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Abstract
A general review of quantum molecular similarity structure and applications is 
presented. The backbone of the discussion corresponds to the general problem of 
the data structure associated with the mathematical representation of a molecular 
set. How to standardize, and how to compare it to any other problem. This com-
putational track describes the exact isometric vectors of the similarity matrix in a 
Minkowskian space. The further aim is to construct a set of origin-shifted vectors 
forming the vertices of a molecular polyhedron. From here, one can calculate a set 
of statistical-like momenta, providing a set of scalars that describe in a compact 
form the attached molecular set. Finally, the definition of a quantum QSPR operator 
permits building up a system of equations that can be further employed to determine 
the unknown properties of molecules in the original set. This last achievement leads 
to a quantum QSPR algorithm comparable with the classical QSPR counterpart but 
described in molecular space, not parameter space.
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1 Introduction

The present paper will deal with a general analysis of QSPR.1 Circumscribing the 
discussion on the issue of using molecular spaces,2 not descriptor or parameter 
spaces, is a usual framework in the main literature trend.

Since the dawn of the twenty-first century, several assorted papers [1–40] have 
attracted our attention and have been published dealing with classical QSPR 
(CQSPR); in the same way, work around the associated mathematical problems 
appearing in this class of techniques are included in the same list.

Since the humble origin of quantum similarity [41], in the subsequent quantum 
QSPR (QQSPR) studies collection [42–94], as far as the present author can tell, no 
particular recommendations about how to prepare the whole set of data, which is 
usually involved in the QSPR procedures, have been discussed so far. The situation 
can be considered an intriguing fact, which we’ll try to revise in the present study.

Previous papers have discussed some QSPR processing recommendations; refer-
ence [95]. But perhaps some essential clues on data rearrangement are still missing 
from the list of alleged actions, which one might suggest based on the QSPR avail-
able information.

If present, such data rearrangements must be constructed as a collection of sim-
ple procedures, leading to a reproducible computational structure. While simulta-
neously setting the possibility of systematic comparison with any QSPR problems 
appearing in the future. Reproducibility in CQSPR seems to be not a strongly con-
templated issue. For example, examine the contributions in reference [7]. Neverthe-
less, it is undoubtedly an essential requirement in scientific endeavors.

Intermediate data preparation procedures also seem not well-defined in the 
QSAR-QSPR literature. Therefore, one will discuss this subject in the present work. 
This author opines that one needs to ensure QSPR results are reproducible and com-
parable and that data preparation in QSPR procedures could be a first step all-pur-
pose way to obtain such a goal.

This point of view will need or lead to new data manipulation and algorithmic 
description, which one will also discuss. In this sense, this study will provide a gen-
eral isometry algorithm helpful in calculating the molecular set momenta and pro-
vide the basis of the QSPR operator construction.

Finally, there is no claim that this study’s algebraic proposals described below 
shall be taken as a final nor a unique possibility to obtaining reliable and well-struc-
tured QSPR. On the contrary: they might be considered an open way to the perfec-
tion of generic QSPR algorithms in molecular spaces.

1 The acrostic QSPR will be used in the present study, as it is preferable to the less general QSAR. How-
ever, it must be remarked that both mean the same intent of finding a relationship between molecular 
properties and some chosen mathematical representation of molecular structures.
2 Certainly not in chemical spaces, see for example the discussion on chemical spaces in reference [1], 
as it appears to be the wrong attributed name in the current literature, which is systematically given to the 
representation subsets of molecular structures, susceptible to manipulation within QSPR techniques, see 
for example. Molecular spaces appear to be the logically correct name for collecting molecular study sets 
represented by some mathematical vector structure.
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Thus, we are opening the possibility of describing an alternative path to the 
parameter space calculations in current QSPR procedures.

2  Preliminary considerations

The QSPR methodological proposal considered here can start by admitting the fol-
lowing points as a working background:

(a) Suppose known a set of M molecular structures, which in principle, one might 
consider as arbitrarily ordered and thus numbered accordingly:

(b) Suppose some known property values are associated with the molecular set 
� ∶ � =

{
pI|I = 1,M

}
 . Then, one standardizes the available property values 

according to the reference [95] suggestions, transforming them into values within 
the unit interval.

Therefore, from now on, one can also take for granted that in any QSPR procedure, 
the property set lies on the compact unit interval: � ⇒ � ⊂ [0, 1].

Such a transformation is essential for comparing the predicted property results 
obtained by applying QSPR algorithms. One suggested this standardization [95] to 
carry a given QSPR problem into the most accessible comparative form with any 
other QSPR problem in the future.

Such property values transformation will make any QSPR problem homogeneous 
concerning any other problem property.

(c) Suppose the preparation of a QSPR procedure so that the molecular set’s descrip-
tors are employed to construct a molecular space noted as: �D≥M , and bearing 
a dimension D imposed by the number of different descriptors of the molecular 
structures3 [85].

This point is systematically ignored in CQSPR, as the usual classical procedures 
describe such problems as belonging to the descriptor or parameter space.

In principle, one must arrange molecular descriptors so that every molecule of 
the set � becomes associated with a vector of sufficient arbitrary dimensions. Defin-
ing in this manner, a column vector set: � =

����I⟩�I = 1,M
�
, is connected in a one-

to-one correspondence with the molecular set � , that is:

(1)∀I = 1,M ∶ mI ∈ � ∧ ���I⟩ ∈ � ⇒ mI ↔
���I⟩ → � ⇔ �

3 The dimension D choice is imposed by the number of molecules, as the molecular space dimension 
has to be such that the vectorial molecular description makes all the molecules linearly independent. This 
asseveration comes from the fact that in a QSPR problem, all the molecules are chosen as being different. 
Therefore, their mathematical representations shall differ, and consequently, the attached vectors repre-
senting the molecules shall form a linearly independent set.
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Consequently, this is equivalent to assuming that in a general QSPR formalism, 
one describes every molecule by a finite-dimensional vector in CQSPR or by an infi-
nite-dimensional density function in QQSPR.

Such description prepares the molecular structures of point (a) to be considered 
elements of a molecular space4 of the appropriate dimension.

Despite that, in the usual literature, such a molecular vector space definition 
appears systematically ignored; however, one cannot avoid the presence of the 
molecular structures described as vectors in QSPR calculations.

Even if AI manipulations lead to black box QSPR-like results, one cannot avoid 
this vector-molecule information source; for example, see references [6, 25, 26, 31, 
32, 34, 36] for more evidence.

3  Systematic ordering of any molecular set

Admitting to start the discussion of the QQSPR problems with the three points of 
the previous section as a sound working foundation, one can systematically achieve 
a general QSPR ordering procedure.

First, one can compute the self-similarities of the molecular set, employing their 
description elements. Then one can order them according to their values. Therefore, 
this simple process generates a new order in the original molecular set.

Hypothetically, the ordering of the whole QSPR data set, as accepted by defini-
tion in point (a) of the previous paragraph, might be considered arbitrarily chosen as 
is usual in the QSPR literature.

Nevertheless, in parallel to the previous reordering, after unit interval standardi-
zation of the known property values as indicated in point (b) of the previous section, 
it is not too difficult to assume that this will allow us to easily compare the data of a 
particular QSPR calculation with any other one.

One could perform this kind of systematic standardization even if the compared 
problems correspond to different molecular sets or possess diverse inhomogeneous 
elements.

Therefore, as it seems from a logical point of view, it could be very interesting 
that one might systematically prepare QSPR procedures. And one performs this 
groundwork in the same way before obtaining the QSPR operator or function, relat-
ing the structure of the molecular set algebraic representation with their properties, 
regardless of the nature of the studied problem property.

One can thus consider every QSPR calculation comparable with any other. Not 
only might one transform the molecular property values set ℙ into a normalized one, 
as indicated in reference [95], but one can also propose that one might standardize 
the molecular ordering, using selfsimilarities for this task.

4 It must be repeated here that the current literature associated with QSPR publications generally uses 
the concept of chemical space to name the construct described here as molecular space. As previously 
commented, this last terminology is preferable to the former one in the present author’s opinion.
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A systematic reordering of the involved QSPR molecular set � would permit us 
to easily compare a particular calculation with any other submitted to an equivalent 
treatment.

3.1  QSPR ordering algorithm

Thus, one can propose obtaining a simple and effective universal ordering of the 
descriptor data set � of any QSPR problem. To arrive to achieve this purpose, one 
might apply the following procedure.

One can start a QSPR ordering algorithm by using the elements of the molecular 
descriptor set � . One can easily obtain the norms of the vector representation of 
every molecule and further define their values as an additional set, like:

where one defines the metric signature matrix ΓM as a diagonal matrix:

such that all the non-null diagonal elements contain only positive or negative units. 
That is, one can consider the definition of the following dimensions and diagonal 
matrices:

Thus, one can also consider the diagonal matrix ΓM as isomorphic to an M-dimen-
sional column vector ��ΓM⟩ , with its elements containing the diagonal elements of the 
matrix ΓM , or as a matrix signature in the sense of reference [96].

On the other hand, one can also consider the norm set � in the Eq.  (2) as con-
nected with a one-to-one correspondence to the molecular set: � ⇔ �.

Admitting norms can be calculated for every molecular descriptor vector; this 
corresponds to associating such vectors, as defined within a Banach space, to the 
QSPR studied problem.

Proceeding in this way, not only the QSPR working space is a Banach space, but 
also a Minkowski space, which one can transform into a Euclidian one5 if needed. 
This possibility will be accomplished when the negative part role of the metric sig-
nature matrix ΓN is absent, and thus the following equality holds:

where 

(2)� =
�
sI = ⟨�I��ΓM

���I⟩�I = 1,M
�
.

(3)ΓM = Diag
(
�I|I = 1,M

)
,

(4)M = P + N ∶ ΓM = ΓP ⊕ ΓN ← ΓP = �P ∧ ΓN = −�N .

(5)M = P ∶ ΓM = ΓP = �M ,

(6)�M =
{
IIJ = �(I = J)|I, J = 1,M

}

5 Such a possibility corresponds to a general procedure where the metric signature matrix is transformed 
into the unit matrix, according to the synisometry algorithm of reference [91].
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is the (M ×M) unit matrix.6
Now, adopting the vocabulary of quantum similarity, the � set of the norms of the 

molecular vector representations contains the selfsimilarities attached to each ele-
ment of the molecular set.

Suppose each molecular descriptor corresponds to a function, like in QQSPR, 
where electronic density functions are employed as molecular descriptor vectors; 
see, for example, references [42–44, 86]. In that case, the Euclidian norm of a finite-
dimensional CQSPR vector is substituted by the integral of such squared QQSPR 
function.

According to the above definition, the norm set � is made by a (sometimes posi-
tive) definite set of real (in computational practice, rational) numbers.

Hence, it is evident that one can easily reorder the set � from, say, the smaller to 
the more significant (or vice versa) norm. Therefore, one can consider that the reor-
dered subindices now mean that:

the symbol...mI ≺ mI+1 ... means that the molecule mI on the left precedes the mol-
ecule mI+1 on the right.

From now on, we can suppose, before performing any proper QSPR calculation, 
that such supplementary order conditioning of the molecular set � is complete.

Then one can consider that one now reorders the set � in such a way that:

while:

or the other way around if necessary.
Proceeding in this manner, after knowing the possibility of ordering the QSPR 

data and elements of the set � , one can add a fourth term to the three initial condi-
tions proposed in the previous section:

(d) One might always perform QSPR calculations systematically on a molecular set 
� , ordered according to the increasing (alternatively: decreasing) values of the 
molecular selfsimilarities.

Moreover, according to the previous point (b), this will also be made in the company 
of a set of standardized property values, which shall be accordingly reordered.

(7)s1 < s2 < ... sM−1 < sM ⇒ m1 ≺ m2 ≺ ...mM−1 ≺ mM ,

(8)m1 → s1 = min
I

[
sI
]
,

(9)mM → sM = max
I

[
sI
]

6 Here is used a logical Kronecker delta definition; in general, by writing: �(.expression.) . If the 
logical.expression. is true then �(.T .) = 1 or if false, then �(.F.) = 0.
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4  Selfsimilarities and the similarity matrix (re‑) and (de‑) 
construction

Self-similarities thus play an essential role in QSPR procedures as a simple source 
of systematic data reordering. They have been studied deeply in the QQSPR frame-
work [54, 97], but have been apparently ignored in CQSPR. This circumstance is 
due perhaps to molecular space oblivion in classical procedures.

Within this section, one will now develop a general procedure valid for both 
QSPR practical computational branches.

4.1  Definition of the similarity matrix

The selfsimilarity set � corresponds to the diagonal elements of a symmetric matrix, 
the so-called similarity matrix; see for more information, for example, reference 
[60], which is an (M ×M) array that one can supposedly construct holding all the 
possible scalar products between the molecular descriptor vector pairs:

where one has explicitly used the diagonal metric signature matrix ΓM to obtain, in 
this manner, a general picture of the similarity matrix computation.

Owing to this definition, one can also write the selfsimilarities set � as the diago-
nal elements of the similarity matrix:

The possibility of constructing the similarity matrix, as in the Eq. (10), allows the 
molecular space to be associated with a Minkowskian pre-Hilbert space [83].

4.2  Similarity matrix properties

Moreover, the similarity matrix is coincident with the metric matrix of the vector 
(sub)space generated by the descriptor set � . This is so because in case every mol-
ecule in the set � is different from the rest (which strictly corresponds to a more 
than a reasonable general situation in any QSPR data setup), then every molecular 
descriptor vector must be linearly independent of the other descriptor vectors. See 
for a discussion of this relevant point, for example, reference [84].

If the elements of set � do not bear such an algebraic characteristic, then, in 
CQSPR procedures, one faces the so-called dimensionality paradox [85].

One might state such a condition attached to the descriptor set � as a point added 
to the four previously discussed ones:

(e) The molecular descriptor set � in each QSPR problem must always be con-
structed as a set of linearly independent vectors in the molecular space.

(10)� =
�
zIJ = ⟨�I��ΓM

���J⟩�I, J = 1,M
�
= �T ,

(11)∀I = 1,M ∶ sI = zII ⇔ � = Diag(�).



 Journal of Mathematical Chemistry

1 3

As commented before, to avoid the dimensionality paradox, the dimension D of the 
vector space containing them must be: D ≥ M.

This necessary condition has no connection with the possibility of handling the 
CQSAR problem as a subject of statistical studies in parameter space. Constitutes 
instead an unavoidable preliminary condition that shall be attached to any molecular 
set mathematical description.

4.3  Successive approximations to the similarity matrix

Once the set of descriptor vectors � is constructed and computed the similarity 
matrix via the Eq. (10), one might put forward some nuances related to the succes-
sive approximations of the matrix Z.

One can accept the set of the diagonal elements of the similarity matrix as an 
approximation of order zero. For this reason, we can also represent such a zeroth-
order similarity matrix with the symbol �0.

Starting with the diagonal zeroth-order similarity matrix, we can also consider as 
the next step the non-zero elements of the similarity matrix first sub-diagonals:

One constructs in this manner a tridiagonal matrix. Then, we can name the result-
ant matrix the first-order similarity matrix and represent it as: �1.

Consequently, proceeding in this way and adding to the first-order matrix the next 
non-zero subdiagonals, larger band matrices can be stepwise constructed. Then one 
can obtain a sequence of M similarity matrices, which can be written as follows:

To adequately describe a simple algorithm leading to the above sequence (13) of 
approximate similarity matrices, we can first define a sequence of M matrices ini-
tially holding the diagonal and the successive sub-diagonals as the unique non-zero 
elements:

In this way, one can easily write the sequence of approximate similarity matrices 
(13), concerning the P-th order approximation as follows:

Therefore, such simple (re-)construction permits to build of a sequential set of 
similarity matrix approximations, which starts from the self-similarity diagonal and 
ends up with the full similarity matrix. A final approximation stage leading to the 
exact similarity matrix is reached when P = M − 1 . In this last step, the matrix �M−1 
possesses two non-zero elements only: z1,M−1 = zM−1,1.

(12)I = 1,M − 1 ∶ zI,I+1 = zI+1,I .

(13)
{
�0;�1;�2;...�M−2;�M−1 ≡ �

}
.

(14)
{
�P|P = 0,M − 1

}
→ �P =

{
zI,I+P ∧ zI+P,I|I = 1,M − P

}
.

(15)∀P = 0,M − 1 ∶ �P =

P∑

K=0

�K .
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One can obtain a convenient (de-)construction of the similarity matrix by sub-
tracting from the original similarity matrix the sequence of sub-diagonal matrices 
defined in the Eq. (14).

4.4  Eigenvalues and eigenvectors of the similarity matrix

One has postulated the eigenvalues and eigenvectors of the similarity matrix as 
building blocks to algebraically construct statistical-like moments of the molecular 
set � [88].

One can use the momenta of the molecular set to construct a QSPR operator, too, 
see reference [78], able to compute a chosen molecular property. Furthermore, one 
might use condensed scalar momenta to represent geometrically and numerically the 
molecular set � [88–90].

Still, by transforming the eigenvectors of the quantum similarity matrix into an 
isometric vector set, the resultant M-dimensional vector set can be admitted as the 
finite-dimensional representation of the infinite-dimensional quantum representation 
of the molecular set �.

A most interesting computational fact to be highlighted now corresponds to the 
zeroth-order approximation.

Indeed, the matrix �0 is diagonal; thus, their eigenvalues are the diagonal ele-
ments themselves and the eigenvectors corresponding to �M , the unit matrix of the 
adequate dimension, which is, in fact, a (M ×M) matrix, like any eigenvector matrix 
related to higher-order approximations.

Therefore, calculating the moments of this zeroth-order similarity matrix 
becomes equivalent to computing the statistical moments of a scalar set made by the 
self-similarities �.

Besides the tridiagonal first-order matrix, the higher-order elements in the 
sequences (13) and (15) correspond to so-called symmetric band matrices.

4.5  Spectral indefiniteness of the similarity matrices and isometric vector 
representations

One can provide a remark now concerning the eigenvalues of the approximate simi-
larity matrix sequence (13).

The zeroth order and the final exact similarity matrix are by construction positive 
definite whenever one chooses a Euclidian metric signature matrix ΓM = �M.

In some molecular QQSPR cases, the superposition of the involved molecules 
performed to obtain optimal similarity integrals [97, 98] might result in a non-defi-
nite exact similarity matrix [91, 92].

Such circumstantial spectral non-definiteness might also appear in part or all of 
the intermediate band similarity matrices. Thus, it may start in the tridiagonal form 
of the first-order approximation.

In all the cases of non-definite eigensystem sets, one can compute the isomet-
ric vectors [89] necessary to obtain the statistical-like moments of the molecular 
descriptor set (for a résumé of the computational details, see reference [91]), via 
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a so-called synisometry procedure [92], where one uses the absolute values of the 
negative eigenvalues to avoid complex algebra.

However, a better way to proceed consists in using the scalar products definition, 
leading to computing the elements of the similarity matrices into a Minkowskian 
Banach space, as explained before in Sect. 3.1. For this purpose, a diagonal metric 
signature matrix holding the appropriate signs is assigned to the space directions; 
see [99] for extended mathematical details.

Of course, one retrieves the usual Euclidian space when the diagonal metric 
matrix coincides with the appropriate dimension unit matrix.

The possibility of working within a Minkowskian metric Banach space has been 
ignored in CQSPR, while this possible framework has been recently put forward in 
QQSPR [99].

Working in Minkowskian spaces in both QSPR contexts could enhance the pos-
sibilities of finding better ways to obtain ameliorated functions, relating molecular 
structure with their properties, with a simple mathematical variation.

4.6  Numerical problems concerning the similarity matrix when considered 
as a metric matrix

The computational problems about numerical instability of matrix diagonalization 
are well-known in numerical linear algebra and have been studied since old times; 
see, for example, reference [100].

Also, as a typical case study, the Hilbert matrix [101] corresponds to a positive 
definite metric matrix made of scalar products, defined with the basis set elements 
of a polynomial vector space. Depending on the machine’s precision and the cho-
sen dimension, the Hilbert matrix becomes non-definite, even singular, for practical 
computational purposes.

Even if the similarity matrix elements are well-defined for a given QSPR prob-
lem, some weird numerical behavior is produced when diagonalization or inversion 
is involved.

The dimension of the manipulated matrix and the finite machine precision could 
produce that a positive definite matrix numerically behaves as a non-definite one.

A similar problem also occurs in systematic quantum chemical calculations 
involving large basis sets. In these cases, the overlap matrix is nothing else than a 
metric matrix attached to the atomic basis set and has well-defined elements. Con-
sequently, it has to be positive definite but computationally becomes non-definite or 
even singular in some cases due to numerical instabilities of the same sort as previ-
ously discussed here.

The quantum similarity representation of the periodic table of the elements, with 
the use of Gaussian atomic densities attached to each atom, was presented in previ-
ous work[102].7 This study generates the same numerical problem when computing 

7 This problem was avoided in the cited work using a raw zeroth order approach to the similarity matrix.
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the similarity matrix, even with a simple function used as an atomic quantum 
descriptor.

Thus, one must be aware that in molecular spaces, when handling large num-
bers of molecules in a QSPR problem, the complete similarity matrix could become 
numerically singular. In those cases, deconstructing the similarity matrix could be 
good advice.

5  Isometric QQSPR molecular spaces

CQSPR and QQSPR Molecular Spaces can be associated with a similarity matrix 
constructed using the implicit algorithm in the Eq. (10).

However, the similarity matrix in the QQSPR environment can only be con-
structed via a set of positive integrals, holding a volume or measure, which are not 
so easy to compute, using pairs of molecular electronic density functions.

It could be interesting without leaving the QQSPR framework to obtain an iso-
metric finite-dimensional representation of the involved molecular set, emulating the 
CQSPR background structure, but providing a general automated way to construct 
the molecular description vectors.

In obtaining this isometric description, both CQSPR and QQSPR ways will 
appear on the same footing to describe the involved molecular set algebraically.

Some attempts to reach this goal have been described recently [91, 92], but a new 
study [99] contains the most general and exact algorithm, as far as we know.

For effectiveness, this procedure, developed from the vantage point of the inward 
vector products, will be sketched from a matrix point of view.

5.1  Towards the construction of an isometric vector set

The quantum similarity matrix Z, as defined in the Eq. (10), is a symmetric one, that 
is: � = �T . As such, always exists to it an attached secular equation, which one can 
write in matrix form:

where � corresponds to an orthonormal matrix:

containing the eigenvectors of Z as columns, and the matrix Θ is diagonal:

it contains the eigenvalues of Z, ordered the same way as the column vectors in U.
As commented, when issued from a computed quantum similarity matrix, the 

diagonal matrix Θ could be non-definite. But one can rewrite it with a metric signa-
ture matrix ΓM , as described early in the Eqs. (3) and (4).

(16)�� = �Θ,

(17)�T = �−1
→ �T� = ��T = �,

(18)Θ = Diag
(
�I|I = 1,M

)
,
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First, defining the auxiliary definite positive diagonal matrix:

then one can retrieve the original eigenvalues matrix and write:

In this case, one can construct the metric signature matrix with the aid of a pair of 
logical Kronecker’s deltas:

With this eigenvalue rearrangement, one can also define the square root of the 
unsigned eigenvalues matrix:

and using the commutativity of the product of diagonal matrices, one can write:

thus, rearranging the Eq.  (16), plus taking into account the Eqs.  (17), (19), (20), 
(22), and (23), one can write:

where a new matrix, holding the isometric vectors as columns, is defined as:

The column vector set � =
����I⟩�I = 1,M

�
⊂ �M , which has to be used to 

compute the scalar products with the appropriate metric signature matrix via the 
Eq. (24), can be seen in the same manner as the elements described in the Eq. (10). 
They constitute a set of vectors isometric to the quantum density functions repre-
senting the molecules in the studied set.

The earlier synisometric vectors, see reference [99] for more details, are con-
structed by transforming the metric signature matrix into a Euclidian metric 
matrix. That is: simply performing the substitution: ΓM → �M , in the Eq.  (24), 
thus, constituting an obvious simplification and ignoring the presence of a possible 
Minkowskian metric, which can be crucial in some cases to obtain a suitable molec-
ular structure–property relation.

(19)Λ = |Θ| = Diag
(
�I =

||�I|||I = 1,M
)
,

(20)Θ = ΛΓM = ΓMΛ.

(21)ΓM =
{
ΓM;II = 𝛿

(
𝜃I > 0

)
− 𝛿

(
𝜃I < 0

)}
.

(22)Λ
1

2 = Diag

(
�

1

2

I
=

√
||�I|||I = 1,M

)
→ Λ = Λ

1

2Λ
1

2 ,

(23)Θ = ΛΓM = Λ
1

2Λ
1

2ΓM = Λ
1

2ΓMΛ
1

2 ;

(24)� = �Θ�T = �ΛΓM�
T = �Λ

1

2ΓMΛ
1

2�T = �TΓM�,

(25)� = Λ
1

2�T
→ ∀I = 1,M ∶ ���I⟩ = Λ

1

2
����

T
I

�
.
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5.2  The discrete representation of a molecular set nature

As a consequence of the discussion in the preceding Sect.  5.1, in both QSPR 
environments, one can arrive at the description of a molecular set constructed as 
a set of vectors belonging to a vector space of similar characteristics and dimen-
sions. However, even if the set of discrete vectors � seems equivalent in both 
classical and quantum procedures, their nature is quite different.

The construction of the classical � vector set is, in many aspects, arbitrary, 
as it contains intrinsic difficulties in distinguishing and including as descriptors 
some molecular attributes, like conformation structures, electronic states, and 
optical isomers…, to mention some obvious ones. Even if the algorithms operat-
ing in CQSPR and AI claim a quantum origin of the parameters or descriptors 
employed in the molecular description, see the already cited papers [6, 25, 26, 31, 
32, 34, 36].

Such drawbacks are not necessarily present in the quantum way of determining 
the elements of � . The precise, general character connected to quantum procedures 
must always be present in the systematic construction and use of the vector set �.

Even being aware of this classical drawback in front of the quantum algorithm, 
one can additionally enunciate a new point in the data manipulation of a QSPR 
molecular set representation:

(f) One can transform the vector representation � , attached to any molecular set � , 
into an isometric vector set that generates the original similarity matrix and can 
be further used to describe �.

6  The vector set � geometric connection: construction of a molecular 
polyhedron and the statistical‑like manipulation of its elements

Here will be summarized the theoretical background of constructing a set of statisti-
cal-like parameters, which can be employed to describe in a condensed manner any 
molecular set � via the vectors of the descriptor set �.

Such statistical-like parameters can also be associated with a set of collective dis-
tances [90].

Theoretical, computational, and practical details of this issue have been published 
in many instances [88, 89, 93, 94, 98, 99, 102], so only one will describe here the 
backbone of this general possibility.

6.1  Molecular polyhedra: centroid and origin shift

The first element of this descriptor transformation considers the set � as a many-
dimensional polyhedron or polytope (here, one will select the first name in front of 
the second). That is: a mathematical object containing M vertices associated with 
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every vector in the set � . One can also name this geometric image of the set � as a 
molecular polyhedron.

Admitting this, the centroid of this geometrical structure is easily calculated by:

From there, one can follow the systematic transformation of the description of 
the set � by defining a new vector descriptor set possessing a cero centroid, namely:

this result generally corresponds to an algorithm transforming any molecular 
descriptor set into a new vector set � possessing a null centroid.

In general, one can perform this redescription on any molecular set. It corre-
sponds to obtaining a molecular polyhedron with a unique origin at the vector ��⟩.

One can refer to this transformation as an origin shift of the initial molecular pol-
yhedron described by the vector elements of the set � . Such a possibility allows to 
add of a new point to the already described set of conditions of QSPR data:

(g) Knowing an isometric vector representation � of a molecular set � is the same as 
defining a molecular polyhedron. Then a centroid can be calculated. Hence, an 
origin shift can be performed on � , producing a new descriptor set, the origin-
shifted molecular polyhedron � , bearing a zero centroid.

This M-dimensional possibility corresponds to the origin shift one can perform in 
one-dimensional scalar sets, as is usual in statistical lore, by subtracting the arithme-
tic mean from every set element.

6.2  Momenta of the molecular polyhedron

Once generating an origin-shifted molecular polyhedron � , one can use its elements 
to construct a set of statistical-like momenta, a set of vectors that condensate the 
information contained in the vector representation of the molecular set �.

One can describe the set of vector momenta as the average sum of the successive 
inward powers of the vectors in the origin-shifted polyhedron. One can define such 
inward powers as:

(26)𝔻
����I⟩�I = 1,M

�
⊂ 𝕍M(ℝ) → ∃��⟩ = M−1

M�

I=1

���I⟩ →��⟩ ∈ 𝕍M(ℝ).

(27)

�
����I⟩ = ���I⟩ − ��⟩�I = 1,M

�
→

M−1

M�

I=1

���I⟩ =M−1

M�

I=1

����I⟩ − ��⟩
�
=M−1

M�

I=1

���I⟩ − ��⟩ =��⟩,
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remarking diagonal metric matrix presence associated with the QSPR problem.
In the Eq. (28), one can easily define by the following algorithm, see for example 

[89] for more details, the inward P-th power of a vector8:

Owing to the vector power definition (29), the molecular polyhedron momenta, as 
defined in the Eq. (28), represent in the framework of vector spaces the same as the 
statistical momenta of a set of scalars. Thus, one can call the vectors described in the 
Eq. (28) the statistical-like vector momenta of the molecular polyhedron.

Then, the centroid corresponds to a first-order momentum: P = 1 , and becomes 
null for the origin-shifted molecular polyhedra. The vector momenta calculated with 
the values P = 2, 3, 4 have the roles of variance, skewness, and kurtosis but in the 
framework of vector sets instead of scalar sets.

One can reduce the vector moments into scalars just by performing the complete 
sum of the elements9 of every momentum vector, as we can define, see for example 
[89], the complete sum of the elements of any vector as:

Knowing that, by calculating the complete sum of a vector, also one can describe 
the contribution of every molecular structure to the total momentum. One can use 
the metric matrix as a vector submitted to a scalar product, that is:

Then, the set of elements:

can be reordered, forming a column vector: ||�(P)
⟩
=

(
�
(P)

1
, �

(P)

2
, ...�

(P)

M

)T

 which can 
be used as coordinates to locate the molecules of the set � as a set of points in some 
Cartesian plot. For example, one can draw the molecular set’s elements: P = 2, 3, 4 

(28)P ∈ ℕ ∶ ���P⟩ = M−1ΓM

M�

I=1

����
[P]

I

�
≡ M−1ΓM

M�

I=1

����I⟩ − ��⟩
�[P]

,

(29)∀��⟩ =
�
v1, v2, ...vM

�T
∈ �M ∶

����
[P]
�
=
�
vP
1
, vP

2
, ...vP

M

�T
∈ �M .

(30)∀��⟩ =
�
v1, v2, ...vM

�T
∈ �M ∶ ⟨��⟩⟩ =

M�

I=1

vI .

(31)

����P⟩
�
= M−1

M�

I=1

�
ΓM

����
[P]

I

��
= M−1

M�

I=1

�
M�

J=1

ΓM;JJg
P
JI

�
= M−1

M�

I=1

�
(P)

I
.

(32)

{
�
(P)

I
=

M∑

J=1

ΓM;JJg
P
JI
|I = 1,M

}

8 The inward product or power of a vector is also known as diagonal, Hadamard, or Schur product or 
power.
9 The complete sum of the elements of a vector is a well-defined linear operator acting on any vector 
space element.
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as a set of three-dimensional points: 
{
�
(2)

J
, �

(3)

J
, �

(4)

J

}
(J = 1,M) , representing every 

molecule in the set �.
Therefore, one can use origin-shifted molecular polyhedra momenta to character-

ize a molecular set and, in this manner, visualize a possible reordering within the 
molecular set � by drawing each molecule as a point in a 1-, 2-, or 3-dimensional 
graph.

7  The QQSPR operator

From the first published applied quantum similarity developments, the possibility of 
defining a QQSPR operator has been repeated speculation; for example, see refer-
ences [44, 45, 50, 60, 65]. Recently, one has discussed the possibility of defining 
some operator that, applied to the density function, provides an expectation value 
connected with a given property of interest. Some examples were given [78].

That is, one could construct some Hermitian operator Ω(�) in such a way that, 
using a quantum mechanical molecular electronic density function �(�) , acting as 
a distribution function, one can compute the expectation value of some property � 
through the integral:

When solving a QQSPR problem, as has been done at the beginning of the 
present work, recalling the nature, properties, and mathematical description of 
a molecular set � , one supposedly knows a set of electronic density functions: 
ℙ
{
�I(�)|I = 1,M

}
 , associated in a one-to-one correspondence with the molecular 

set elements, that is: 𝕄 ⇔ ℙ.

7.1  Quantum similarity matrices

Quantum similarity permits the construction of the so-called similarity matrix via 
volume integrals, which in this case, one can generally write as:

where one can choose the weight operator O
(
�1, �2

)
 positive definite. Usually, one 

uses Dirac’s function �
(
�1 − �2

)
 , which transforms the integral in the Eq. (34) into a 

so-called quantum overlap similarity matrix:

Thus, one habitually computes the quantum similarity matrix as the integral 
array:

(33)� =
∫D

Ω(�)�(�) d�.

(34)� =

{
ZIJ =

∫D ∫D

�I
(
�1
)
O
(
�1, �2

)
�J
(
�2
)
d�1d�2 |I, J = 1,M

}
,

(35)
∫D ∫D

�I
(
�1
)
�
(
�1 − �2

)
�J
(
�2
)
d�1d�2=

∫D

�I(�)�J(�)d�.
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an expression formally connected with the discrete construction of the Eq. (10). The 
manipulation described in Sect. 5 is applicable because Z is a symmetric (M ×M) 
matrix. Then a discrete isometric vector set of quantum mechanical origin can be 
obtained, as described in Sect. 5.1, connecting in this way CQSPR with QQSPR.

One computes the integrals entering the Eq. (36) by superimposing (rotating and 
translating) the attached different molecular pairs 

{
mI ,mJ

}
,10 until each integral 

becomes maximal; for example, see reference [103].
This manipulation of the molecular pairs produces overlap quantum similarity 

matrices that are not definite, leading to the presence of a metric signature matrix 
ΓM , as defined in the Eq. (21), in the posterior use of the isometric vector set �.

7.2  The QQSPR operator

To solve any QQSPR problem, it is not sufficient to construct the quantum similar-
ity matrix. One must use the Eq. (33) to build an algorithm to evaluate the unknown 
property values of some molecular elements present in a molecular set.

A possible way to obtain an adequate QQSPR algorithm corresponds to con-
structing the QQSPR operator as a Taylor-like series [110] inspired by some old 
Lowdin’s work [104–106], with each molecular density function acting as a vari-
able. Assuming this option, we can write:

the coefficient set 
{
�P|P = 0,∞

}
 , considered constant among the whole molecular 

set, characterizes the operator (37) for a given problem as a set of expectation values 
and is attached to the powers of any density function adequate for the operator and 
associated with each molecule in the set �.

The Eq.  (37) represents a general Taylor-like expression of the function repre-
senting the sought QQSPR operator; therefore, one can explicitly write the inverses 
of the factorials, substituting the coefficient set 

{
�P|P = 0,∞

}
 by the set:

however, this possibility will not be explicitly used in this discussion. Yet, it might 
be advantageous to scale Taylor-like series coefficients in practical computations.

The Eq. (33) now can be written for a specific molecular structure mI using the 
Eq. (37), yielding:

(36)� =

{
ZIJ =

∫D

�I(�)�J(�)d� = ZJI|I, J = 1,M

}
,

(37)∀I = 1,M ∶ Ω(�) ≡ Ω
(
�I(�)

)
=

∞∑

P=0

�P

[
�I(�)

]P
,

(38)∀P = 0,∞ ∶ �P =
wP

P!
,

10 Except for the diagonal selfsimilarities that do not need superimposition.
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a result that demands computation of the density function powers up to some value. 
Estimating some molecular property needs the calculation of self-similarities up to 
some chosen order Q + 1, truncating the Taylor series in this way (37).

One must note here that the expectation values set: � =
{
�I|I = 1,M

}
 , are not 

the same as the initial property values set P described in point (b) of Sect. 2.
As explained before, the integrals shown in the expression (39) do not present the 

superposition problem when calculated as in the overlap quantum similarity matrix. 
Because all of them belong to the same molecular structure, as density function 
powers grew, integral computation times might present a problem, even with simpli-
fied densities and modern computer facilities.

7.3  QQSPR equations

The following array can contain the integrals described in the Eq. (39):

so using the vectors: ��⟩ =
�
�1,�2, ...�M

�T and ��⟩ =
�
�0,�1, ...�P, ...

�T , one can 
compactly rewrite the Eq. (39) as:

One can solve the Eq. (41) by constructing a pseudoinverse matrix. Just multiply 
the Eq. (41) on the left by �T , obtaining the expression:

That is a matrix expression permitting to compute the coefficient vector ��⟩, 
which allows the construction of the QQSPR operator.

7.4  Practical use of the QQSPR equation

There are two aspects of the QQSPR Eq. (39) to obtain unknown values from the 
density function and the QQSPR operator. Equation (42) permits to obtain the coef-
ficients defining the operator up to some approximation, for instance: {P = 0,Q} , by 
using the elements of the matrix Q obtained by the Eq. (40) and some known values 
of the property.

(39)∀I = 1,M ∶ �I =

∞∑

P=0

�P
∫D

[
�I(�)

]P+1
d�,

(40)� =

{

∫D

[
�I(�)

]P+1
d� = QIP|I = 1,M ∧ P ∈ ℕ

}
,

(41)���⟩ = ��⟩.

(42)�T���⟩ = �T ��⟩ ⇒ ��⟩ =
�
�T�

�−1
�T ��⟩.
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7.4.1  Approximate matrix Q

The first aspect one has to consider corresponds to how to plausibly compute the 
elements of the matrix Q. One will study it here in some detail.

One can easily construct the matrix Q with the aid of ASA approximate elec-
tronic density functions [107, 108] and an extension of the Gaussian product theo-
rem, published some years ago [109].

But a better way to overcome the large amount of computation needed to implement 
the Eq. (40), corresponds to using the set of isometric vectors, as previously defined in 
Sects. 5.1 and 6.1.

One can use both kinds of vectors. In case one chooses the raw isometric vector set 
� as a finite-dimensional vector set representing the molecular set, then one can rewrite 
the Eq. (40) as:

It is also considering the Eq.  (43) that the inward power of the isometric vectors 
must bear the signature metric matrix.

One can obtain a similar expression with the vertices of the molecular polyhedron 
� , which, as earlier described, are the isometric vectors of the set � origin-shifted by 
the centroid. Because this substitution is trivial, it will no longer be mentioned in the 
following, but one has to keep in mind both possible alternative uses of the sets � or �.

Obtaining an approximate Q matrix via Eq. (43) permits finding the QQSPR opera-
tor coefficients in the same way as in the exact solution (42).

One has to account for another parameter: the limit that has to be reached in the 
series leading to the QQSPR operator. We can admit that for a given problem, the max-
imal value of the power is max (P) = Q , and then construct the matrices and vectors 
accordingly. From now on, this limit will be used in the appropriate places of the equa-
tions bearing it.

7.4.2  Use of the QQSPR operator to estimate unknown values of some property

The second aspect one has to be aware of corresponds to applying the QQSPR opera-
tor over the density of a molecule with an unknown property to evaluate it. One has 
already studied and published [SS] various facets of this problem, contemplating vari-
ants and the general case. Here, one will only sketch and circumscribe it to the case 
where one evaluates a unique molecular property.

The preliminary step corresponds to suppose that to the molecular set M of known 
property values, one adds a new structure with an unknown property value: �u . The 
problem can be analyzed considering that now one deals with M + 1 molecular struc-
tures and that one has to dimension the matrix Q accordingly, having in this manner the 
structure:

(43)∀���I⟩ ∈ 𝔻 ∶ � =

��
ΓM

����
[P+1]

I

��
= QIP�I = 1,M ∧ P ∈ ℕ

�
.

(44)�a =

�
�

⟨�u��

�
,
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where the row vector ⟨�u�� now contains the new elements involving the added mol-
ecule, that is:

or using the isometric vectors:

Then one can rewrite the Eq. (41) as follows:

and now: 
�
��⟩;�u

�
 are the unknowns to be found.

One can easily prepare an iterative procedure in this case. Supposing that the 
order of the density power series is Q, then starting with an approximate value of 
the unknown property, using the Q-dimensional coefficients calculated without the 
unknown property molecule, say ||�0

⟩
:

or

Using the approximate property value obtained by the Eqs.  (48) or (49) in the 
Eq.  (47), then one can solve the Eq.  (47) to obtain new component values for the 
vector ��⟩:

Note that the dimension of the coefficient vector doesn’t change if one keeps the 
approximation order of Eqs. (39) or (43) to a constant value Q.

However, keeping the order Q constant is not compulsory, so the approximation 
order can be considered free to vary within the iteration cycles.

Now one can obtain a restored value of the unknown property using alternatively 
up to convergence Eq.  (50) while using the refreshed coefficient vector ��⟩ in the 
corresponding equation:

(45)⟨�u�� =
�

∫D

�
�u(�)

�P+1
d� = quP�P = 0,Q

�
,

(46)⟨�u�� =
���

�[P+1]
u

���ΓM

�
= quP�P = 0,Q

�
.

(47)
�

�

⟨�u��

�
��⟩ =

�
��⟩
�u

�
,

(48)�u ≈

Q∑

P=0

�0

P ∫D

[
�u(�)

]P+1
d�,

(49)�u ≈

Q∑

P=0

�0

P

⟨
ΓM

|||�
[P+1]
u

⟩⟩
.

(50)

�
�T ���u⟩

�� �

⟨�u��

�
��⟩ =

�
�T ���u⟩

�� ��⟩
�u

�
⇒

�
�T� + ���u⟩⟨�u��

�
��⟩ =

�
�T ��⟩ + �u

���u⟩
�
⇒

��⟩ =
�
�T� + ���u⟩⟨�u��

�−1�
�T ��⟩ + �u

���u⟩
�
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or

The iteration process can stop when values of the variation of the estimated 
unknown property in two successive iterations appear below a given threshold.

One can easily generalize the procedure when the unknown property is associated 
with several newly added molecular structures; for more details, see reference [103].

8  Conclusions

One has discussed a complete review of the mathematical structure and algorithms 
used to solve QSPR problems in molecular spaces.

Along the development of this study, one can observe that classical or quantum 
procedures can be brought to the same footing and associated with the isometric 
description of the molecular vectors representing the elements of a molecular set.

One has described in the present study the whole algorithmic structure of molec-
ular spaces QSPR. One can resume it in seven points enumerated with the seven 
first letters of the alphabet within the text: [(a), (b), (c), (d), (e), (f), (g)}. Such seven 
points summarize the body of molecular space QSPR procedures.

They can be summarized as follows:

• One knows a molecular set associated with some property.
• One can construct an appropriate dimension molecular space.
• One can compute molecular selfsimilarities to reorder the molecular data.
• One can assemble a molecular descriptor-independent vector set in molecular 

space.
• One can build an isometric vector set.
• One can construct a molecular polyhedron.

Finally, with the data resulting from the previous manipulations, one can set up the 
algorithm of QSPR in molecular space.

In future work, one will present applications of the various proposed algorithms.
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(51)�u ≈
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P=0

�P
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[
�u(�)

]P+1
d�,
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P=0

�P

⟨
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