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Abstract
The unfiltered derivative fast Fourier transform (dFFT) of degrees higher than two
fails flagrantly for encoded time signals. These data are always dominated by noise
at larger times of encodings. Such a breakdown is due to processing the unweighted
product of the time signal and the time power function. The latter is generated by the
frequency derivative operator applied to the fast Fourier transform (FFT). As a result,
the unfiltered dFFT cannot separate the overlapped resonances and it dramatically
decreases signal-to-noise ratio (SNR) relative to the FFT. This problem is solved
by a derivative-adapted optimization with the properly attenuated filters. The ensuing
optimizeddFFTachieves the long sought simultaneous enhancement of both resolution
and SNR. It uncovers the genuine resonances hidden within overlapping peaks to
enable quantitative interpretations. It does not impose any model on the input time
signals nor on the output lineshape in the spectra. It is computationally expedient
as it uses the Cooley-Tukey fast algorithm. The present applications deal with time
signals encoded by in vitro NMR spectroscopy from human malignant ovarian cyst
fluid. A remarkably successful performance of the optimized dFFT is demonstrated
for reconstructed spectra of potentially added value in clinical decision-making.
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1 Introduction

The large field of signal processing [1–4] encompasses several spectroscopies for
versatile applications ranging from basic through applied sciences to life sciences,
as well as to technologies and industries. Also included here are the multifaceted
aspects of nuclear magnetic resonance (NMR) spectroscopy [5, 6], alternatively called
magnetic resonance spectroscopy (MRS) inmedicine [7–14]. Inmanybranches relying
upon signal processing, the fast Fourier transform (FFT) [1–4] with or without some
weight/apodization functions (filters) is abundantly applied. This is not deterred by the
well-documented numerous limitations of the FFT, particularly for measured/encoded
time signals. In MRS, time signals are synonymously called the free induction decay
(FID) data, that are used as discretized/digitized curves.

The two main pitfalls of the FFT are its low resolution in frequency ν and poor
signal-to-noise ratio (SNR). In principle, both failures should be rectifiable by the
unweighted/unfiltered derivative fast Fourier transform (dFFT), which employs the
product of the time power function (monomial) and the input FID. They are not for
encoded FIDs, as has thoroughly been illustrated for MRS [15–29]. From here and on,
this unfiltered (unweighted, unsmoothed) dFFT will be referred to as the unoptimized
dFFT.

In the unoptimized dFFT for encoded FIDs, denoted by c(t) in their continu-
ous/analog representation, resolution and SNR are catastrophically deteriorated for
increased derivative orders (say m), starting already with m > 2. The reason is that
this estimator processes the unfiltered function tmc(t).Here, the power function, i.e. the
monomial tm (m = 1, 2, 3, ...), comes from applying the frequency-dependent deriva-
tive operator (d/dν)m to the exponential e−2π iνt , contained in the finite ν−dependent
Fourier integral over time t ∈ [0, T ]. Constant T is the total acquisition time of the
FID (i.e. the total duration of the time signal). In encoded FIDs, noise prevails at larger
values of t . Therefore, in the unoptimized dFFT, the monomial tm amplies noise at
larger t . This worsens both resolution and SNR with augmenting derivative orders m.

Advantageously, however, the FFT itself does not assume any particular form of the
FIDs nor of the spectral lineshapes. Such a model-independence feature is automati-
cally preserved by all the variants of the Fourier-based derivative estimations. Directly
or indirectly, the other existing processors describe the FID and/or the spectral line-
shapes by various mathematical expressions (models). For the FIDs, these are usually
some linear combinations of complex damped exponentials, eventually multiplied by
real decreasing Gaussians. Likewise, for spectral profiles, often employed models are
the Lorentzian or Gaussian lineshapes (or their Voigt-type combinations) [10, 11].

For synthesized noiseless FIDs, the unoptimized dFFT works as per the expecta-
tions from the principles of derivative estimations. It successfully unravels the true
components, weak and strong alike. They are folded in the overlapped resonances
from the corresponding FFT spectrum. This is attributed solely to the monomial tm

which, by acting as an unfolding operator, is capable of peering into the hidden struc-
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ture of a total shape spectrum (envelope). The power function tm , multiplying c(t),
amplifies all the peaks in the corresponding spectrum from the unoptimized dFFT,
including the minuscule structures. Such an outcome is a bonus for idealized noise-
free FIDs. However, these are not encountered in the real-world problems. Hence, it
is noise (synthesized or measured) that blocks the drive of the unoptimized dFFT to
the hoped-for success.

For encoded noise-contaminated FIDs, it would then be of great importance to
have the Fourier-conceived derivative estimation, which preserves the mentioned
model-independence, while applying the Cooley-Tukey fast computations [1] to
simultaneously enhance resolution and SNR. This is achievable utilizing an efficient
optimization with an analytical/closed expression for a derivative-adapted damp-
ing/attenuating filter [29]. The resulting processor, called the optimized dFFT [29],
contains a single parameter, which is adapted to the running derivative order m and is
simultaneously tailored to the SNR of the input FID data. This twofold feature is pro-
vided by the adaptive power-exponential filter (APEF) or the adaptive power-Gaussian
filter (APGF) that both decrease with augmentation of time t .

The optimized and unoptimized variants of the dFFT, alongside the FFT, are
presently applied to the FIDs encoded by in vitro MRS with water suppression at
a 600 MHz (14.1 T) Bruker spectrometer from human cancerous ovarian cyst fluid
[30]. In a part of the aliphatic region, we focus on two narrow chemical shift bands
containing the recognized and potential cancer biomarkers, the choline compounds
and the citrate metabolites, respectively.

It is shown that the optimized dFFT for encoded FIDs can successfully solve
the mentioned two major problems in signal processing, while emerging as a high-
resolution processor withmaximal SNR. This is accomplished by gradually increasing
the derivative order (1 ≤ m ≤ 5). The obtained steadily stabilized lineshapes,
amenable to autonomous quantitative interpretations, are deemed to be of notable
practical utility in tumor diagnostics by in vitro as well as by in vivo MRS not only for
the ovary, but also for other human organs. Moreover, the expounded strategy of the
optimized derivative Fourier signal processing is anticipated to find useful applications
in vastly different fields across interdisciplinary spectroscopy-based explorations.

2 Theory

For the given FID or time signal {cn} (0 ≤ n ≤ N − 1) of total length N = 2� (� =
1, 2, 3, ...) and duration T , sampled at the rate τ , the optimized dFFT from Ref. [29] is
obtained by applying theCooley-Tukey algorithm [1] to the complex-valued sequence:

Optimized dFFT : DmFFT = 1

N

N−1∑

n=0

On,mcnW
n
k , (1)

where Wk = e−2π ik/N (0 ≤ k ≤ N − 1). Here, DmFFT is, in fact, Dk,mFFT (0 ≤
k ≤ N − 1), but for brevity the subscript k is dropped from the lhs of Eq. (1) and this
convention will be used throughout.
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The quantity On,m in (1) is the object function of the optimization. It is a derivative-
adapted attenuating function. The highly effective two forms of On,m have recently
been implemented [29]. One is the adaptive power-exponential filter, the APEF:

APEF : On,m = (−2π inτ)me−λE(m,α)nτ , (2)

λE (m, α) = m

T
ln(T eα). (3)

The other is the adaptive power-Gaussian filter, the APGF:

APGF : On,m = (−2π inτ)me−λG(m,β)(nτ)2 , (4)

λG(m, β) = m

T 2 ln(T eβ). (5)

In the derivative-adapted attenuation terms λE(m, α) > 0 or λG(m, β) > 0, the single
parameter α > 0 or β > 0, respectively, mimics the SNR of the original FID by
assessing the decay of the FID transients to zero at the end of encodings, i.e. at t = T
(T = Nτ). Encoded FIDs are de facto truncated because their total acquisition times
are necessarily finite (T < ∞). This is equivalent tomultiplying an FID by aHeaviside
step-function which, in turn, yields the spectral distortions (Gibbs ringing, flanking
wiggles) around the reconstructed resonances.

In e.g. the APEF, constant α is a measure of the damping rate T /T 	
2 in the longest-

lasting transient envelope A(0)e−t/T 	
2 of c(t) at t = T . Here, A(0) is the FID initial

intensity at the onset of encodings (t = 0) and T 	
2 is the transverse relaxation time.

Thus, e.g. a choice α = 3 in the APEF would characterize an FID transient whose
intensity A(T ) at the end of encodings (t = T ) decayed to about 5% (e−3 ≈ 0.4598)
of A(0). Such a value of α optimizes the damping parameter λE(m, α) so that it duly
reflects the SNR of the FID directly through its decay to the noise level of encodings.
The implication is that with the APEF in the optimized dFFT, the mentioned Gibbs
lineshape distortions from the FID truncation will be smaller than the noise in the
spectrum.

Formula (1) also provides the nonderivative FFT and the unoptimized dFFT, both
in their unfiltered versions, if we set λE(m, α) = 0 in (2) or λG(m, β) = 0 in (4):

FFT = 1

N

N−1∑

n=0

cnW
n
k , 0 ≤ k ≤ N − 1, (6)

Unoptimized dFFT : DmFFT = 1

N

N−1∑

n=0

(−2π inτ)mcnW
n
k , (7)

respectively. For simplicity, both variants of the dFFT, the optimized (1) and unop-
timized (7) are denoted by the same symbol DmFFT, which includes the FFT as
D0FFT = FFT. The context will indicate to which of these two spectral lineshapes
the given remark is made. The corresponding spectra will be distinguished in the plots
with the markings “Optimized” and “Unoptimized” or “Filtering” and “No Filtering”.
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As elaborated in Refs. [15–17], for visualizations of spectra, the most convenient is
the phase-insensitive, positive-definite magnitude mode |DmFFT| (m = 0, 1, 2, ...)
of complex DmFFT (m ≥ 0), where |D0FFT| = |FFT|.

Moreover, because of the peak width narrowing and peak height enhancing with
rising m, monitoring the lineshape profile developments for the successive derivative
orders m > 0 is conveniently facilitated by using the normalized magnitude spectra
|DmFFT|N defined as:

|DmFFT|N = |DmFFT| |FFT|max

|DmFFT|max (m = 1, 2, ...), (8)

|DmFFT|max = max |DmFFT| (m = 0, 1, 2, ...). (9)

Observe that the nonderivative FFT (m = 0), as |FFT|max, is included in (9). Of course,
the nonderivative spectrum |FFT| itself is not normalized1.

The implementation of the optimized dFFT in Ref. [29] has been illustrated for
the FIDs encoded by in vitro MRS at low (1.5T) and high (14.1T) magnetic fields.2

The latter FIDs encoded in Ref. [30] are also employed in the current study, which
emphasizes two narrow chemical shift bands in a part of the aliphatic region containing
the recognized and potential cancer biomarkers, the choline compounds and the citrate
quartet, respectively.

3 Results and discussion

Versatile possibilities to noninvasively monitor metabolic processes in patients were
the prime reason for the physician interest in MRS. To that end, one of the key goals is
to distinguish normal from diseased tissues and/or biofluids of patients. To be useful in
this regard, MRS information, extractable from resonances in spectra, reconstructed
with encoded FIDs, must be reliable, quantifiable and metabolically distinct to a
sufficient extent to differentiate normal from diseased organs or samples. In can-
cer medicine, MRS findings ought to be clearly different for cancerous and benign
specimens. Here, one of the main tasks of MRS is to identify metabolites that could be
considered as cancer biomarkers. Such identifications by MRS should be statistically
significant in face of the variability of samples and despite adverse effects of some
other factors that can impede and complicate the analysis.

One such factor is the presence of ubiquitous overlapping resonances in spectra
that most severely plague the FFT and preclude the clinically reliable identification
of cancer biomarkers. It is here that the optimized dFFT comes to the rescue, as has
recently been shown in Ref. [29] and will also be further explored in the current study.

1 Note that Eq. (4) in Ref. [29] has been misprinted as |DmS| = |S|max / |DmS|max instead of:

|DmS|N = |DmS| |S|max

|DmS|max (m = 1, 2, ...)

which is the present Eq. (8) rewritten in the notation of Ref. [29], where S=FFT.
2 When derivative estimations are applied to MRS, the term derivative magnetic resonance spectroscopy
(dMRS) seems to be more appropriate.
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For some forty patients, using a Bruker high-resolution spectrometer, the authors
of Ref. [30] have encoded the FIDs from samples of ovarian cyst fluid. The plan was
to see whether MRS could be employed to differentiate between the samples that were
independently diagnosed as benign andmalignant for twenty-eight and twelve patients,
respectively. This was indeed feasible for a number of metabolites, as elaborated in
Ref. [30]. The authors of Ref. [30] have kindly given to us two of their FIDs encoded
from benign and malignant samples. The latter sample (serous cystadenocarcinoma)
is the subject of the present analysis.

For MRS of the ovary, among the recognized cancer biomarkers, one finds the
choline compounds that are more abundant in malignant than in benign lesions. How-
ever, for the same organ, the concentration levels of citrates are more elevated in
benign than in cancerous pathologies. Therefore, to enlarge the diagnostic window,
the citrate metabolites could be considered as potential cancer biomarkers for ovar-
ian cyst fluid, according to Refs. [25, 30, 36]. The citrate metabolites are recognized
cancer biomarkers for the prostate. Concentration levels of these molecules are low in
cancerous prostate, but high in normal prostate and in benign prostatic hypertrophy
[14, 32, 37–43].

The list of potential cancer biomarkers for the ovary could be extended to encom-
pass also a number of other molecules whose resonances at 0.9−1.6 ppm (parts per
million) are significantly stronger in malignant relative to benign samples of ovarian
cyst fluid [25, 30]. These are multiplets (doublet d, triplet t) of alanine Ala(d), thre-
onine Thr(d), β−hydroxylbutyric acid β−HB(d) or 3-HB(d), leucine Leu(d,t) and
isoleucine Iso(d,t). Within this latter chemical shift interval of length of only 0.7 ppm
also lies the lactate doublet Lac(d) at about 1.41 ppm, as a recognized cancer biomarker
for the ovary.

We will now illustrate the optimized dFFT for processing an averaged FID from
128 transient time signals encoded with water suppression by in vitro proton MRS.
As stated, encodings were made at a Bruker spectrometer from a sample of human
malignant ovarian cyst fluid (serous cystadenocarcinoma) dissolved in D2O [30].
These data entail the following specific encoding parameters: the Larmor frequency
νL = 600MHz (B0 ≈ 14.1T), the total signal length N = 16384, the repetition time
TR=1200 ms, the echo time TE=30 ms, the bandwidth BW=6667 Hz, the sampling
time τ = 1/BW ≈ 0.15 ms, the total acquisition time T = Nτ = 2.46s and the
number of excitations NEX=128 (the number of the measured FID transients).

Trimethylsilyl-2-2-3-3-tetradeuteropropionic (TSP) acid was added to the sample
for a twofold internal referencing [30]. First, the locations of all the other resonance
frequencies on the chemical shift axis are counted from the center (ν = 0.0 ppm)
of the CH3 singlet of TSP. Second, for the resonances other than this latter reference
peak, the reconstructed concentrations of the assigned metabolites are expressed as
the percentage of the known TSP concentration in the biophysical units, micro-mol
per gram per weight (μM/g). In quantifying the identified resonances, the real part of
the computed complex FFT spectra in Ref. [30] was manually corrected for the phase
and background to have approximately positive-definite lineshapes.

Further, the Lorentzian lineshape model was employed in Ref. [30] for fitting
the spectral structures from the FFT ’absorptive’ spectra. Therein, the widths of the
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detected peaks were taken to be about 1.0 Hz throughout the Nyquist range.3 The
extracted peak areas were related to the concentrations of the metabolites assigned to
the quantified resonances. The concentrations of only 12 quantified metabolites were
reported [30]. The reason for not obtaining the concentrations of many other remain-
ing resonances was attributed in Ref. [30] to the “spectral crowding”. This latter term
is occasionally used to refer to some heavy overlaps of tightly packed resonances
[31–35].

Using the averaged FID from these time-domain acquired transients [30], all the
presently reconstructed Fourier-based spectra in the nonderivative FFT, as well as in
the unoptimized and optimized derivative dFFT will be graphed in the magnitude
mode. In the magnitude mode, |DmFFT|, the sidelobes around resonances for m ≥ 1
are suppressed by interference between the real and imaginary parts, Re(DmFFT)

and Im(DmFFT), respectively. This is yet another advantage of magnitudes |DmFFT|
over the ’absorptions’ Re(DmFFT), given that in the latter spectra, the sidelobes are
intensified for increasing m ≥ 1 and, as such, could be misinterpreted as the phys-
ical resonances. In the normalized derivative spectra |DmFFT|N (m = 1, 2, 3, ...) to
be displayed, normalization is made to one of the resonance peaks in the analyzed
chemical shift band.

Our perspective is to try to separate the overlapped resonances by extracting the
components from the J−coupledmultiplets. The salient illustrationswill be givenwith
the emphasis on the citrate quartet Cit(q) and the choline compounds. The resonances
of these metabolites are located in a tight chemical shift range 2.80−3.29 ppm, which
extends over merely 0.49 ppm. For an easier follow-up, the spectral lineshapes in the
reported figures are color-coded in black, blue and red lines for the nonderivative FFT,
the optimized dFFT and the unoptimized dFFT, respectively.

3.1 Citrate quartet (2.80−3.05 ppm)

Figure1 shows the Fourier-based reconstructions of spectra in the chemical shift band
containing the citrate quartet, Cit(q), in the window 2.80−3.05 ppm. The lineshape
normalization ismade to the peak in the sub-band 2.840−2.875 ppm.This is the second
tall peak on the right of the window, as clearly seen on panels (a-g). The spectra in this
figure are: m = 0, unnormalized nonderivative lineshapes for the real part (a) as well
as for the magnitude mode (b) and 1 ≤ m ≤ 5, normalized derivative lineshapes (c-h).
As usual, the lineshape Re(FFT) is phase-corrected and its bottom part is slightly
uplifted to be positive-definite, as seen on panel (a).

Among the derivative spectra (all in themagnitudemode), those from the optimized
dFFT using the FID multiplied by the adaptive power-exponential filter, the APEF,
with α = 3 in Eqs. (2) and (3), are the lineshapes for m = 1 (c), m = 2 (d), m = 3
(e), m = 4 (f) and m = 5 (g). The unoptimized dFFT for the FID multiplied by the
time power function (no filtering) is for m = 5 (h).

3 Subsequently, however, for the FIDs from Ref. [30], processed by the parametric fast Padé transform
(FPT) [26], it was found that the peak widths varied from resonance to resonance. This impacts on the
values of the assessed metabolite concentrations.
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Fig. 1 In vitro proton MRS and dMRS for samples of human biofluids: malignant ovarian cyst (serous
cystadenocarcinoma) from a patient. The input time signal is the average of 128 FID transients encoded at a
Bruker 600MHz (≈ 14.1T) spectrometer [30]. In a narrow band with the citrate quartet as a potential cancer
biomarker for the ovary, the focus is on the derivative fast Fourier transform, the dFFT: optimized versus
unoptimized. Unnormalized nonderivative FFT (m = 0) using (7) as: (a) Real part mode and (b) magnitude
mode. Panels (c-h): normalized derivative spectra (m = 1 − 5) in the magnitude mode. Optimized dFFT
using (1) for the APEF (2) with α = 3 in (3): m = 1 (c), m = 2 (d), m = 3 (e), m = 4 (f) and m = 5 (g).
Unoptimized dFFT using (7):m = 5 (h). The spectral intensities on the ordinates are in arbitrary units (au).
Resonance frequencies (chemical shifts) on the abscissae are dimensionless units, parts per million (ppm).
For details, see the text (color online)
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It is seen that the real part (a) and magnitude (b) of complex nonderivative FFT
spectra (m = 0) possess several pronounced resonances. Four of these major peaks
belong to the citrate quartet, Cit(q). The centers of the four citrate peaks can roughly
be read off from the graph to be located near 2.825, 2.86, 2.985 and 3.02 ppm. Herein,
noise is evidently present, peakdistortions are also notable and thebackgroundbaseline
is visibly elevated. A dominant fraction of a higher background level (a, b) stems from
wider resonances that are usually assigned to heavier macromolecules (proteins, etc.).

Linearity of the nonderivative FFT (m = 0) brings the entire noise from the time-
domain encodings to the computed frequency-domain spectra. Spectral deformations
of the FFT lineshapes (a, b) are largely caused by tight overlaps of the given peak
with its adjacent resonances. A marked similarity of spectra (a) and (b) is obvious,
although some parts of |FFT| look more deformed than in Re(FFT). Any differences
between these two lineshapes are attributed to the interference effect betweenRe(FFT)

and Im(FFT) in the magnitude mode |FFT|. The differences are most visible for the
middle sections of panels (a, b) around 2.930 ppm as well as for several inverted
smaller peaks in |FFT| (b) near 2.810, 2.905, 2.925 and 2.952 ppm.

The bottom part (base) of each of the four components (partial lineshapes) of Cit(q)
on panels (a, b) are broadened from distortions by the surroundings that include the
background and the other unknown resonances. This is obstructive and leads to a
noticeable lineshape asymmetry, especially for the two citrate peaks on the left of the
whole window, close to 2.985 and 3.02 ppm (a, b). In particular, the fourth citrate
peak, positioned at about 3.02 ppm, is heavily perturbed and has shoulders on both
of its sides. It rides on a higher background baseline in |FFT| (b) and is significantly
broader than the other three resonances of Cit(q). Moreover, its peak heights on panels
(a, b) are exaggerated from constructive interferences with the two intense immediate
neighboring resonances of unequal widths. Theoretically, in Cit(q), its two outer peaks
should both be shorter than the two inner peaks. On panels (a, b), this holds true in the
part of the window on the right (near 2.825 and 2.86 ppm), but not on the part from
the left (close to 2.985 and 3.02 ppm).

Taken together, the situation seen on panels (a, b) of Fig. 1 for the nonderivative
FFT (m = 0) is not conducive even to a rough determination of the peak area of Cit(q)
as a whole nor for each of the four partial lineshapes of this quartet. Consequently,
the nonderivative lineshapes in the FFT (a, b, m = 0) are not of use to MRS. This
circumstance calls for an alternative approach to signal processing. One of the possi-
ble avenues can be tried within derivative shape estimations. For instance, two such
processors could be applied, the unoptimized dFFT [25–28] and the optimized dFFT
[29]. The present reconstruction results by these two methods for the citrate quartet
are given on the remaining panels (c-h) of Fig. 1.

It is seen that the optimized dFFT makes a critical advance while covering the five
consecutive derivative orders 1 ≤ m ≤ 5 (c-g). In fact, the initial gain is obtained
already with the first derivative lineshape (c, m = 1). Herein, the relative heights of
all the four resonances from Cit(q) changed with respect to (a, b, m = 0). Namely, as
it should be, both of the outer resonances are now lower than the inner peak pair of
Cit(q). The most striking improvement for m = 1 (c) relative to m = 0 (a, b) occurs
on the left of the window, around the fourth citrate peak near 3.02 ppm.
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Compared to this peak, its formerly two broad neighboring resonances form = 0 (a,
b) are strongly suppressed for m = 1 (c), one slightly more than the other on account
of a visibly wider breadth. Moreover, the higher derivatives 2 ≤ m ≤ 5 (d-g) make
in plain view steady and systematic lineshape ameliorations by the optimized dFFT.
This drive proceeds unabated until all the four spectral profiles of Cit(q) ultimately
attain their stabilized forms for m = 5 (g).

Besides the individually well-resolved four partial lineshapes of Cit(q), there are
also a few unassigned spectral profiles. Some of these unknown resonances might
arguably be assigned to e.g. nitrogen acetyl aspartate (NAA). Ordinarily, sizable
concentrations of this neurotransmitter are detectable mainly in the brain tissues. Nev-
ertheless, they have been found also in some other organs in the human body in lower
and higher concentrations [44–53]. In Fig. 1, particular attention can be called to the
unassigned (or unknown) metabolites denoted by Uα and Uβ near 2.930 and 3.015
ppm, respectively. However, Uβ is masked for m = 0 (a, b), but therein Uα can be
spotted.

More specifically, Uα is well-delineated and severely deformed in Re(FFT) and
|FFT| on panels (a) and (b), respectively. However, regarding particularly Uα , what
is lost in |FFT| (b), the optimized dFFT is able to recuperate already for m = 1 (c).
Namely, the shape of Uα in the magnitude |D1FFT|N (c, m = 1) looks much the
same as that in the real part mode Re(FFT) on panel (a, m = 0). Further, for higher
derivatives, the optimized dFFT is able to fully stabilize both Uα and Uβ . They are
well separated from the overcrowded baseline and delineated as two sharp peaks for
m = 4 (f) and m = 5 (g).

For Cit(q), it is theoretically anticipated that the heights of the two outer peaks
should be nearly the same. This is the case for m = 1 (c). However, for m = 2 − 5
(d-g), there are some departures from such an expectation. Namely, for m = 2 − 5
(d-g), the fourth peak of Cit(q), near 3.02 ppm, is lower than its outer counterpart,
which is the citrate first peak close to 2.825 ppm. The reason is in the occurrence that
the separation of the adjacent peak Uβ , formerly hidden for m = 0 (a, b), necessarily
takes away some of the intensity/power of the fourth resonance of Cit(q), lying near
3.02 ppm. As a further theoretical prescription, the heights of the two inner peaks of
Cit(q), near 2.86 and 2.985 ppm, are supposed to be equal and more elevated than
those of the outer two resonances at about 2.825 and 3.02 ppm. This feature is steadily
maintained in the optimized dFFT for m = 1 − 5 (c-g).

Relative to the nonderivative FFT (a, b, m = 0), the achievements of the optimized
dFFT (c-g, m = 1− 5) in Fig. 1 are remarkable. Such an outcome is possible because
of the chief tandem advantage of this processor: higher resolution and enhanced SNR.
More concretely, by the optimized dFFT, the background baseline is considerably
lowered in the entire Nyquist interval, including the window 2.80−3.05 ppm, with the
implication of noise reduction. Moreover, the citrate quartet resonances are narrowed
and this in itself yields a higher resolution.

Thus, for m = 1 − 5 (c-g) in Fig. 1, the optimized dFFT realizes the principal
goal of a proper derivative estimation. This goal consists of extracting the sought
information with more physical content and less noise than what is offered by the
nonderivative FFT (a, b, m = 0). The attractiveness of such an accomplishment is in
the fact that no fitting whatsoever is used to reconstruct the four components (readily
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quantifiable by the peak integrations) of the exemplified multiplet, the citrate quartet,
Cit(q). Moreover, no model either is used for the FID waveform nor for the shape of
the peaks.

This conclusion is a stark contradistinction to the associated predictions by the unop-
timized dFFT for m = 5 (h). Herein, no physical information is contained since noise
prevails totally. The reason is that for encoded FIDs, noise dominates at larger times
t in the product tmc(t), processed by the unoptimized dFFT. Moreover, as opposed to
panel (g), it is observed that the derivative-induced noise lifts the background baseline
on panel (h). Thus, without optimization by the APEF, noise offsets the theoretically
anticipated advantage of derivative estimations. In the end, the unoptimized dFFT (h,
m = 5) becomes much worse than even the already poor nonderivative FFT (a, b,
m = 0).

As explained in Sect. 2, the unavoidable truncations of the encoded c(t) or FIDs at
a finite total acquisition time (T < ∞) yield the Gibbs ringing deformations in the
corresponding spectra from the nonderivative FFT (m = 0). Such spectral artifacts, on
top of the already existing distortions due to the inherently noisy tails of the encoded
FID, become exacerbated in the processed product tmc(t) for the increased derivative
order m. Consequently, function tmc(t) is ill-conditioned and leads to divergence,
which is induced by the monomial tm . This causes the unoptimized dFFT to fail
flagrantly, as seen for m = 5 (h).

Of course, the same obstacle with tmc(t) is also shared by the optimized dFFT.
However, this latter processor is capable of regularizing (countering) the detrimental
effect of tm . Namely, in the optimized dFFT, the tempering feature of the regulariza-
tion effect of the APEF on the offending power function tm yields the well-behaved,
converging spectral lineshapes that are especially solidified for m = 3 − 5 (e-g).

3.2 Three singlets of the choline compound (3.17−3.29 ppm)

For malignancy diagnostic detection by means of MRS of critical importance are
molecules of cholines as recognized cancer biomarkers for several organs (brain,
breast, prostate, ovary). Choline compounds are comprised of three singlets, free
choline Cho(s), phosphocholine PCho(s), or PC(s) for short, and glycerophospho-
choline GPC(s). Besides the Cho, PC and GPC components of total choline (tCho),
themetabolite map in Fig. 2 also shows several other resonances, such as taurine (Tau),
phosphoethanolamine (PE), β−glucose (β−Glc) and myo-inositol (m-Ins).

The main attention in Fig. 2 is placed onto free choline Cho(s). The reason is in
the intriguing reconstructions by the derivative fast Padé transform (dFPT) using its
two variants, nonparametric [25] and parametric [26]. In Ref. [25], it seemed at first
that a resonance, which is usually assigned to free choline, was a ’doubtless’ singlet
in the nonparametric nonderivative fast Padé transform, the FPT. Then, using the
nonparametric dFPT, that apparent ’singlet’ was found in the same study [25] to be an
amalgamate of two fully isolated peaks.

Such an intriguing splitting has subsequently been confirmed by the parametric
dFPT [26]. These genuine singlets were lying in their close mutual proximity, on
each side of 3.19 ppm, which is customarily considered as the resonance frequency of
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Fig. 2 In vitro proton MRS and dMRS for samples of human biofluids: malignant ovarian cyst (serous
cystadenocarcinoma) from a patient. The input time signal is the average of 128 FID transients encoded
at a Bruker 600 MHz (≈ 14.1T) spectrometer [30]. In a narrow band with the choline compounds as
recognized cancer biomarkers for the ovary, the focus is on the derivative fast Fourier transform, the dFFT:
optimized versus unoptimized. Unnormalized nonderivative FFT (m = 0) using (7) as: (a) Real part mode
and (b) magnitude mode. Panels (c-h): normalized derivative spectra (m = 1 − 5) in the magnitude mode.
Optimized dFFT using (1) for the APEF (2) with α = 3 in (3): m = 1 (c), m = 2 (d), m = 3 (e), m = 4
(f) and m = 5 (g). Unoptimized dFFT using (7): m = 5 (h). The spectral intensities on the ordinates are
in arbitrary units (au). Resonance frequencies (chemical shifts) on the abscissae are dimensionless units,
parts per million (ppm). For details, see the text (color online)
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Cho(s) itself. Both these singlets were baseline-resolved, one of them was assigned to
Cho(s) while the other was left unassigned and provisionally denoted by U(s) in Refs.
[25, 26]. The latter resonance was missed by the nonderivative FFT in Ref. [30].

Here, the clause ’baseline-resolved’ refers to a circumstance where the given over-
lapped spectral compound is split apart into its two or more hidden constituents
down to the low-lying background baseline, which is itself near the chemical shift
axis. We want to find out whether in the optimized dFFT, the free choline resonance
could likewise exhibit a shoulder, which might ultimately escape its tight overlap
with Cho(s) and stabilize as a separate unknown peak U(s) for increasing derivative
orders m. Such a clustering of Cho(s) is important to clarify (confirm or disprove)
by means of another shape estimator different from the nonparametric dFPT [25],
e.g. by the optimized dFFT. Obviously, the concentration [tCho] of tCho, given by
[tCho]=[Cho(s)]+[PC(s)]+[GPC(s)], can be reliably assessed only if the three abun-
dance levels [Cho(s)], [PC(s)] and [GPC(s)] have been accurately estimated first.

In Fig. 2, the nonderivative spectrum (m = 0) is shown in two representations, the
real part Re(FFT) and the magnitude |FFT| of complex FFT, on panels (a) and (b),
respectively. The spectrumRe(FFT) on panel (a) is positive-definite, which is achieved
by a phase correction and a slight uplifting of the bottom part of this lineshape. These
two adjustments are the same as those mentioned with Fig. 1.

All themagnitude-mode derivative spectra |DmFFT|N (m > 0) are on the remaining
panels (c-h, m = 1 − 5) of this figure. Thus, the optimized dFFT, with the FID
multiplied by the adaptive power-exponential filter, the APEF, with α = 3 in Eqs. (2)
and (3), is for m = 1 (c), m = 2 (d), m = 3 (e), m = 4 (f) and m = 5 (g). The
unoptimized dFFT (no filtering) with the FID multiplied by the time power function
is for m = 5 (h). Panels (a-g) clearly exhibit a set of several pronounced resonances,
some of which are assigned to the mentioned known metabolites, e.g. Cho, PE, PC,
GPC, β−Glc, Tau and m-Ins.

Peaks related to these molecules are seen to be superimposed on an elevated back-
ground baseline in |FFT| (b,m = 0) with their broadened bases. The broadening factor
in |FFT|, seen in the full width at half maximum (FWHM), is approximately equal to√
3 relative to Re(FFT) on panel (a, m = 0). In fact, for a synthesized noiseless FID,

yielding a pure Lorentzian absorption with a true single resonance peak, the FWHM
for |FFT| is wider than that for Re(FFT) by a factor which is

√
3 exactly [17]. How-

ever, a departure from the
√
3 scaling may occur for an encoded FID which, due to its

nonzero phase, yields a mixture of Re(FFT) and the imaginary part Im(FFT) in both
the ’absorption’ and ’dispersion’ modes [54].

The lineshapes of the peaks in Fig. 2 are more symmetric in Re(FFT) on panel (a)
than in |FFT| on panel (b). Even with excellent static magnet shimming [30], there
are still several reasons for a visible skewness of the magnitude spectrum for m = 0
(b). One reason is the mentioned interference between Re(FFT) and Im(FFT) in the
magnitude |FFT|. Another reason is a realistic possibility for the existence of one or
more hidden resonances [27].

A huge number of molecules take part in the successive stages of various
metabolisms in cells of human organs. Despite their different structures, many of these
metabolites still share a common feature: similar values of their transverse relaxation
times T 	

2 . Such an occurrence is the main cause for the abundantly encountered over-
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laps among adjacent resonances in NMR spectra (the mentioned “spectral crowding”
[30–35]). This extends throughout the Nyquist range, even at high magnetic field
strengths, such as 14.1T considered presently as well as in Refs. [25–27, 30, 55] and
elsewhere.

A near-symmetry of some of the ’absorptive’ spectral profiles, such as that of
free choline in Re(FFT) on panel (a), has been assumed in Ref. [30] to be sufficient
for quantification. This is tenuous for ’determining’ the peak area (and, hence, the
related metabolite concentration) by either integration or fitting the lineshapes to some
prescribed mathematical forms. Using a numerical integration for an ’absorption’
would lead to errors whenever the integration limits cannot be assessed properly, as
in Re(FFT) on panel (a).

Moreover, fitting the presumed partial lines by e.g. Lorentzians [30], is also risky.
The reason is that an arbitrary number of unequal Lorentzians with sharply varying
adjustable parameters might yield the practically indistinguishable summed lineshape.
Then, this too is hardly the way to proceed in trying to resolve the given overlap into
its true components.

An alternative is offered by the optimized dFFT, which has been shown to provide
the reliable component spectra, reconstructed from FIDs encoded by in vitro MRS at
widely different magnetic field strengths (1.5, 14.1T) [29]. This quantification-able
estimator is nonparametric because nomodel function is invoked for either the encoded
FID nor for the corresponding retrieved spectral lineshapes. It can safely exploit the
higher derivatives (m ≤ 6 [29]), thanks to the derivative-adapted optimization. A set
of spectra of the like derivative orders 1 ≤ m ≤ 5 is also presented in Fig. 2. Therein,
even a cursory look would reveal a steady improvement of reconstructions by the
optimized dFFT for m = 1 − 5 (c-g).

A marked trend of this progress begins to settle in already with m = 1 (c). The
background baseline, which is noticeably high for m = 0 (b), is brought down for
m = 1 (c) and is observed to lie close to the chemical shift axis. Recall that, by
definition, the nonderivative FFT (a, b, m = 0) is based on integrating the given FID
in the time interval t ∈ [0, T ] by way of the Riemann sum in (6) with discretized t and
ν. However, every integration acts as a smoothing operator because it is a weighted
average of the function to be integrated.

That is why most of the weak spectral structures piled up on the tails of the indi-
vidual peaks in the nonderivative FFT (a, b,m = 0) are barely noticeable. Conversely,
the derivative operator Dm = (d/dν)m is an anti-smoothing operator, which acts as a
deconvolving/unfolding operator. As such, what was smoothed out by the nonderiva-
tive FFT (a, b, m = 0), is partially unsmoothed/unsmeared by the optimized dFFT
(c, m = 1). As a consequence, the mentioned weaker spectral structures in the non-
derivative FFT (a, b, m = 0) become unfolded and more or less sharply propelled in
the first derivative (c, m = 1) of the optimized dFFT.

Ideally, using a theoretical noiseless FID, synthesized for only one metabolite,
giving a perfect complex Lorentzian spectrum, its pure nonderivative absorption (m =
0) and the corresponding first derivative magnitude (m = 1) have the identical FWHM
[17]. On the other hand, all FIDs encoded by in vitro and/or in vivo MRS from human
biofluids or tissues are noisy and they lead to nonderivativemulti-component complex-
valued lineshapes.
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As emphasized, these complex-valued resonance profiles contain the mixtures of
’absorptions’ and ’dispersions’ in both the real and imaginary parts of the spectra [54].
Nevertheless, despite such deviations from spectra employing simulated time signals,
the lineshapes of a nonderivative ’absorption’ (m = 0) and the corresponding first
derivative (m = 1) magnitude mode for encoded FIDs could still have quite similar
values for their FWHM.

It is then tempting to say that a failure to abide by this rule could serve as an indi-
cation of the presence of one or more invisible resonances beneath a peak, ordinarily
viewed as a singlet resonance. However, even if this theoretical prediction is duly
confirmed for encoded FIDs, e.g. an apparent singlet may nevertheless contain some
hidden peaks. Regarding Fig. 2 in this context, by superimposing |D1FFT|N (c,m = 1)
on Re(FFT) from panel (a, m = 0), one would observe practically the same FWHM
for one of the three major peaks taken at a time (be it Cho, PC or Tau).

Still, this does not imply that the almost symmetric lineshape of e.g. Cho inRe(FFT)

on panel (a,m = 0) does not contain an invisible tightly glued neighboring resonance.
Quite the contrary, the peak close to the expected location of Cho(s) begins to fragment
on its top/summit positioned at 3.19 ppmalready in |D1FFT|N (c,m = 1). This splitting
only becomes deeper with the gradually augmented derivative orders, as is clear from
|DmFFT|N for m = 2 − 5 (d-g).

With the progression in the ability of |DmFFT|N (m > 1) from the optimized dFFT
to extract a separate well-delineated resonance, eventually the unknown/unassigned
singlet U(s) becomes stabilized form = 5 (g). Such a happening takes place extremely
close to 3.19 ppm, where the resonance lineshape in Re(FFT) on panel (a, m = 0)
indicates no summation of the type, Cho(s)+U(s). However, when this compound is
described with |FFT| (b, m = 0), a slight notching can be noticed by zooming near
the splitting frequency (3.19 ppm).

Overall, then, independently of the nonparametric dFPT [25], by way of |DmFFT|N
(g, m = 5), the optimized dFFT also unequivocally detects U(s). It is seen for m =
5 (g) that the two separate resonances Cho(s) and U(s) are of basically the same
strength/intensity. Thus, the usage of Re(FFT) from panel (a) to roughly estimate the
peak area of free choline, considered as a lone singlet near 3.19 ppm, implies that the
obtained result would be overestimated by a factor of 2.

This would, in turn, invalidate the concentration [Cho(s)] and that of [tCho] due to
the mentioned relation [tCho]=[Cho(s)]+[PC(s)]+[GPC(s)]. Moreover, it would also
be guess-work to try to complete the expression for [tCho]with an estimate for [PC(s)],
based on the peak area of phosphocholine on panel (a,m = 0) inRe(FFT). Therein, the
PC resonance too looks like a single quite symmetric peak. However, this appearance
is faded away already form = 1 (c), where the PC resonance acquires a left-hand-side
bulge, which for m = 2− 5 (c-g) becomes an isolated peak. This takes away some of
the power of PC(s). Moreover, the right-hand-side shoulder in the PC resonance for
m = 4 (f) and m = 5 (g) also becomes a separate peak, as we explicitly checked for
m > 6.

The moral of this story is that every peak in a spectrum reconstructed by any non-
derivative shape estimator, including the FFT, using encoded FIDs should be treated as
a potential multiplet. To rule out the possible composite structure of singlet-appearing
peaks, e.g. the optimized dFFT can be applied.
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As to the unoptimized dFFT, panel (h, m = 5) shows that no meaningful informa-
tion whatsoever remains at the fifth derivative. Therein, the derivative-enhanced noise
completely overwhelms the physical content, which becomes unrecognizable. This
deterioration is illustrated on panel (h) for the fifth derivative, but it also occurs at the
lower derivatives with ordersm = 2−4 (not shown to avoid clutter). Overall, similarly
to the outcome of the analysis of the citrates, the conclusion for the cholines in Fig. 2
is also that the Fourier-based derivative signal processing absolutely necessitates a
properly adapted optimization, such as that provided by the APEF, which is used in
the optimized dFFT.

4 Conclusions

An upgrade of the Fourier analysis is reported, as it applies to the wide field of signal
processing with the myriad of settings, including the medical applications in tumor
diagnostics by magnetic resonances spectroscopy (MRS). This is an advance achieved
simultaneously in improved frequency resolution and signal-to-noise ratio (SNR).
The main two advantages of the standard fast Fourier transform (FFT) are its model-
independence and a high computational expedience of the Cooley-Tukey algorithm
[1]. No mathematical forms for either the encoded free induction decay (FID) data or
the lineshapes in the spectra are employed.

On the other hand, there are several notable disadvantages of the FFT. Resolution
is low (proportional to the reciprocal of the FID length) and SNR is poor. Due to the
linearity feature of the FFT, the entire noise (without any suppression whatsoever)
from encoded FIDs is brought to the computed spectra. The stumbling block in shape
estimations by the FFT is its inability to split apart the overlapped peaks that are
abundantly present in spectra for encoded FIDs. Such problems of the FFT are not
solved in a satisfactory manner by the customary digital filters because they may
improve resolution or SNR, but not both.

Still, simultaneous enhancement of resolution and SNR should be achievable by
derivative signal processing. Yet, this has not met with success in the unfiltered
derivative fast Fourier transform (dFFT). Thismethod, applied to encoded FIDs, catas-
trophically worsens both resolution and SNR (even relative to the FFT), already above
the second derivative. However, the second derivatives are insufficient for resolving
the tightly overlapped peaks. The reason for the failure of the unfiltered dFFT is in
the unattenuated time power function (monomial), which multiplies the encoded FID.
This monomial (resulting from applying the frequency derivative operator to the FFT),
weighs heavily the noise-dominated tail of encoded FIDs.

Nevertheless, a recent optimization of the Fourier-based derivative signal process-
ing comes to the rescue [29]. This newest advance utilizes the critically important
derivative-adapted damped exponential or Gaussian filters capable of surmounting the
mentioned stumbling block while improving both resolution and SNR. The resulting
estimator, called the optimized dFFT, exhibits an outstanding performance in versatile
applications.

The presently reported illustrations are concerned with the FIDs encoded from
samples of human malignant ovarian cyst fluid by using in vitro MRS at a 600 MW
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(14.1 MHz) Bruker spectrometer. The spectra reconstructed by the optimized dFFT
are of very high quality. The overlapped peaks are separated and, as such, not only
clearly visualized, but also amenable to reliable quantification. Such characteristics
are deemed to be invaluable when dealing with the patient data encoded also by in vivo
MRS. This emerging advance in signal processing would allow directly the physician
to interpret the quantitative reconstructions of utmost diagnostic relevance and thus
help decision making.
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