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Abstract
One of the most important information related to molecular graphs is given by the
determination (when possible) of upper and lower bounds for their corresponding
topological indices. Such bounds allow to establish the approximate range of the topo-
logical indices in terms of molecular structural parameters. The purpose of this paper
is to provide new inequalities relating several classes of variable topological indices
including the first and second general Zagreb indices, the general sum-connectivity
index, and the variable inverse sum deg index. Also, upper and lower bounds on the
inverse degree in terms of the first general Zagreb are found. Moreover, the charac-
terization of extremal graphs with respect to many of these inequalities is obtained.
Finally, some applications are given.

Keywords General Zagreb indices · General sum-connectivity index · Variable
inverse sum deg index · Inverse degree index · Converse Hölder inequality

Ana Granados, Ana Portilla, Yamilet Quintana and Eva Tourís have been contributed equally to this work.

B Yamilet Quintana
yaquinta@math.uc3m.es

Ana Granados
ana.granados@slu.edu

Ana Portilla
ana.portilla@slu.edu

Eva Tourís
eva.touris@uam.es

1 Math and Computer Science Department, St. Louis University (Madrid Campus), Avenida del
Valle 34, 28003 Madrid, Spain

2 Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30,
28911 Madrid, Leganés, Spain

3 Instituto de Ciencias Matemáticas (ICMAT), Campus de Cantoblanco UAM, 28049 Madrid,
Spain

4 Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de
Cantoblanco, 28049 Madrid, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10910-024-01593-w&domain=pdf


Journal of Mathematical Chemistry

Mathematics Subject Classification 05C09 · 05C92 · 92E10

1 Introduction

A topological descriptor is a single number that represents a chemical structure in
graph-theoretical terms via the molecular graph, they play a significant role in mathe-
matical chemistry especially in the QSPR/QSAR investigations. Those topological
descriptors which correlate with some molecular property are called topological
indices. It is a well known fact that the main application of topological indices focuses
on the understanding of physicochemical properties of chemical compounds. Hun-
dreds of topological indices have been introduced and its mathematical properties and
chemical applications have been intensively studied, starting with the seminal work
by H. Wiener [1], and more recently, we can mention the work [2] which includes
some chemical applications in a similar way to the present work.

Although only about 1000 benzenoid hydrocarbons are known, the number of pos-
sible benzenoid hydrocarbons is huge. For instance, the number of possible benzenoid
hydrocarbons with 35 benzene rings is 5, 851, 000, 265, 625, 801, 806, 530 (cf., [3]).
Therefore, modeling their physicochemical properties is crucial for predicting prop-
erties of currently unknown species. The main reason for using topological indices is
to predict properties of molecular graphs. Therefore, given certain fixed parameters, a
natural problem is to find, when possible, upper and lower bounds for such topological
indices (see, e.g., [2] and the references therein).

Topological indices based on end-vertex degrees of edges have been used over 40
years. Probably, among such descriptors, the best known is the Randić connectivity
index (R) [4]. There are more than one thousand papers and a couple of books dealing
with this molecular descriptor (see, e.g., [5–9] and the references therein). For many
years, scientists have been trying to improve the predictive power of the Randić index.
These efforts led to the introduction of a large number of new topological descriptors
resembling the original Randić index. Two of the main successors of the latter are the
first and second Zagreb indices, denoted by M1 and M2, respectively, and defined as

M1(G) =
∑

uv∈E(G)

(du + dv) =
∑

u∈V (G)

d2u , M2(G) =
∑

uv∈E(G)

dudv,

where uv denotes the edge of the graph G connecting the vertices u and v, and du is
the degree of the vertex u. These indices have attracted increasing interest, see e.g.,
[10–13]. In particular, they are included in a number of programs used for the routine
computation of topological indices.

The inverse degree index I D(G) of a graph G is defined by

I D(G) =
∑

u∈V (G)

1

du
=

∑

uv∈E(G)

(
1

d2u
+ 1

d2v

)
=

∑

uv∈E(G)

d2u + d2v
d2ud

2
v

.
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The inverse degree index first attracted attention through numerous conjectures
generated by the computer programme Graffiti [14]. Since then, its relationship with
other graph invariants, such as diameter, edge-connectivity, matching number, and
Wiener index have been studied by several authors (see, e.g., [15–19]).

Miličević and Nikolić defined in [20] the first and second variable Zagreb indices
as

αM1(G) =
∑

u∈V (G)

d2αu , αM2(G) =
∑

uv∈E(G)

(dudv)
α,

with α ∈ R. In [21] and [22] the first and second general Zagreb indices are introduced
as

Mα
1 (G) =

∑

u∈V (G)

dα
u , Mα

2 (G) =
∑

uv∈E(G)

(dudv)
α,

respectively. It is clear that these indices are equivalent to the previous ones, since
αM1(G) = M2α

1 (G) and αM2(G) = Mα
2 (G). Furthermore, the first general Zagreb,

Mα
1 (G) also has the following representation

Mα
1 (G) =

∑

uv∈E(G)

(
dα−1
u + dα−1

v

)
. (1)

In what follows, Mα
j (G) will be used instead of αMj (G), for j = 1, 2, since the

inequalities obtained in this paper become simpler with them.
Note that M0

1 = n, M1
1 = 2m, M2

1 is the first Zagreb index M1, M
−1
1 is the inverse

index I D, M3
1 is the forgotten index F , etc.; also, M0

2 = m, M−1/2
2 is the usual Randić

index R, M1
2 is the second Zagreb index M2, M

−1
2 is the modified Zagreb index, etc.

The concept of the variable molecular descriptors was proposed as a new way
of characterizing heteroatoms in molecules (see [23, 24]), but also to assess struc-
tural differences (e.g., the relative role of carbon atoms of acyclic and cyclic parts in
alkylcycloalkanes [25]). The idea behind the variable molecular descriptors is that the
variables are determined during the regression so that the standard error of an estimate
for a studied property to be as small as possible.

In the paper of I. Gutman and J. Tosovic [26], the correlation abilities of 20 vertex-
degree-based topological indices occurring in the chemical literature were tested for
the case of standard heats of formation and normal boiling points of octane isomers. It
is remarkable that the second general Zagreb index Mα

2 with exponent α = −1 (and
to a lesser extent with exponent α = −2) performs significantly better than the Randić
index (R = M−1/2

2 ).
The second variable Zagreb index is used in the structure-boiling point modeling

of benzenoid hydrocarbons [27]. Various properties and relations of these indices are
discussed in several papers (see, e.g., [28–33]). The interested reader can find recent
and interesting results involving several topological indices and their applications in
[34–36].
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The aim of this work is to provide new inequalities relating several classes of
variable topological indices including the first and second general Zagreb indices,
the general sum-connectivity index and the variable inverse sum deg index. Also,
upper and lower bounds on the inverse degree in terms of the first general Zagreb
are shown. Moreover, the characterization of extremal graphs with respect to many
of such inequalities is obtained. Finally, some applications are given to the study of
the physico-chemical properties of the octane isomers, in particular to the study of
Entropy, Motor octane number, Standard enthalpy of vaporization and Acentric factor.

Throughout this paper, G = (V (G), E(G)) denotes a (non-oriented) finite simple
(without multiple edges and loops) non-trivial (each vertex belongs to some edge)
graph. Also, m and n will denote, respectively, the cardinality of the sets E(G) and
V (G).

2 Main inequalities

The sum-connectivity index was proposed in [37]. It has been shown that this index
correlates well with the π -electronic energy of benzenoid hydrocarbons [38]. More
applications of the sum-connectivity index can be found in [39]. Recently, this concept
was extended to the general sum-connectivity index in [40], which is defined by

χa(G) =
∑

uv∈E(G)

(du + dv)
a .

Note that χ−1/2 is the sum-connectivity index, χ1 is the first Zagreb index and χ−1 is
half the harmonic index.

Let us start with the following elementary fact (see, for instance [41]).

Lemma 1 If f ∈ C1[a, b] and f ′ = g1g2 with g1, g2 ∈ C[a, b], g1 positive and g2
non-increasing (resp. non-decreasing) on [a, b], then f attains its minimum (resp.
maximum) value on [a, b] on the set {a, b}.

The following result relates the general sum-connectivity and the first general
Zagreb indices.

Theorem 2 Let G be a graph with maximum degree � and minimum degree δ, and
a, b ∈ R.

If b ≥ a and b ≥ 1, then

21−aδb−a χa(G) ≤ Mb+1
1 (G) ≤ max

{
(� + δ)−a

(
�b + δb

)
, 21−a�b−a

}
χa(G).

If b ≤ a and b ≤ 0, then

21−a�b−a χa(G) ≤ Mb+1
1 (G) ≤ max

{
21−aδb−a, (� + δ)−a

(
�b + δb

)}
χa(G).
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Proof For each δ ≤ x, y ≤ �, define the function

�(x, y) = xb + yb

(x + y)a
= (x + y)−a

(
xb + yb

)
.

A computation gives

∂�

∂x
(x, y) = (x + y)−a−1

(
−axb − ayb + b(x + y)xb−1

)

= (x + y)−a−1
(
−axb + bxb − ayb + byxb−1

)
. (2)

Assume that b ≥ a and b ≥ 1. By symmetry, we also can assume that x ≥ y, then

∂�

∂x
(x, y) = (x + y)−a−1

(
−axb + bxb − ayb + byxb−1

)

≥ a(x + y)−a−1
(
−xb + xb − yb + yxb−1

)

= a(x + y)−a−1y
(
xb−1 − yb−1

)
≥ 0.

Hence, �(y, y) ≤ �(x, y) ≤ �(�, y).
Set

	(y) = �(y, y) = (y + y)−a(yb + yb
) = 21−a yb−a .

Since b ≥ a, 	 is a non-decreasing function and

�(x, y) ≥ �(y, y) = 	(y) ≥ 	(δ) = 21−aδb−a,

we get

dbu + dbv ≥ 21−aδb−a(du + dv)
a,

for every uv ∈ E(G). Hence, using the representation (1) for Mb+1
1 (G), we obtain

Mb+1
1 (G) ≥ 21−aδb−a χa(G).

Now, let


(y) = �(�, y) = (� + y)−a
(
�b + yb

)

on [δ,�].
We have


′(y) = (� + y)−a−1
(
−a�b + (b − a)yb + �byb−1

)
.
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Let us consider the function

�(y) = −a�b + (b − a)yb + �byb−1

on [δ,�]. Since b ≥ a and b ≥ 1, we have

� ′(y) = b(b − a)yb−1 + �b(b − 1)yb−2 ≥ 0.

Consequently, � is a non-decreasing function. Since 
′(y) = (� + y)−a−1 �(y),
Lemma 1 gives

�(x, y) ≤ 
(y) ≤ max {
(δ), 
(�)} = max {�(�, δ), �(�,�)}
= max

{
(� + δ)−a

(
�b + δb

)
, 21−a�b−a

}

for every y ∈ [δ,�].
Therefore,

xb + yb

(x + y)a
= �(x, y) ≤ max

{
(� + δ)−a

(
�b + δb

)
, 21−a�b−a

}
,

and this last inequality implies that

dbu + dbv ≤ max
{
(� + δ)−a

(
�b + δb

)
, 21−a�b−a

}
(du + dv)

a,

for every uv ∈ E(G). Hence, it follows from (1) that

Mb+1
1 (G) ≤ max

{
(� + δ)−a

(
�b + δb

)
, 21−a�b−a

}
χa(G).

Now, assume that b ≤ a and b ≤ 0. By symmetry, we can assume also that x ≤ y,
then

∂�

∂x
(x, y) = (x + y)−a−1

(
−axb + bxb − ayb + byxb−1

)

≤ a(x + y)−a−1
(
−xb + xb − yb + yxb−1

)

= a(x + y)−a−1y
(
xb−1 − yb−1

)
≤ 0.

Hence, �(y, y) ≤ �(x, y) ≤ �(δ, y).
Consider the function

	(y) = �(y, y) = (y + y)−a(yb + yb
) = 21−a yb−a .

Since b ≤ a, 	 is a non-increasing function and

�(x, y) ≥ �(y, y) = 	(y) ≥ 	(�) = 21−a�b−a,
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we get

dbu + dbv ≥ 21−a�b−a(du + dv)
a,

for every uv ∈ E(G). Hence, using the representation (1) for Mb+1
1 (G), we obtain

Mb+1
1 (G) ≥ 21−a�b−a χa(G).

Now, consider the function


1(y) = �(δ, y) = (δ + y)−a
(
δb + yb

)

on [δ,�].
We have


′
1(y) = (δ + y)−a−1

(
−aδb + (b − a)yb + δbyb−1

)
.

Let us consider the function

�1(y) = −aδb + (b − a)yb + δbyb−1

on [δ,�]. Since b ≤ a and b ≤ 0, we have

� ′
1(y) = b(b − a)yb−1 + δb(b − 1)yb−2 ≥ 0.

Consequently,�1 is a non-decreasing function. Since
′
1(y) = (δ + y)−a−1 �1(y),

Lemma 1 gives

�(x, y) ≤ 
1(y) ≤ max {
1(δ), 
1(�)} = max {�(δ, δ), �(δ,�)}
= max

{
21−aδb−a, (� + δ)−a

(
�b + δb

)}

for every y ∈ [δ,�].
Consequently,

xb + yb

(x + y)a
= �(x, y) ≤ max

{
21−aδb−a, (� + δ)−a

(
�b + δb

)}
,

and this last inequality implies that

dbu + dbv ≤ max
{
21−aδb−a, (� + δ)−a

(
�b + δb

)}
(du + dv)

a,

for every uv ∈ E(G). Hence, it follows from (1) that

Mb+1
1 (G) ≤ max

{
21−aδb−a, (� + δ)−a

(
�b + δb

)}
χa(G).
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This completes the proof of the theorem. ��

The following proposition relates the first Zagreb and the inverse degree indices.

Proposition 3 If G is a graph with m edges, then

2 I D(G) + M2(G) ≥ 4m.

Proof Since x + 1/x ≥ 2 for every x > 0 and 2xy ≤ x2 + y2 for every x, y ∈ R, we
have

d2u + d2v
d2ud

2
v

+ d2ud
2
v

d2u + d2v
≥ 2,

∑

uv∈E(G)

d2u + d2v
d2ud

2
v

+
∑

uv∈E(G)

d2ud
2
v

d2u + d2v
≥

∑

uv∈E(G)

2,

I D(G) +
∑

uv∈E(G)

d2ud
2
v

2dudv

≥ 2m,

2I D(G) + M2(G) ≥ 4m.

��

We need the following converse Hölder inequality in [42, Theorem 3], which is
interesting on its own. This result improves the inequality in [43, Theorem 2].

Theorem 4 Let (X , μ) be a measure space, f , g : X → R measurable functions,
and 1 < p, q < ∞ with 1/p + 1/q = 1. If there exist positive constants a, b with
a|g|q ≤ | f |p ≤ b|g|q μ-a.e., then:

‖ f ‖p‖g‖q ≤ Kp(a, b)‖ f g‖1, (3)

with:

K p(a, b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

p

(a
b

)1/(2q) + 1

q

(b
a

)1/(2p)
, if 1 < p < 2,

1

p

(b
a

)1/(2q) + 1

q

(a
b

)1/(2p)
, if p ≥ 2.

If these norms are finite, the equality in the bound is attained if and only if a = b
and | f |p = a|g|q μ-a.e. or f = g = 0 μ-a.e.

Theorem 4 has the following consequence.
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Corollary 5 If 1 < p, q < ∞ with 1/p + 1/q = 1, x j , y j ≥ 0 and ayqj ≤ x p
j ≤ byqj

for 1 ≤ j ≤ k and some positive constants a, b, then:

⎛

⎝
k∑

j=1

x p
j

⎞

⎠
1/p ⎛

⎝
k∑

j=1

yqj

⎞

⎠
1/q

≤ Kp(a, b)
k∑

j=1

x j y j ,

where K p(a, b) is the constant in Theorem 4. If x j > 0 for some 1 ≤ j ≤ k, then
the equality in the bound is attained if and only if a = b and x p

j = ayqj for every
1 ≤ j ≤ k.

The next result relates several first general Zagreb indices. It generalizes [43, The-
orem 2.12].

Theorem 6 Let G be a nontrivial graph with n vertices, maximum degree � and
minimum degree δ, and α, p, q ∈ R with 1/p + 1/q = 1. Then

Cp(δ,�) n1/q
(
Mα p

1 (G)
)1/p ≤ Mα

1 (G) ≤ n1/q
(
Mα p

1 (G)
)1/p

.

with:

Cp(δ,�) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
δ�p/q

)α/2

1
p (δα)p/2 + 1

q (�α)p/2
, if 1 < p < 2,

(
�δ p/q

)α/2

1
p (�α)p/2 + 1

q (δα)p/2
, if p ≥ 2.

The lower bound is attained for every value of α if G is regular. The upper bound
is attained for some α �= 0 if and only if G is regular.

Proof Applying Hölder inequality

Mα
1 (G) =

∑

u∈V (G)

dα
u ≤

⎛

⎝
∑

u∈V (G)

dα p
u

⎞

⎠
1/p ⎛

⎝
∑

u∈V (G)

1

⎞

⎠
1/q

= n1/q
(
Mα p

1 (G)
)1/p

.

Note that

δα ≤ dα
u ≤ �α if α ≥ 0,

�α ≤ dα
u ≤ δα if α ≤ 0,
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In order to prove the other inequality we are going to use Corollary 5 with a = δα p

and b = �α p.

Mα
1 (G) =

∑

u∈V (G)

dα
u ≥

( ∑
u∈V (G) d

α p
u

)1/p( ∑
u∈V (G) 1

)1/q

K p(δα p,�α p)

= Cp(δ,�) n1/q
(
Mα p

1 (G)
)1/p

.

For α �= 0, by Hölder inequality the upper bound is sharp if and only if the graph
is regular. In this case Mα

1 (G) = nδα = n�α and both bounds coincide. ��

The following result relates the inverse degree and the first general Zagreb indices.

Theorem 7 If α ∈ R and G is a non-trivial graph with n vertices, m edges, minimum
degree δ and maximum degree �, then the following inequalities hold:
(1) if α < −1, then

I D(G)−αn−(α+1) ≤ Mα
1 (G) ≤ K−α−α

(
�α, δα

)
I D(G)−αn−(α+1);

(2) if −1 < α < 0, then

K−1
− 1

α

(
�−1, δ−1

)
I D(G)−αn1+α ≤ Mα

1 (G) ≤ I D(G)−αn1+α;

(3) if 0 < α < 1, then

K−1
1
α

(δ,�)(2m)αn1−α ≤ Mα
1 (G) ≤ (2m)αn1−α;

(4) if α > 1, then

(2m)αn1−α ≤ Mα
1 (G) ≤ K α

α (δα,�α)(2m)αn1−α,

where K p(a, b) is the constant in Theorem 4. Moreover, the equalities are attained if
and only if G is regular. Also, for the three special cases, one gets

M−1
1 (G) = I D(G), M0

1 (G) = n, M1
1 (G) = 2m.

Proof For any graph G, the last three special cases are obtained straightforwardly
by applying the definition of the first general Zagreb index. So, if α = −1 one gets
M−1

1 (G) = I D(G); if α = 0, then M0
1 (G) = ∑

u∈V (G) d
0
u = n; and finally, if α = 1,

then M1
1 (G) = ∑

uv∈E(G)

(
d0u + d0v

) = 2m.
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Now, for the case α > 1, take p = α and q = α/(α −1). Then, Hölder’s inequality
gives

2m = M1
1 (G) =

∑

u∈V (G)

du ≤
⎛

⎝
∑

u∈V (G)

dα
u

⎞

⎠

1
α

⎛

⎝
∑

u∈V (G)

1
α

α−1

⎞

⎠

α−1
α

= Mα
1 (G)

1
α n

α−1
α .

(4)

Next, the lower bound can be obtained applying Corollary 5 with a = δα and
b = �α

2m = M1
1 (G) =

∑

u∈V (G)

du ≥ K−1
α (δα,�α)

⎛

⎝
∑

u∈V (G)

dα
u

⎞

⎠

1
α

⎛

⎝
∑

u∈V (G)

1
α

α−1

⎞

⎠

α−1
α

= K−1
α (δα,�α)Mα

1 (G)
1
α n

α−1
α .

(5)

Thus, Eqs. (4) and (5) give

(2m)αn1−α ≤ Mα
1 (G) ≤ K α

α (δα,�α)(2m)αn1−α.

The proofs of the remaining cases are similar choosing the appropriate values for the
constants. Namely,

• if α < −1, take p = −α, q = α/(1 + α), a = �α and b = δα;
• if −1 < α < 0, take p = −1/α, q = 1/(1 + α), a = �−1 and b = δ−1;
• if 0 < α < 1, take p = 1/α, q = 1/(1 − α), a = δ and b = �.

Note that for α �= −1, 0, 1, the tools used (Hölder inequality and Corollary 5) give
that all inequalities are sharp if and only if the graph G is regular. ��

The σ -index is defined in [44] as

σ(G) =
∑

uv∈E(G)

(du − dv)
2.

Note that σ(G) = F(G) − 2M2(G).

Theorem 8 Let G be a nontrivial graph with n vertices, maximum degree � and
minimum degree δ. Then

2M−1
2 (G) + σ(G)

�4 ≤ I D(G) ≤ 2M−1
2 (G) + σ(G)

δ4

and the lower (respectively, upper) bound is attained if and only if G is regular.
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Proof Note that

d2u + d2v = (du − dv)
2 + 2dudv,

1

d2u
+ 1

d2v
= 2

dudv

+ (du − dv)
2

d2ud
2
v

.

Since δ4 ≤ d2ud
2
v ≤ �4, we deduce

1

d2u
+ 1

d2v
≤ 2

dudv

+ (du − dv)
2

δ4
,

1

d2u
+ 1

d2v
≥ 2

dudv

+ (du − dv)
2

�4 ,

and the desired inequalities hold.
If the graph is regular, then the lower and upper bounds are the same, and both are

equal to I D(G). If the lower (respectively, upper) bound is attained, then du = dv = �

(respectively, du = dv = δ) for every uv ∈ E(G) and so, G is regular. ��

The following result relates the inverse degree index with the first Zagreb and the
second general Zagreb indices.

Theorem 9 Let G be a nontrivial graph with n vertices, maximum degree � and
minimum degree δ. Then

I D(G) ≤ M−1
2 (G) − δ2M−2

2 (G) + δ

�4 M1(G)

and the bound is attained if and only if G is regular.

Proof Since (du − dv)
2 + (du − δ)2 + (dv − δ)2 ≥ 0, we have

d2u + d2v + δ2 ≥ δ(du + dv) + dudv,

1

d2u
+ 1

d2v
+ δ2

d2ud
2
v

≥ 1

dudv

+ δ
du + dv

d2ud
2
v

.

Since d2ud
2
v ≤ �4, we deduce

1

d2u
+ 1

d2v
+ δ2

d2ud
2
v

≥ 1

dudv

+ δ
du + dv

�4 ,

and the inequality holds.
The bound is attained if and only if du = dv = δ and du = dv = � for every

uv ∈ E(G), i.e., if G is regular. ��
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In [45, 46] several degree-based topological indices called adriatic indices are
introduced. The inverse sum indeg index I S I , defined by

I S I (G) =
∑

uv∈E(G)

du dv

du + dv

,

is one of them. This index is one of the most predictive adriatic indices, associated
with the total surface area of the isomers of octanes.

Also, this index has become one of the most studied from the mathematical point
of view. We present here several inequalities relating the first variable Zagreb index
with the variable inverse sum deg index defined, for each a ∈ R, as

I SDa(G) =
∑

uv∈E(G)

1

dau + dav
.

Note that I SD−1 is the inverse sum indeg index I S I .
The variable inverse sum deg index I SD−1.950 is a good predictor of standard

enthalpy of formation [47].

Theorem 10 If G is a graph with m edges, and a ∈ R, then

I SDa(G) + Ma+1
1 (G) ≥ 5

2
m, if a > 0, (6)

I SDa(G) + Ma+1
1 (G) ≥ 2m, if a < 0. (7)

The equality in the first bound is attained if and only if G is a union of path graphs
P2.

Proof Recall that, for any function h,

∑

uv∈E(G)

(
h(du) + h(dv)

) =
∑

u∈V (G)

duh(du).

In particular,

∑

uv∈E(G)

(
dau + dav

) =
∑

u∈V (G)

da+1
u = Ma+1

1 (G).

The function f (x) = x +1/x is strictly decreasing on (0, 1] and strictly increasing
on [1,∞), and so, f (x) ≥ f (1) = 2 for every x > 0. Hence,

1

dau + dav
+ dau + dav ≥ 2,

I SDa(G) + Ma+1
1 (G) ≥ 2m.
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If a > 0, then dau + dav ≥ 2 and

1

dau + dav
+ dau + dav ≥ f (2) = 5

2
,

I SDa(G) + Ma+1
1 (G) ≥ 5

2
m.

The previous argument gives that the equality is attained if and only if du = dv = 1
for every uv ∈ E(G), i.e., G is a union of path graphs P2. ��
Proposition 11 Let G be a graph with minimum degree δ > 1 and m edges. If a ≤
− log 2/ log δ, then

I SDa(G) + Ma+1
1 (G) ≥

(
2δa + 1

2δa

)
m.

and the equality is attained if and only if G is regular.

Proof Since δ > 1 and a ≤ − log 2/ log δ < 0, then 2δa ≤ 1 and dau + dav ≤ 2δa ≤ 1.
Thus,

1

dau + dav
+ dau + dav ≥ f (2δa) = 2δa + 1

2δa
,

I SDa(G) + Ma+1
1 (G) ≥

(
2δa + 1

2δa

)
m.

The equality holds if and only if dau + dav = 2δa for every uv ∈ E(G), i.e.,
du = dv = δ for every uv ∈ E(G). That is, if and only if G is regular. ��

3 Some applications: QSPR/QSARmodels

In this section, the predictive power of the first general Zagreb index Ma
1 will be

investigated. For this purpose, experimental data on some physico-chemical properties
of octane isomers are used. Namely,

• Entropy (S).
• Motor octane number (MON).
• Standard enthalpy of vaporization (DHVAP).
• Acentric factor (AcenFac).

Such experimental data are obtained from https://webbook.nist.gov. Later, they
are processed with a self-developed program to calculate the absolute value of the
Pearson’s correlation coefficient (|r |) for values of a ∈ [−5, 5]with a spacing of 0.01.
The Fig. 1 show a plot of the results obtained for S, MON, DHVAP and AcenFac
properties. The dashed vertical lines indicate the value of a that maximize |r |.

In the Fig. 2 we test linear regression models of the form:

P = c1 M
a
1 (G) + c2 , (8)
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Fig. 1 Plots for S, MON, DHVAP and AcentFact

Fig. 2 Testing of linear regression models of the form (8)
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Table 1 Regression and statistical parameters of linear QSPR models for S, MON, DHVAP and AcenFac

Property a r c1 c2 SE F SF

S 2.27 −0.955 −0.815 137.675 1.309 164.1 7.94 × 10−10

MON −1 0.913 84.244 −406.982 9.791 70.07 8.05 × 10−7

DHVAP 0.62 0.942 3.014 −24.037 0.125 125.5 5.52 × 10−9

AcentFac 1.34 −0.975 −0.087 1.903 0.008 301.9 8.27 × 10−12

where P is the S, MON, DHVAP or AcenFac property, and c1, c2 are constants. In the
Table 1 we collect, respectively, the regression and statistical parameters of the linear
QSPR models for the properties S, MON, DHVAP and AcenFac. See the dashed lines
in the Fig. 1 given by Eq. (8).

S = −0.815M2.270
1 + 137.675

MON = 84.244M−1
1 − 406.982

DHVAP = 3.014M0.62
1 − 24.037

Acent Fac = −0.087M1.34
1 + 1.903

A topological index is considered a good predictor for a property when the absolute
value of the Pearson’s correlation coefficient is greater than 0.9. From this analysis
we can conclude that indices M2.270

1 , M−1
1 , M0.62

1 and M1.34
1 are good predictors,

respectively, of the S, MON, DHVAP and AcenFac properties of the octane isomers.
In particular, the index M1.34

1 has |r | = 0.975.

4 Conclusion

The aim of our research was to determine novel inequalities relating several classes
of variable topological indices, like the first and second general Zagreb indices, the
general sum-connectivity index and the variable inverse sum deg index. It is worth
noting that the results and methodology shown in this work allowed us to characterize
extremal graphs with respect to many of such inequalities.

In addition, our analysis about the predictive power of the first general Zagreb index
shows its applicability to the study of the physico-chemical properties of the octane
isomers; in particular to the study of Entropy,Motor octane number, Standard enthalpy
of vaporization and Acentric factor.
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38. B. Lučić, N. Trinajstić, B. Zhou, Comparison between the sum-connectivity index and product-

connectivity index for benzenoid hydrocarbons. Chem. Phys. Lett. 475, 146–148 (2009)
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