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Abstract
An analysis is presented using six quantum-mechanical four-body distorted wave
(DW) theories for double capture (DC) in ion-atom collisions at intermediate and high
energies. They all satisfy the correct boundary conditions in the entrance and exit
channels. This implies the usage of short-range perturbation potentials in compliance
with the exact behaviors of scattering wave functions at infinitely large separations
of particles. Specifically, total cross sections Q are analyzed for collisions of alpha
particles with helium targets. Regarding the relative quantitative performance of the
studied DW theories at different impact energies E, our main focus is on the sensitivity
of Q to various collisional mechanisms. The usual mechanism in most DW theories
assumes that both electrons undergo the same type of collisions with nuclei. These
are either single or double collisions in one or two steps, respectively, per channel, but
without their mixture in either channel. The signatures of double collisions in differ-
ential cross sections are the Thomas peaks. By definition, these cannot be produced
by single collisions. There is another DC pathway, which is actually favored by the
existing experimental data. It is a hybrid, two-center mechanism which, in each chan-
nel separately, combines a single collision for one electron with a double collision
for the other electron. The ensuing DW theory is called the four-body single-double
scattering (SDS-4B) method. It appears that this mechanism in the SDS-4B method is
more probable than double collisions for each electron in both channels predicted by
the four-body continuum distorted wave (CDW-4B) method. This is presently demon-
strated for Q at energies E=[200,8000] keV in DC exemplified by alpha particles
colliding with helium targets.
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1 Introduction

This study is on several quantum-mechanical four-body perturbative distorted wave
(DW) theories with correct boundary conditions. The present applications deal with
total cross sections Q for double capture (DC) by alpha particles from helium targets.
For a long time now, this process at intermediate and high energies E persists to
be elusive and ineffable by the lowest-order of the Dodd-Greider perturbation series
expansion [1], despite the absence of divergent disconnected diagrams. Various DW
choices for DC for the studied problem yield the values of Q that unexpectedly deviate
even by 1-3 orders of magnitude from the experimental data above 200 keV. This runs
contrary to the well-documented reliability of these theories on Q in single capture
(SC) for the same colliding particles [2–8].

A legitimate question then to ask is: should such a discouraging status disqualify
the perturbative DW theories for Q in DC? The answer is in the negative. The stated
failure to quantitatively reproduce the experimental data on Q in DC at all E above
200 keV is not universal, as it occurs in some, but not in all the mechanisms. The
unsatisfactory mechanisms operating in the entrance and exit channels are with a
single-step DC for both electrons, as in the four-body boundary corrected first Born
(CB1-4B) method [9, 10]. The same holds true with a two-step DC for both electrons,
as in the four-body continuum distortedwave (CDW-4B)method [11, 12].Much better
performance above about 550 keV is for the mixed mechanisms with a one-step DC in
one channel accompanied by a two-step DC in the other channel, as in the four-body
boundary-corrected continuum intermediate state (BCIS-4B) method [13] and in the
four-body Born distorted (BDW-4B) method [14, 15].

The least adequate for DC is the four-body continuum distorted wave eikonal ini-
tial state (CDW-EIS-4B) method [16, 17] because of crudely approximating the two
electronic full Coulomb waves in the entrance channel by their asymptotic eikonal
phases. The most favored by measurements is the single-double scattering (SDS-4B)
method [18]. While preserving the correct boundary conditions in both the entrance
and exit channels, this symmetrized two-center theory adopts a single-step DC for one
electron and a double-step DC for the other electron.

Destructive interference of heavy oscillations of electronic full Coulomb waves
for continuum intermediate states is prone to cause notable reductions in Q. Four
such waves appear in the CDW-4B method for DC. However, the CDW-4B method
largely underestimates most of the measured total cross sections Q [19, 20]. On the
other hand, the SDS-4B method includes two electronic full Coulomb waves (one per
scattering center). It has been shown in Ref. [18] that the SDS-4B method for DC
agrees excellently with the majority of the experimental data at energies above 200
keV. Supporting evidence for a more detailed relative performance of the SDS-4B
and CDW-4B theories is illustrated in the present work by comparisons with all the
available measurements on Q.

123



Journal of Mathematical Chemistry (2023) 61:2019–2044 2021

Further analyzed is a close relationship between the SDS-4Bmethod for DC and the
CDW-4Bmethod for SC. In the latter theory for SC, an extra pathway to capture of the
active electron is provided by the Coulomb interaction between the projectile nucleus
and the passive electron. The same potential appears also in the perturbation interaction
from the prior transition amplitude of the SDS-4B method for DC. It is therefore of
interest to presently compare the relative contributions and energy dependence of this
particular mode of electron capture.

Atomic units will be used throughout unless otherwise noted.

2 Theory

In considering DC for a collision of a bare nucleus with a heliumlike atomic target in
its ground singlet state (1s2 : 1S), the non-relativistic, non-radiative, spin-independent
formalism is employed with two distinguishable electrons. In the entrance channel, a
heavy bare nucleus P of charge ZP and mass MP � 1 impacts upon a two-electron
target containing a heavy nucleus T of charge ZT andmassMT � 1. In the exit channel,
a new two-electron heliumlike atomic system is formed through DC containing P, e1
as well as e2, while leaving behind the target remainder, the bare nucleus ZT. Thus,
initially, e1 and e2 move in the target atom in its stationary state. Finally, after collision,
both target electrons are captured by P. As such, this scattering event is schematically
represented by the following process:

ZP + (ZT; e1, e2)i −→ (ZP; e1, e2) f + ZT. (1)

The bound states of e1 and e2 are symbolized by the parentheses, where the subscripts
i and f respectively refer to the standard sets of the initial and final quantum num-
bers. We denote by xk and sk the vectors connecting the k th electron ek to T and
P, respectively (k = 1, 2). They define the inter-electronic vector x12 = x1 − x2 or
s12 = s1− s2,where x12 = s12. Further, R is the vector connecting P and T (it relates
to xk and sk via R = x1−s1 = x2−s2). Vector R is resolved into its two components,
R = ρ + vZ , where ρ is a two-dimensional vector in the scattering (XOY) plane and
vZ is along the Z-axis in the Galilean XOYZ reference system. The velocity vector v

of P (with the target at rest) is along the Z-axis. Vector ρ should not be confused with
the impact parameter b, as we are not using the impact parameter method (IPM).

The initial and final bound-state wave functions, labeled by ϕT
i (x1, x2) and

ϕP
f (s1, s2), are associated with the binding energies ET

i and EP
f , respectively. The

unperturbed (undistorted) entrance channel state �i is the product of ϕT
i and the plane

wave for the free relative motion of ZP and (ZT; e1, e2)i . Likewise, the unperturbed
exit channel state � f is the product of ϕP

f and the plane wave for the free relative
motion of (ZP; e1, e2) f and ZT. In the DW theories, �i is distorted by the correla-
tion effects between ZP and (ZT; e1, e2)i . Similarly, � f is distorted by the correlation
effects between (ZP; e1, e2) f and ZT.

These dynamic correlation effects between P and (T, 2e)i in the entrance channel
as well as between T and (P, 2e) f in the exit channel are described by the compound
Coulomb distortions D±

i, f in the distorted waves χ±
i, f . Here, the ± signs refer to the
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outgoing/incoming boundary conditions at large distances of particles, respectively.
The forms of D±

i, f depend on the descriptions of the motions of the electrons and
heavy particles. Such distortions refer to the pairwise Coulomb interactions, P − e1,2
in the entrance channel, T − e1,2 in the exit channel as well as P-T in both channels.
Distorted waves χ±

i, f are the products of �i, f and D±
i, f as χ±

i, f = �i, f D
±
i, f .

The electronic distorting factors in D±
i, f are always placed on the nuclear center

to which the electrons are not bound. Different choices of D±
i, f give different DW

methods. Thus, in the CDW-4B method for DC [11], the Coulomb distortion factors
D±
i, f are the products of the three full Coulombwave functions. In this DW theory, D+

i
contains the two s1,2−dependent electronic full Coulomb waves for e1,2 centered on
ZP (attractive potentials ZP−e1,2). Likewise, D

−
f incorporates the two x1,2−dependent

electronic full Coulombwaves for e1,2 centered on ZT (attractive potentials ZT−e1,2).
The third Coulomb distortion per channel in the CDW-4B method is the full

Coulombwave due to the repulsive internuclear potential ZP−ZT, i.e. VPT = ZPZT/R.
In this method, the product of two such waves appears in the transition amplitudes.
However, in the limit 1/MP,T � 1, the ensuing R−dependent full Coulomb wave
for the relative motion of heavy nuclei P and T can be replaced by its logarithmic
Coulomb phase with a negligible error of the order of or less than 1/μ, where μ is the
reduced mass μ = MPMT/(MP + MT).

The product of such two phases gives a single phase (μρv)2i ZPZT/v , which con-
tributes nothing to either the prior or post total cross sections Q−

i f or Q
+
i f , respectively

[2, 11, 18]. Therefore, for computations of Q∓
i f in the CDW-4Bmethod, this phase can

be omitted from T∓
i f and similarly in the CDW-EIS-4B method. Some other DW theo-

ries can contain the ρ−dependent phases, associated with the product of the Coulomb
waves of heavy particles moving in the field of the screened nuclear charges of P and
T. Such phases would not contribute either to Q∓

i f and, thus, they too can be dropped
from the pertinent transition amplitudes, as will presently be done.

The parts of the electronic full Coulomb waves (and their asymptotes) that distort
the unperturbed channel states �i, f are written as:

D+
P (sk) = N+(νP)1F1(iνP, 1, ivsk + iv · sk); k = 1, 2

D−
T (xk) = N−(νT)1F1(−iνT, 1,−ivxk − iv · xk); k = 1, 2

D+
P (s1, s2) =

2∏

k=1

D+
P (sk), D+

P,eik(s1, s2) =
2∏

k=1

(vsk + v · sk)−iνP

D−
T (x1, x2) =

2∏

k=1

D−
T (xk), D−

T,eik(x1, x2) =
2∏

k=1

(vxk + v · xk)iνT

N±(νK) = eπνK/2�(1 ∓ iνK), νK = ZK

v
(K = P, T)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (2)

The standard symbols 1F1(a, b, z) and �(z) denote the Kummer function (i.e. the
Gauss confluent hypergeometric function) and the Euler gamma function, respectively.
In the Coulomb normalization constants N±(νK), quantity νK is the usual Sommer-
feld parameter (also known as the perturbation parameter or the Coulomb interaction
parameter).
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In all the DW transition amplitudes, the product of the plane waves from the initial
and the conjugated final state is contained in the standard exponential term Edc, which
in the mass limit 1/MP,T � 1, acquires the form:

Edc = eiαdc·(s1+s2)+iβdc·(x1+x2). (3)

Vectors αdc and βdc are comprised of the transverse momentum transfer η (the trans-
verse or perpendicular component of the momentum transfer), the energy defect
(difference between the initial and final bound-state energies) and the electron trans-
lation factors (±v/2 per electron) as:

αdc = η − v+
dcv

2
, βdc = −η + v−

dcv

2
, αdc + βdc = −v

v±
dc = 1 ± 	Edc

v2
, 	Edc = EP

f − ET
i

⎫
⎪⎬

⎪⎭
. (4)

This is a succinct summary of the common, salient features of theDWmethods for DC.
We will now list the main working formulae of all the methods employed in Section 3.
Because of their similarity, the first given will be transition amplitudes in the SDS-4B
method for DC [18] and the CDW-4Bmethod for SC [21]. Subsequently, providedwill
be transition amplitudes in the CB1-4B [9, 10], CDW-4B [11, 12], CDW-EIS-4B [16,
17], BCIS-4B [13] and BDW-4B [14, 15] methods. As noted, none of these transition
amplitudes T∓

i f will contain the discussed ρ−dependent phases factors because they

do not contribute to Q∓
i f .

2.1 The SDS-4Bmethod (prior and post) for DC

T (SDS−4B)−
i f ,dc (η ) =

∫∫∫
dx1dx2dR Edc (vR − v · R)iξ

×ϕP�
f (s1, s2)

1 + P12√
2

D−�
T (x1)V

(SDS−4B)

i,dc ϕT
i (x1, x2)D

+
P (s1), (5)

T (SDS−4B)+
i f ,dc (η ) =

∫∫∫
ds1ds2dR Edc (vR + v · R)−iξ

×ϕT
i (x1, x2)

1 + P12√
2

D+
P (s1)V

(SDS−4B)

f ,dc ϕP�
f (s1, s2)D−�

T (x1), (6)

V (SDS−4B)

i,dc = VP,2 +U (SDS−4B)

i,dc , V (SDS−4B)

f ,dc = VT,2 +U (SDS−4B)

f ,dc

VP,k = ZP

(
1

R
− 1

sk

)
, VT,k = ZT

(
1

R
− 1

xk

)
; k = 1, 2

U (SDS−4B)

i,dc = −∇x1 ln(ϕ
T
i (x1, x2)) · ∇s1 , ξ = ZT−ZP

v

U (SDS−4B)

f ,dc = −∇s1 ln(ϕ
P�
f (s1, s2)) · ∇x1

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (7)
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Here, for concreteness, electrons e1 and e2 are viewed as undergoing double and
single scatterings, respectively. The underlying assumption is that the bound-state
wave function of e1 (e2) is distorted (undistorted) by the presence of the Coulomb
fields from P − e1(P − e2) in the entrance channel and T − e1(T − e2) in the exit
channel. The same transition probability is obtained for the other way around, i.e.
when electrons e1 and e2 are considered to be captured through single and double
scatterings, respectively. This exchange effect is achieved by the permutation operator
P12 through the form of the symmetrization operator (1 + P12)/

√
2.

2.2 The CDW-4Bmethod (prior and post) for SC

As seen from these formulae, there is a great resemblance between the SDS-4Bmethod
for DC [18] and the CDW-4B method for SC [21]. To make this feature more explicit,
we need also the transition amplitudes in the CDW-4B method for SC in the process
symbolized as:

ZP + (ZT; e1, e2)i −→ (ZP, e1) f1 + (ZT, e2) f2 , (8)

where { f1, f2} ≡ f ′ is the set of the final quantum numbers of the two hydrogenlike
atomic systems (there will be no confusion to hereafter relabel f ′ as f , for simplicity).
The prior and post transition amplitudes T (CDW−4B)∓

i f ,sc in the CDW-4B method [21] for
single capture in process (8) are defined by:

T (CDW−4B)−
i f ,sc (η ) =

∫∫∫
dx1dx2dR Esc

×ϕP�
f1(s1)ϕ

T�
f2 (x2)

1 + P12√
2

D−�
T,eff(x1)V

(CDW−4B)

i,sc ϕT
i (x1, x2)D

+
P (s1), (9)

T (CDW−4B)+
i f ,sc (η ) =

∫∫∫
ds1ds2dR Esc

×ϕT
i (x1, x2)

1 + P12√
2

D+
P (s1)V

(CDW−4B)

f ,sc ϕP�
f1(s1)ϕ

T�
f2 (x2)D

−�
T,eff(x1), (10)

V (CDW−4B)

i,sc = V (SDS−4B)

i,dc , (11)

V (CDW−4B)

f ,sc = (
VP,2 + V12

) − ∇s1 ln(ϕ
T�
f2 (x2)ϕ

P�
f1(s1)) · ∇x1 , (12)

V12 = 1

x12
− 1

x1
, (13)

Esc = eiαsc·s1+iβsc·x1
D−

T,eff(xk) = N−(νT,eff)1F1(−iνT,eff , 1,−ivxk − iv · xk); k = 1, 2
N−(νT,eff) = eπνT,eff/2�(1 + iνT,eff)

νT,eff = ZT,eff

v
, ZT,eff = ZT − 1

αsc = η − v+
scv, βsc = −η − v−

scv, αsc + βsc = −v

v±
sc = 1

2
± 	Esc

v2
, 	Esc = (EP

f1 + ET
f2) − ET

i

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (14)
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Here, ϕK
fk
and EK

fk
are the respective final bound-state wave function and the binding

energy of the hydrogenlike system (ZK, ek) fk (K=P, T; k = 1, 2). In Eqs. (9) and
(10), electron e1 is captured through a double collision (P − e1 − T) and this leads
to formation of (ZP, e1) f1 described by ϕP

f1
(s1). On the other hand, electron e2 is

bound in the final state ϕT
f2
(x2) of the target remainder, (ZT, e2) f2 . The transition

amplitudes T (CDW−4B)∓
i f ,sc for this combination of the collisional events are symmetrized.

Here too, the same probability is obtained when electrons e1 and e2 exchange their
roles. Alternatively, the symmetrization operator(1+ P12)/

√
2 from Eqs. (9) and (10)

can be omitted, in which case all the ensuing cross sections (total Qi f , differential
dQi f /d�) are to be multiplied by 2, as has been done in Ref. [21].

In principle, the electron e2 can contribute to the probability of capture of electron
e1 in SC from (8). This could be achieved by the velocity-matching single collisions
(P − e2) through the Coulomb interaction potential VP,2 = ZP(1/R − 1/s2) in Eqs.
(9) and (10). Such scattering events can be mediated by the static e1 − e2 correlations
in the initial state ϕT

i (x1, x2) of the target (ZT; e1, e2)i .
The similarity is obvious between the prior transition amplitudes (5) and (9) in the

SDS-4B and CDW-4B methods for DC and SC in processes (1) and (8), respectively.
This occurs because the two methods describe the entrance channel in the same way
for DC in (1) and SC in (8). However, processes (1) for DC and (8) for SC differ
in their exit channels and so do the corresponding descriptions by the SDS-4B and
CDW-4B methods, respectively.

This latter dissimilarity is most transparent in the post transition amplitudes (6) for
DC and (10) for SC, especially regarding the perturbation potentials. Compared to
Eq. (6) for DC, there is an extra short-range interaction V12 = 1/x12 − 1/x1 in the
perturbation from Eq. (13) for SC. A partial account of the electron-electron dynamic
correlations for SC is achieved by using 1/x12 in the full perturbation interaction
from Eq. (13). For DC, potential 1/x12 is absent from the perturbation in Eq. (6)
since it is absorbed in the bound-state eigenvalue problem for the heliumlike system
(ZP; e1, e2) f in the exit channel of DC in (1).

Another difference exists between Eqs. (6) and (10) and that is in the electronic part
of the distortions of the final unperturbed states. In both Eqs. (6) and (10), the related
common distorting factor is the one-electron Coulomb continuum wave functions in
the exit channels. However, this function is placed on two different nuclear charges,
i.e. the target bare nuclear charge ZT for DC in (1) and the point charge ZT,eff = ZT −1
of the target remainder (ZT, e2) f2 for SC in (8). Here, ZT − 1 is the screened target
nuclear charge (the target bare nuclear charge ZT reduced by the unit charge of electron
e2).

By definition, the final bound-state wave functions are different for SC and DC.
Thus, the final bound-state heliumlike wave function ϕP

f (s1, s2) is for the nuclear
charge ZP of P in DC from (1). In SC from (8), the two final bound-state hydrogenlike
wave functions are on two different nuclear charges, i.e. ϕP

f1
(s1) is for ZP, whereas

ϕT
f2
(x2) is for ZT − 1.
Moreover,DCandSCcollisions differ in the critically important electron translation

factors. Two and one such factors associated with transfer of two and one electrons
are present in Edc and Esc from Eqs. (3) and (14), respectively. As discussed, electron
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e2 stays with the target remainder (ZT, e2) f in the exit channel of SC in process (8).
Therefore, the translation factor for electron e2 is absent from the exponential Esc in
Eq. (14).

The advantage of juxtaposing the transition amplitudes for (1) and (8) is that
T (SDS−4B)∓
i f ,dc for DC and T (CDW−4B)∓

i f ,sc for SC can be deduced from each other. Thus,

T (CDW−4B)−
i f ,sc would follow if in T (SDS−4B)−

i f ,dc these changes are made: ϕP
f (s1, s2) →

ϕP
f1
(s1)ϕT

f2
(x2), νT = ZT/v → νT,eff = ZT,eff/v, Edc → Esc, αdc → αsc, βdc → βsc

and v±
dc → v±

sc. Conversely, T (SDS−4B)−
i f ,dc would emerge if in T (CDW−4B)−

i f ,sc we rede-
fine: ϕP

f1
(s1)ϕT

f2
(x2) → ϕP

f (s1, s2), νT,eff = ZT,eff/v → νT = ZT/v, Esc → Edc,
αsc → αdc, βsc → βdc and v±

sc → v±
dc. These redefinitions, supplemented by the

alterations: (a) VT,k → VP,k +V12 in V
(SDS−4B)

f ,dc from T (SDS−4B)+
i f ,dc would yield T (CDW−4B)+

i f ,sc

and (b) VP,k + V12 → VT,k in V (CDW−4B)

f ,sc from T (CDW−4B)+
i f ,sc would give T (SDS−4B)+

i f ,dc .

2.3 The CB1-4Bmethod (prior and post) for DC

T (CB1−4B)−
i f ,dc (η ) =

∫∫∫
dx1dx2dR Edc (vR − v · R)2iξ

×ϕP�
f (s1, s2 )V (CB1−4B)

i,dc ϕT
i (x1, x2 ), (15)

T (CB1−4B)+
i f ,dc (η ) =

∫∫∫
ds1ds2dR Edc (vR + v · R)−2iξ

×ϕP�
f (s1, s2 )V (CB1−4B)

f ,dc ϕT
i (x1, x2 ), (16)

V (CB1−4B)

i,dc = VP,1 + VP,2, V (CB1−4B)

f ,dc = VT,1 + VT,2. (17)

2.4 The CDW-4Bmethod (prior and post) for DC

T (CDW−4B)−
i f ,dc (η ) =

∫∫∫
dx1dx2dR Edc D−�

T (x1, x2)

×ϕP�
f (s1, s2)(1 + P12)D

+
P (s2)V

(CDW−4B)

i,dc ϕT
i (x1, x2)D

+
P (s1), (18)

T (CDW−4B)+
i f ,dc (η ) =

∫∫∫
ds1ds2dR Edc D+

P (s1, s2)

×ϕT
i (x1, x2)(1 + P12)D

−�
T (x2)V

(CDW−4B)

f ,dc ϕP�
f (s1, s2)D−�

T (x1), (19)

V (CDW−4B)

i,dc = U (SDS−4B)

i,dc , V (CDW−4B)

f ,dc = U (SDS−4B)

f ,dc . (20)
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2.5 The CDW-EIS-4Bmethod (post) for DC

T (CDW−EIS−4B)+
i f ,dc (η ) =

∫∫∫
ds1ds2dR Edc D+

P,eik(s1, s2)

×ϕT
i (x1, x2)(1 + P12)D

−�
T (x2)V

(CDW−EIS−4B)

f ,dc ϕP�
f (s1, s2)D−�

T (x1), (21)

V (CDW−EIS−4B)

f ,dc = V (CDW−4B)

f ,dc . (22)

2.6 The BCIS-4Bmethod (prior and post) for DC

T (BCIS−4B)−
i f ,dc (η ) =

∫∫∫
dx1dx2dR Edc (vR − v · R)−2iνP

×ϕP�
f (s1, s2)V

(BCIS−4B)

i,dc ϕT
i (x1, x2)D

−�
T (x1, x2), (23)

T (BCIS−4B)+
i f ,dc (η ) =

∫∫∫
ds1ds2dR Edc (vR + v · R)−2iνT

×ϕP�
f (s1, s2)V

(BCIS−4B)

f ,dc ϕT
i (x1, x2)D

+
P (s1, s2). (24)

V (BCIS−4B)

i,dc = V (CB1−4B)

i,dc , V (BCIS−4B)

f ,dc = V (CB1−4B)

f ,dc . (25)

2.7 The BDW-4Bmethod (prior and post) for DC

T (BDW−4B)−
i f ,dc (η ) =

∫∫∫
dx1dx2dR Edc (vR + v · R)−2iνT

×ϕP�
f (s1, s2)(1 + P12)D

+
P (s2)V

(BDW−4B)

i,dc ϕT
i (x1, x2)D

+
T (s1), (26)

T (BDW−4B)+
i f ,dc (η ) =

∫∫∫
ds1ds2dR Edc (vR − v · R)−2iνP

×ϕT
i (x1, x2)(1 + P12)D

−�
T (x2)V

(BDW−4B)

f ,dc ϕP�
f (s1, s2)D−�

T (x1), (27)

V (BDW−4B)

i,dc = V (CDW−4B)

i,dc , V (BDW−4B)

f ,dc = V (CDW−4B)

f ,dc . (28)
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2.8 Total cross sections

The total cross sections Q∓
i f for SC and DC are computed from the usual formulae:

Q∓
i f (a

2
0) =

∫
dη

∣∣∣∣∣
T∓
i f (η )

2πv

∣∣∣∣∣

2

, (29)

where a0 is the Bohr radius. In all the illustrations (figures), these cross sections are
expressed in units of cm2 using the constant πa20 ≈ 8.797 × 10−17cm2. Generally,
depending on the values of the magnetic quantum numbers mi and m f of the initial
and final states, respectively, the integrands T∓

i f (η ) in (29) may explicitly depend on
angle φη ∈ [0, 2π ] of η. However, a trivial analytical integration over φη in (29)
always gives 2π . For the presently considered initial and final ground states, T∓

i f (η )

is independent on φη and the integral over this angle yields 2π .
We computed Q∓

i f by carrying out the multiple numerical quadratures (3-
dimensional in the CB1-4Bmethod, 4-dimensional in the CDW-4B and 5-dimensional
in the BCIS-4B, BDW-4B and SDS-4B methods). The results from the CDW-EIS-4B
method (4-dimensional quadratures) are taken from Refs. [16, 17]. We use the Gauss-
Legendre quadrature rule in the CB1-4B, CDW-4B, BCIS-4B, BDW-4B and SDS-4B
methods. In these methods, presently applied to the symmetric case ZT = ZP = 2 of
process (1), i.e. 4He2+ + 4He(1s2) → 4He(1s2) + 4He2+, the explicit computations
confirmed that there is no post-prior discrepancy, as expected.

Regarding differential cross sections dQ∓
i f /d�, the CDW-4B and CDW-EIS-4B

methods always use the highly oscillatory Fourier-Bessel numerical integration for
both the homo-nuclear (ZP = ZT) and hetero-nuclear (ZP �= ZT) charges. However,
for some special cases, this integration is avoided in the CB1-4B, BCIS-4B, BDW-4B
and SDS-4B methods for which the angular distributions dQ∓

i f /d� are obtained by

squaring the absolute values of the already available transition amplitudes T∓
i f (η ).

This is the case in the post and prior forms of the CB1-4B method for either ZP = 2
or ZT = 2. The same advantage is also encountered in the BCIS-4B method (prior:
ZP = 2, post: ZT = 2), the BDW-4B method (prior: ZT = 2, post: ZP = 2) as well as
in the prior and post forms of the SDS-4B method for either ZP = 1 or ZT = 1.

3 Results and discussion

The cross sections Q with the heavy mass limit (1/MP,T � 1) in the CB1-4B, CDW-
4B, CDW-EIS-4B, BCIS-4B, BDW-4B and SDS-4B methods are illustrated in five
figures. For DC in the α − He collisions, the results from these six methods to be
analyzed concern only the ground-to-ground state transition. They are all obtained
with the one-parameter Hylleraas [22] wave function of helium in the entrance and
exit channels. The collisions of this type are written as:

4He2+ + 4He(1s2) −→ 4He(1s2) + 4He2+. (30)
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The only experimental data on Q for this process are from Refs. [23] and [24]. All
the other measured cross sections Q on DC to be shown are from Refs. [25–37] and
they refer to the state-summed transitions (1s2 → �), i.e. for a process with all final
bound states (ground and excited) of helium:

4He2+ + 4He(1s2) −→ 4He(�) + 4He2+. (31)

Using the cold target recoil ion momentum spectroscopy (COLTRIMS), Refs. [24, 38]
reported the experimentally measured cross sections dQ/d� for both the ground and
excited final states in theHe2+ + He(1s2) → He(ground, excited) + He2+ collisions.
Therein, excited-state differential cross sections have been found to be small relative
to their counterparts for the ground-to-ground state transitions. The same applies to
total cross sections when integrating dQ/d� over the solid angle �.

Thus, it is still meaningful to compare the theoretical cross sections Q for (30)
with the experimental data for (31). We shall do that with no scaling of Q for (30),
i.e. without any approximate inclusion of the final excited states of helium in (31).
The smallness of the measured excited-state contributions to DC in the α +He(i) →
He( f ) + α collisions is due to the dominance of the resonant transition He(1s2) →
He(1s2) which is process (30).

In Figs. 1-5, several important aspects of DC are addressed using the mentioned
six quantum-mechanical four-body perturbativemethodswith correct boundary condi-
tions. Such aspects include the assessment of the relative performance of these theories
with respect to all the existing experimental data from different measurements at 100-
6000 keV. Also evaluated are the competing mechanisms for DC described by these
different DW methods.

Moreover, assessed are the contributions due to the two parts of the complete distort-
ing potentials, the electrostatic pairwise Coulomb interactions (electron-nucleus) and
the cross-kinetic energy operator potentials. Further, when it comes to the reliability
of representing theoretically the measurements, special attention is paid to differen-
tiate between the one- and two-channel electronic distortions. To put the analysis in
context and perspective, the results for DC are juxtaposed to those for SC. The aim is
to check how the past successful experience of the DW theories with correct boundary
conditions for SC would translate to DC.

Thus, the first insight into the relative strength of DC can be gained by visualizing
its cross sections alongside the corresponding results for SC in the same α − He
collisional system with the two exit channels according to:

4He2+ + 4He(1s2) −→ 4He
+
(1s) + 4He

+
(1s), (32)

4He2+ + 4He(1s2) −→ [4He+] + [4He+]. (33)

Here, symbol [4He+] denotes that the 4He+ ion is any state. Regarding theories for
(32), only the values of Q in the CB1-4B and CDW-4Bmethods will be used. For both
methods, we will employ the ground-state helium wave functions of Hylleraas [22]
and Silverman et al. [39]. As is customary, these predictions for Q will be multiplied
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states. This is the case only in two measurements on DC: Zastrow et al. [23] (JET) and Schöffler et al.
[24] (COLTRIMS). All the remaining measured cross sections on SC and DC are for capture into any final
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details, see the main text (color online)
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by 1.202 (the Oppenheimer scaling factor) to connect them (albeit approximately)
with process (33) for which the experimental data are available [25–27, 40–44].

It is clear that DC is weaker than SC since the former is a higher-order process
(more involved), which then necessarily has a smaller chance for occurring. Even
if capture of each electron is completely independent, as in the IPM, the product
probability for DC is smaller than the individual probabilities for each SC. This is
valid for physical probabilities that must always be smaller than or equal to unity (the
probability conservation law).

In the CDW-4B method, there is yet another reason for cross sections Q to be
smaller inDC than in SC. It is the occurrence of the stronger oscillations (yieldingmore
intense destructive interference effects) from four than from two electronic Kummer
functions in DC and SC, respectively. These oscillations are not damped by the cross-
kinetic energy parts of the perturbation potentials at fixed electronic distances (from the
nuclei) in the bound-states. However, at decreasing heavy particle separations R (for
fixed electronic distances in the bound-states), such oscillations can bemitigated by the
Coulomb potentials of the type∼ 1/R that are present in the electrostatic perturbation
potentials from the CDW-4B method for SC. Potentials ∼ 1/R are absent from the
perturbation interactions in the CDW-4B and BDW-4B methods for DC (but present
in the BCIS-4B and SDS-4B methods for DC).

The results for SC andDC are illustrated in Fig. 1 at 80-8000 keV by using the CB1-
4B and CDW-4B methods together with the measurements. The top and the bottom
sets of the displayed data are for SC and DC, respectively. For clarity, all the results
for SC are multiplied by 10. The disparity between the SC and DC data is seen to vary
strongly with changes in the impact energy E in both theoretical and experimental
sets. For example, in the CDW-4B method, we have Q(CDW−4B)

sc /Q(CDW−4B)
dc ≈ 4 and

Q(CDW−4B)
sc /Q(CDW−4B)

dc ≈ 230000 at 100 and 8000 keV, respectively. In other words,
the lines of cross sections for DC in the CDW-4B method decline far much faster than
those for SC. The same or a similar conclusion can also be drawn with the CB1-4B
method as well as with the measured cross sections.

Another striking observation can be made in Fig. 1 when comparing the CB1-4B
and CDW-4B methods for one process at a time (SC or DC). Thus, at e.g. 8000 keV,
we have Q(CB1−4B)

sc /Q(CDW−4B)
sc ≈ 1.7 for SC and Q(CB1−4B)

dc /Q(CDW−4B)

dc ≈ 70 for DC.
Moreover, the widely different intersection energies, ∼1500 and ∼120 keV, are seen
for the line pairs for SC (top) and DC (bottom), respectively.

For SC, below and above 1500 keV, theCB1-4Bmethod underestimates and overes-
timates theCDW-4Bmethod, respectively. Such underestimations and overestimations
are relatively mild. This indicates that at 80-8000 keV, an inclusion of the intermediate
ionizing continua in the entrance and exit channels for SC in the CDW-4B method
(one electronic full Coulomb wave per channel) is not overly influential on either the
magnitude or the line-shapes of the computed Q relative to the CB1-4B method. This
latter method completely ignores the said second-order effects (the intermediate ion-
ization of either electron). Most importantly, it is noted that the CB1-4B (at E > 100
keV) and CDW-4B (at E > 200 keV) methods for SC exhibit a very good or excellent
performance when compared to the experimental data.
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In Fig. 1, the experimental data from different measurements, juxtaposed for SC
and DC, also merit an appropriate comment. All the measured cross sections for
SC from various recordings are in mutual accord and lined up next to each other
without some inordinate dispersions. This offers a reliable basis for robust tests of
adequacy of different theories. An opposite situation is encountered in DC, where
cross sections from various measurements differ by sizable factors of 3, 4, 6 and even
20 at E =200, 600 1500 and 4000 keV, respectively. Such an increasing discrepancy
with rising energy E is most pronounced above 3MeV where only three controversial
experimental data points are available from two different measurements [36, 37].

In particular, at 4000 [36] and 4080 keV [37], the measured cross sections differ
by an enormous factor of about 20. This situation underscores the need for some new,
more precise measurements on Q at higher energies, e.g. by COLTRIMS [24, 38, 45].
Reduced accuracy of the measured cross sections for DC compared to SC is partially
caused by the weakness of the former process. Another possible reason could be in
considerable difficulty to experimentally distinguish between capture of both electrons
involving the same collision He2+ − He from sequential DC encompassing two SC
collisions with different targets, He and the rest gas G (He2+ + He → He+ + He+
followed by He+ + G → He + G+).

Figure 2 compares the CB1-4B, CDW-4B, CDW-EIS-4B, BCIS-4B and BDW-
4B methods with the measurements. Herein, the status of different DW theories is
self-evident in plain view. Specifically, there is an extreme model-dependence of DC
manifested in the orders of magnitude discrepancy even when only the second-order
theories are considered. For instance, a factor of 5000 discrepancy is seen between
the CDW-4B and CDW-EIS-4B methods at 100 keV. Any shortcomings of the theory,
yielding no severe consequences for SC, could be exacerbated for DC.

This enhanced sensitivity of the theory is due to the discussed smallness of the
cross sections for DC relative to SC. Thus, approximating e.g. the electronic full
Coulomb waves from the CDW-4B method by their eikonal phases in the CDW-EIS-
4B method for SC appears to be largely innocuous at moderately high energies. For
SC, according to e.g. Ref. [3], when E decreases, such a replacement becomes even
beneficial regarding the experimental data because around the Massey peaks for Q
the CDW-EIS-4B method outperforms the CDW-4B method.

However, in DC (Fig. 2), precisely around the Massey peak (i.e. around 100 keV),
exactly the same eikonal approximation in the CDW-EIS-4B method underestimates
the experimental data by about three orders of magnitude. Even at 3000 keV, the
CDW-EIS-4Bmethod underestimates themeasured Q by a factor of 30. This complete
breakdown of the CDW-EIS-4B method for DC within the usual validity domain of
this theory is caused by the ’multiplication effect’ in the eikonal electronic distortions.
This effect refers to the appearance of the product of the two eikonal phases (one
for each captured electron) in DC compared with only one such eikonal phase in
SC. Each electronic eikonal phase in the CDW-EIS-4B method carries an error and,
therefore, multiplication of two such phases in DC is bound to worsen the accuracy
of the predictions by this theory.

Nevertheless, it is surprising that this inadequacy of the CDW-EIS-4B method for
DC is so pronounced. In retrospect then, themarked inappropriateness of the electronic
eikonalization of the full Coulombwaves in DC could question anew the success of the
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CDW-EIS-4B method for SC. In fact, there is no physical reason for which a further
approximation to the CDW-4B method [11] (as the one in the CDW-EIS-4B method
[16, 17]) should bring any advantage. In the past computations on Q for SC, one of
the main motivations for using the CDW-EIS-4B method was in its better description
of merely the Massey peak area than in the CDW-4B method. However, at energies
above those around the Massey peak, the CDW-EIS-4B and CDW-4B methods give
very similar results for Q in SC.

Since the CDW-EIS-4B method [16, 17] approximates the CDW-4B method [11],
any difference in the cross sections from these two formalisms should, strictly speak-
ing, be interpreted as a measure of the errors introduced by the former theory,
irrespective of the outcome of comparisons with the pertinent experiments. For SC,
the discrepancy between the CDW-4B and CDW-EIS-4B methods (especially around
the Massey peak) went in a good direction for the latter theory, which was favored
by the measurements [3]. In contradistinction, for DC, everything went in a wrong
direction for the CDW-EIS-4B method (Fig. 2), as it showed a disastrous performance
relative to the experiments [16, 17].

Within the second-order DW theories for single ionization (SI), the eikonal initial
state approximation of the electronic full Coulomb wave function in the three-body
continuum distortedwave (CDW-3B)method [46] appeared in Ref. [47]. The resulting
approximation to the CDW-3B method was the CDW-EIS-3B method. Its extension,
the CDW-EIS-4B (equivalently called the modified Coulomb-Born, MCB-4B [48,
49]) method for SI in the H+ − H− collisions (i.e. single electron detachment) gave
the best agreement with the experimental data [50] at all energies, ranging from the
reaction threshold to the Bethe limit. The CDW-EIS-3B method has been adapted to
SC in Ref. [51].

In Ref. [47], the goal of this electronic eikonalization was to counter the lack of
normalization of the total scattering wave function in the entrance channel of the
CDW-3B method [46] at finite times t (or at finite R). However, it is precisely the
electronic eikonalization that is the principal source of the most severe setback in the
CDW-EIS-4Bmethod for DC. Thus, resorting to eikonalization to mitigate the alleged
impact of normalization on charge exchange is hardly a panacea for a curve bending
around the Massey peak, since it works for SC, but fails flagrantly for DC.

As to the status of the other three theories in Fig. 2, the CB1-4Bmethod is favorable
relative to themeasurements below 900 keV, but considerably overestimates the exper-
imental data above 1000 keV. On the other hand, the CDW-4B method is reasonable,
first in a minimal window 100-250 keV, then it becomes quite poor at 300-3500 keV
and finally it is excellent at the two farthest experimental data points (4000, 6000 keV)
from one measurement [36]. The results of the BCIS-4B and BDW-4B methods are
close to each other, but below about 550 keV, they are lower than the measured cross
sections. Between 550 and 4000 keV, these latter two methods excellently reproduce
the experimental data. Regarding the two contradictory data points at 4000 keV [36]
and 4080 keV [37], the lines from the BCIS-4B and BDW-4B methods are closer to
the measured cross section from Ref. [37].

The BCIS-4B and BDW-4B method for DC have their Coulomb logarithmic
R−dependent phase factors that oscillate heavily with decreasing R. In these oscilla-
tions in the integrands of the transition amplitudes there are always some destructive
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interferences that could diminish the values of Q. For decreasing R at fixed electronic
distances from the nuclei in the bound-states, such oscillations can be partially reduced
by the rising contributions from potential ZP/R, if present in the perturbation interac-
tions of the transition amplitudes. Potential ZP/R appears in the prior and post forms
of the BCIS-4B method, but not in the BDW-4B method.

Because the BDW-4B method does not reduce the destructive interferences in the
mentioned oscillations, the line for Q from this theory should lie beneath its counter-
part from the BCIS-4Bmethod. This is indeed the case in Fig. 2 below about 2000 keV,
although the discrepancy between the BCIS-4B and BDW-4B methods is relatively
mild at all the displayed energies, 100-8000 keV. In any case, even a single Coulomb
logarithmic R−dependent phase factor for DC in the BCIS-4B and BDW-4B meth-
ods reduces too much the total cross sections that are, in turn, seen to significantly
underestimate the experimental data below about 550 keV.

Taken together, while attempting to reproduce the measured cross sections, none
of the five theories in Fig. 2 is fully successful at 100-8000 keV, counting both the
magnitude and the line-shapes. At most energies, the BCIS-4B method provides the
closest representation of the experimental data. Still, this is incomplete as there is
room for improvements to cover more quantitatively energies below 550 keV.

Regarding DC in Figs. 1 and 2, the CB1-4B, CDW-4B, CDW-EIS-4B, BCIS-4B
and BDW-4B methods are all based on the same assumption that both electrons are
simultaneously transferred by single and/or double collisions in one or two channels.
As per Fig. 2, the status of these DW perturbative theories for DC exposed the existing
lacunae that should also be the opportunities for further explorations of some alter-
native descriptions. One of such avenues is the SDS-4B method [18], which offers a
complementary mechanism for DC by hybridizing the single and double scatterings
in each channel. The outcomes of this approach to DC are illustrated in Figs. 3-5.

We already emphasized that the explicit combination of single and double scat-
terings per channel in the SDS-4B method for DC is similar to that in the CDW-4B
method for SC [21]. Therefore, it is intriguing to find out how such a parallelism
between these methods for two different collisions would be reflected in the computed
cross sections Q. To that end, the results in the SDS-4B method for DC and their
counterparts in the CDW-4B method for SC are displayed alongside each other in
Figs. 3 and 4.

In Fig. 3, shown are the two pairs of the results, one in the CDW-4B method for
SC (top) and the other in the SDS-4B method for DC (bottom). Each pair shows the
lines with and without perturbation VP,2 = ZP(1/R − 1/s2) in the composite residual
interaction V (SDS−4B)

i,dc = V (CDW−4B)

i,sc = VP,2 − ∇x1 ln(ϕ
T
i ) · ∇s1 .

It is seen in Fig. 3 that the pairs of the lines from SC and DC are quite alike. The
lines in SC intersect each other at about 1200 keV and similarly for DC at about 1750
keV. Below these crossing energies, the lines without VP,2 are lower than those with
VP,2, while above 1200 for SC and above 1750 keV for DC the situation is just the
reverse. For the neglected VP,2, the ensuing weaker complete perturbation reduces the
capture probability with decreasing E and, thus, yields smaller cross sections Q. Such
a reduction is by about a factor of 2 stronger in DC than in SC. Here, a general feature
is observed [52] (p. 289), according to which the same type of errors in Q (systematic,
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ground-state orbitals (1s1s) of Hylleraas [22] in SC (entrance channel) andDC (entrance and exit channels).
Computations performed with and without potential VP,2 = 2(1/R−1/s2) from the complete interaction in
the perturbation potential operator: VP,2 − ∇x1 ln ϕT

i · ∇s1 . In SC, potential VP,2 describes indirect capture
of active electron e1 by way of the interaction between the projectile nucleus P with the non-transferred
electron e2. For details, see the main text
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statistical in theories and experiments alike) made in SC and DC can be at least twice
larger for double than for single capture collisional events.

At higher energies in Fig. 3, the complete perturbation tends to give smaller Q
relative to the casewhen VP,2 is ignored. The implication is thatwith increasing E , there
is an enhanced destructive interference between the one-center (VP,2) and two-center
(∇x1 ln(ϕ

T
i ) · ∇s1 ) contributions coming from the complete perturbation interaction

VP,2 − ∇x1 ln(ϕ
T
i ) · ∇s1 .

This is expected since with the augmented E , double scatterings (two-center effects
of the Thomas type) becomemore important than single scatterings (one-center effects
of kinematic capture). Insightful as it might be, Fig. 3 is still mostly qualitative as it
focuses primarily on the line-shape patterns of Q versus E for SC and DC. Yet, even
with the restricted focus, there is nevertheless a quantitative hint from Fig. 3. Namely,
a line-shape, being an energy dependence of a total cross section, can inform about
the rate of decline of Q(E) with rising E .

It is this rate in Fig. 3 that is much faster in DC with the SDS-4Bmethod than in SC
with the CDW-4B method. Such a finding coheres with the like observation in Fig. 2
for DC and SC from the CDW-4B method alone. The results for Q from the CDW-4B
method are intentionally not included in Fig. 3, as this figure is devoted solely to the
dependence of the line-shapes on VP,2. By definition, potential VP,2 is absent from the
perturbation interaction V (CDW−4B)

i,dc for DC in the CDW-4B method.
To go beyond the qualitative aspect (the line-shapes), Fig. 4 gives the relevant full

quantitative information on Q obtained with the complete perturbation interactions in
the prior forms of the SDS-4Bmethod for DC (bottom) aswell as the CDW-4Bmethod
for SC (top) and DC (bottom). Specifically for DC at 200-8000 keV, Fig. 4 shows that
the CDW-4B method considerably underestimates the SDS-4B method. Importantly,
however, it is the SDS-4B method for DC that is seen here to successively reproduce
most of the experimental data. Moreover, by reference to the top part of Fig. 4, it
follows that the same single-double scattering mechanism per channel is capable of
securing a comparable adequacy (with respect to themeasurements) at similar energies
E for SC and DC in the CDW-4B and SDS-4B methods, respectively.

Such a finding shows that the lowest-order of the Dodd-Greider perturbation series
expansion [1] for DC can be as successful as its counterpart for SC. For this to happen,
however, it is less likely that DC in the α − He collisions should proceed with simul-
taneous capture of both electrons by double Thomas-type scatterings in two channels
as prescribed by the CDW-4B method. Instead, DC appears to be more probable if,
in both channels, one electron undergoes double collisions, while the other electron is
transferred by single collisions, as envisaged by the SDS-4B method.

In the CDW-4B method for DC, two paths with simultaneous double collisions
for each electron per channel are too demanding and, thus, less likely. This pathway
requires a highly coordinated motion of both electrons to bring them to almost the
same spatial location at nearly the same time, so that they could be both captured
via the identical Thomas-type two-step collisions. Such a strict requirement for DC is
obviated in the SDS-4Bmethod.While combining the one- and two-step mechanisms,
the SDS-4B method creates more possibilities for two electrons and two nuclei.

The enhanced freedom increases their chance for double charge exchange by allow-
ing the nuclei to perform close collisions with one electron and distant collisions with
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Fig. 4 Total cross sections Q(cm2) versus impact energy E(keV) for single capture, SC (top), and double
capture, DC (bottom), in the α −He collisions. Theories (the prior form) are for the initial and final ground
states. This is the case only in two measurements on DC: Zastrow et al. [23] (JET) and Schöffler et al. [24]
(COLTRIMS). All the remainingmeasured cross sections on SC and DC are for capture into any final bound
state. For the ground-state helium wave functions, the uncorrelated open-shell orbitals (1s1s) of Hylleraas
[22] are employed in the CDW-4B method (SC, entrance channel) as well as in the SDS-4B and CDW-4B
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the other electron. This flexibility of the SDS-4B method is practical since all the cal-
culations can be performed with the same complexity as in the BCIS-4B and BDW-4B
methods. The superiority of the SDS-4B method over the CDW-4B method can be
understood by the main mathematical reason, as well. It is the fact that the SDS-
4B method is void of the ’multiplication effect’ (the product of the two full electronic
Coulombwaves per channel), which impedes the performance of the CDW-4Bmethod
for DC.

The SDS-4B and BCIS-4B methods for DC are compared in Fig. 5. Herein, the
SDS-4B method is seen to be superior to the BCIS-4B method. More specifically,
below about 1000 keV, the SDS-4B method is more successful than the BCIS-4B
method in predicting the experimental data. Above 1000 keV, the two methods give
the cross sections Q in a very close proximity of each other or even almost coincident.
The reason for which the line for Q in the SDS-4Bmethod lies considerably above that
in the BCIS-4B method is in the absence and presence of the Coulomb R−dependent
phase factor in the former and latter theory, respectively.

This phase disappears altogether from the SDS-4B method for ZP = ZT as in
process (30). Oscillations (with the underlying destructive interferences) of such a
phase reduce Q in the BCIS-4B method (as discussed with Fig. 2). Conversely, the
lack of these oscillations in the SDS-4Bmethod leads to the augmented Q by an extent
sufficient for a visibly improved agreement between the theory and measurements
(Fig. 5).

4 Conclusions

A class of two-electron rearranging collisions between alpha particles and helium is
studied theoretically at intermediate andhigh impact energies.Addressed are quantum-
mechanical four-body distorted wave (DW) perturbative methods on double capture
(DC) at 100-8000 keV. A comparative analysis is performed using six DW theories
with the correct initial and final boundary conditions (CB1-4B, CDW-4B, CDW-EIS-
4B, BCIS-4B, BDW-4B, SDS-4B). The first mentioned method is of the first-order,
while the remaining five are of the second-order. A DW method for DC is of the
second-order only if it includes at least one electronic full Coulomb wave function for
the continuum intermediate states. The CB1-4Bmethod has no such DW functions. In
contrast, the CDW-4Bmethod has four electronic full Coulomb waves compared with
two such functions in the CDW-EIS-4B, BCIS-4B, BDW-4B and SDS-4B methods.

Taking into account some of continuum states in an intermediate channel should
improve the agreement between the DW theories and the measurements. The reason
is in the dominance of ionization over capture at higher energies. To include such
states, the CDW-4B, CDW-EIS-4B, BCIS-4B and BDW-4B methods for DC consider
simultaneous capture of both electrons from their twofold continuum intermediate
states in one or two channels. In the SDS-4B method, one electron is first emitted into
a continuum state and then captured from that ionization channel, while capture of the
other electron occurs directly from a bound state. This sequence of scattering events
is symmetrized to allow for the electron exchange effect to take place.
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At higher energies, the DW theories can distinguish the two main collisional path-
ways forDC through single and double scatterings of electronswith nuclei. The former
is direct (one step) with no electronic intermediate channels for either electron. The
latter is indirect (two steps) with some intermediate ionizing channels for one or both
electrons. In single collisions, capture by fast projectile nuclei takes place only for
electrons with high longitudinal momentum components in the bound states. How-
ever, double collisions can occur with no recourse to large momentum components
in the impulse representation of the electronic bound-state wave functions. As such,
single and double scatterings can happen in different parts of the configuration space
of the four interacting charged particles.

Thus, if both electrons should simultaneously undergo double scatterings in two
channels, they necessarily ought to occupy nearly the same spatial positions at almost
the same time. This is typical of the CDW-4B method for DC where, at sufficiently
high energies, double scattering is manifested especially by the Thomas-like peaks
in differential cross sections, dQ/d�. Such a demanding restriction can partially be
lifted by allowing single collisions for one electron and double collisions for the other
electron in each channel, as in the SDS-4B method. It is then of interest to assess
which of these competing mechanisms might prevail in DC at intermediate and high
energies.

The general DW framework is wide open to different choices of distorted waves
and distorting potentials, each of which can, in principle, be theoretically well founded
as long as the correct boundary conditions are satisfied in the entrance and exit chan-
nels. Still, even with the latter conditions duly fulfilled, it becomes a matter of a
serious concern if this freedom and flexibility is compromised by potential significant
discrepancies among different DW choices.

It is then ultimately the experiment that can help in identifying the most probable
mechanism offered by various DW theories. The past applications of such a criterion
of proven validity to single capture (SC) and DC in the same heavy particle collisions
metwith unequal success. For total cross sections Q in SC, above theMassey peak area
of impact energy E (around 100 keV/amu and up to several MeV/amu), the available
measurements systematically confirmed a robust reliability of several DW theories
that gave similar results despite very different choices of distorted waves.

However, a similar performance is generally unmatched by DC for which various
DW selections yield vastly different cross sections Q. This occurs at the same men-
tioned energies E , i.e. well within the anticipated validity domain of the DW theories.
Nevertheless, the existing experimental data can discriminate between the two types
of these DW theories. One type of the DW methods assumes ’the concerted or uni-
mode’ for DC by requiring that both electrons are simultaneously transferred by way
of an identical mechanism per channel (single or double collisions or both). These are
the CB1-4B, CDW-4B, CDW-EIS-4B, BCIS-4B and BDW-4B methods. They do not
mix single with double scattering mechanisms in the given channel. However, none
of these theories can successfully represent the mutually concordant measured cross
sections from different experiments at all the energies above 200 keV for DC in the
α − He collisions.

The other type of the DW theories adopts a symmetrized, twofold mechanism. It
explicitly combines the two ’individual or separate modes’ for DC in each channel
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by hybridizing a single scattering for one electron and a double scattering for the
other electron. As per its very name, the single-double scattering method, the SDS-4B
method, is an example of this alternative mechanism for DC. It reproduces excellently
most of the measured cross sections at E ≥200 keV for the α − He collisions. The
implication is that DC becomes more likely with the coupled single-double scatterings
in each channel than with two double scatterings in both channels. The conclusion
is that the adequacy of the SDS-4B method for DC is comparable to the established
reliability of the CDW-4Bmethod for SC in the same α−He collisions above 200 keV.
This achievement restores confidence in the lowest-order of the Dodd-Greider pertur-
bation series for DC. Such a platform enables affordable comprehensive numerical
computations on Q also for DC in various applications, not only within ion-atom colli-
sion physics, but likewise in several neighboring branches and disciplines of scientific
research.
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