, 2Z v’ f: CDW-4B, AZ,v"' & BDW-4B, 22Zv"'

T T T T T
107k < 10"°1 .

~ 2 2 2 2
S ot+He(1s°) — He(1s%)+a at+tHe(1s®) — He(1s%)+a

Both Methods: Scaling

N
[S)
\
®
T

A =0.00001 —

|
IN

-21|

Coincident Results:

Cross Section Q(cmz)
3

Cross Section Q(cmz)
3

107 107 E
Full Blue Line, No Scaling: A = 1 CDW-4B: Dashed Red Line
10%|-  Dashed Blue Line, Scaling: A = 0.00001 10%|- BDW-4B: Dashed Blue Line -
1 1 Il L 1 Il
10° 10° 10° 10° 10° 10*
(b) Impact Energy E(keV) (d) Impact Energy E(keV)

Fig. 4 Total cross sections Q(cmz) as a function of impact energy E (keV) for double capture (o + He) in
process (20). Quantities D?,'CDW* 4B D?,'BDW* 4p and D;A .cpw—_ap are from the full electronic Coulomb

f:1,BDW—4B
relationship between the prior cross sections . The general programs for the
CDW-4B and BDW-4B methods are modified only in the Sommerfeld factors Zt/v — AZt/v (in the
final two electronic full Coulomb waves) and 2Zt/v — 2AZt/v (in the final electronic Coulomb phase),
respectively. The exact CDW-4B and BDW-4B methods are with A = 1 on (a, ¢): full red line and on (b, ¢):
full blue line, respectively. The CDW-4B and BDW-4B methods with A = 0.00001 are on (a, d): dashed red
line and on (b, d): dashed blue line, respectively. On (d) with A = 0.00001, the CDW-4B method (dashed
red line) coincides with the BDW-4B method (dashed blue line) (Color figure online)
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" is the electronic Coulomb logarithmic phase. This figure is on the
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CDW-4B and BDW-4B methods are modified only in the Sommerfeld factors Zt/v — AZt/v (in the
final two electronic full Coulomb waves) and 2Zt/v — 2AZt/v (in the final electronic Coulomb phase),
respectively. The exact CDW-4B and BDW-4B methods are with & = 1 as the dashed red line and the full
blue line, respectively. For A = 0.00001, the CDW-4B method (full red line) coincides with the BDW-4B
method (circles) (Color figure online)
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Fig. 6 Total cross sections Q(cmz) as a function of impact energy E (keV) for double capture in the o 4+ He
collisions. Theoretical results are for process (20) for which the initial and final ground state helium wave
functions are represented by the one-parameter wave function of Hylleraas [34]. This is the case only in
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Although the scaling parameter A in the fictitious nuclear charges A Zp r modifies
the Coulomb distorted waves and disregards the correct boundary conditions, it is nev-
ertheless instructive. Besides cross-validating the different algorithms in the CB1-4B,
BCIS-4B, BDW-4B and CDW-4B methods, parameter A informs about the energy
region where the Coulomb distortions are numerically influential for total cross sec-
tions Q.

Above 1000 keV (Fig. 6), the experimental data agree well with the BDW-4B
method, which gives the indistinguishable values of Q for A = 1 and A = 0.00001
or A = 0. In (13)—(15), the values A = 1 and A = 0.00001 (or A = 0) correspond
respectively to including and excluding the electronic R-dependent Coulomb loga-
rithmic phase, i.e. to obeying and disobeying the correct boundary conditions. In many
past applications of a number of distorted wave methods, due mainly to computational
complexities, the electronic R-dependent Coulomb logarithmic phases have often been
ignored from the onset. The previous attempts for ‘justifying’ these omissions at all
impact energies failed as they relied solely upon the relatively larger nuclear charges
in asymmetric collisions.

In fact, as the present study shows, it is the given perturbation strength, through the
associated Sommerfeld factor, that is of relevance for determining the energy region
where the electronic R-dependent Coulomb logarithmic phases appreciably impact
on total cross sections Q. As per Fig. 6, in the BDW-4B method for processes (20)
and (21), the electronic R-dependent Coulomb logarithmic phase strongly modifies Q
below 1000 keV, i.e., within a large portion of intermediate energies. This modification
consists of suppressing the probability for double capture in the case for A = 1 relative
to A = 0. Coulomb distortions in a transient ionizing stage of collision suppress the
transition probability because such intermediate channels are not occupied by the two
electrons in the final configuration of double charge exchange.

4 Conclusion

In the past research on energetic rearrangement collisions, the three-body first Born
(B1-3B) method [46-50], as the simplest perturbative formalism, was attractive due to
relatively easy computations. The relevant matrix element consists of integrals over the
initial and final unperturbed states weighted with the pertinent interaction potentials.
However, the cross sections computed by the B1-3B method often tend to be too large
with the decreased impact energy E. Moreover, they are not adequate either in the
limit of high E. The main unphysical feature of the B1-3B method is in neglecting the
correct boundary conditions for any collision with some remaining Coulomb potentials
at infinitely large inter-particle separations.

These drawbacks motivated the innovation of the alternative perturbative methods.
The most obvious attempt was to introduce another transition amplitude, similar to the
B1-3B method, but with certain judicious modifications. For instance, in a preassigned
manner, the unperturbed channel wave functions were perturbed or “distorted”. This is
how the notion of distorted wave methodology emerged. For single charge exchange,
distorted wave methods are usually effective in improving the B1-3B method by about
the right extent to become concordant with measurements. The prime example of a very
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successful theory for single charge exchange is the three-body boundary-corrected first
Born (CB1-3B) method [51-53].

Also for single charge exchange, the physically well-founded three-body second-
order perturbative theories with successful descriptions of experimental data are the
continuum distorted wave (CDW-3B) [51, 54], boundary-corrected intermediate state
(BCIS-3B) and Born distorted wave (BDW-3B) methods. On the other hand, for double
charge exchange, the four-body versions of these theories, i.e. the CB1-4B, CDW-4B,
BCIS-4B and BDW-4B methods, exhibit a pronounced uneven performance when
compared to measurements. This points to an enhanced sensitivity of double charge
exchange to the choice of distorted waves.

To peer into the nature of this marked sensitivity, we opt to gradually alter the
perturbation strength in the distorted waves. Thus, the present focus is on the purely
numerical aspects of the relationships between the CB1-4B and BCIS-4B methods
as well as between the BDW-4B and CDW-4B methods. To that end, we perform
several numerical experiments for double charge exchange in the symmetric « — He
collisions at 100-10000 keV. The basic idea is to vary the perturbation strengths of the
Coulomb distortions of the unperturbed channel states. This is reflected in changing
the Sommerfeld factors from the pertinent two electronic Coulomb wave functions
(at all distances) and in the electronic Coulomb logarithmic phases (at asymptotic
distances). Such changes are made through multiplication of the original Sommerfeld
factors by a scaling parameter A, which takes on its values in the interval 0 < A < 1.

Therefore, a sequence of approximations to the exact total cross sections QE?BI_“B)

should be obtainable from the general program for Q?fgCIS_“B) by allowing the
A—dependent Sommerfeld factors to gradually approach the zero values. As an out-

CB1-4B
0! )

come, the tabular results for are reproduced to within 3-4 decimal places

from the independent algorithm for Q;BCIS_4B) at all the considered impact energies.

This, in turn, cross-validates the different computer programs for the CB1-4B and
BCIS-4B methods.

Quite a similar pattern is observed for the link between the BDW-4B and CDW-4B
methods. These two theories also give the same total cross sections for A — 0. Such
a finding confirms the consistency and accuracy of the different computer programs
for 012"~ and Q™™~*®). Further, throughout 100-10000 keV, it is noted that
the CDW-4B method is extremely sensitive to the varying perturbation strengths. In
contradistinction, above 1000 keV, the situation is more gratifying with the BDW-4B
method, which is basically insensitive to changes in the perturbation strengths from
the Coulomb distortions of the initial and final states.
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