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Abstract

The analytical methods for solving Schrodinger equation are essential and effective
tools with which we can investigate the spectroscopic properties, the electronic
structure, and the energetic properties of the diatomic molecules (DMs). Accord-
ingly, in this work, we used the Nikiforov-Uvarov (NU) method to solve the three-
dimensional nonrelativistic Schrodinger equation with the molecular Kratzer-Feus
(KF) potential and obtain the exact analytical bound state energy eigenvalues as
well as their corresponding normalized eigenfunctions. The effective KF diatomic
molecular potential well is investigated and represented graphically for several well-
known DMs. The bound state energy levels are tabulated numerically for arbitrary
values of the vibrational and rotational quantum numbers. The results obtained in
this work are found to be in excellent agreement with the already-existing results
in the literature.

Keywords Kratzer-Feus potential - Nikiforov-Uvarov method - Diatomic
molecules - Schrodinger equation - Analytical solution

1 Introduction

One of the main objectives of quantum mechanics is to determine the exact analytical
solutions of Schrodinger equation with a given potential for the quantum mechanical
system. This is due to the fact that the complete wave function involves implicitly all
the required information to completely define the observable quantities of the quan-
tum system under consideration; furthermore, a thorough analysis of the diatomic
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molecular spectroscopy has been traced back to the bound state energy spectra of the
atomic and molecular systems under investigation.
The KF potential, is defined as follows [1, 2]:

-A B
%4 (T) =—+4+ 5, A= 2D,re, B = Dorz:27 (1)

r r?’

where D, is the bond interaction dissociation energy between two atoms in the DM
separated by an equilibrium internuclear distance r.. This potential is a superposition
of the well-known attractive Coulomb potential at large distances and a repulsive
centrifugal potential barrier at short distances. Their combination generates an effec-
tive potential well, which serves as a potential model to investigate the molecular
structure, the molecular energy spectra, the chemical interactions, and the internu-
clear vibration [3, 4] of the diatomic molecules. This potential belongs to the class of
the diatomic molecular potentials [5] for its ability to specify the range of attraction
and the strength of the repulsive interactions.

Different methods have been used to study diatomic energy spectra using diatomic
molecular potentials: the NU method [6—12], the exact method [13], the shifted 1/N
expansion [ 14], the exact quantization rule method [15], the SUSY approach [16], the
tridiagonal J-matrix representation [17, 18], and algebraic methods [19, 20].

Z.Yalgin et al. [21] have obtained the eigen-energies of the excited ' and 3 S states
of the He atom with the molecular KF potential by using the hyper-spherical har-
monics method. Furthermore, they have demonstrated that the KF potential well is
sharper and deeper than the pure Coulombic potential well. Also, E. Ikhdair et al. [22]
have determined the exact solutions of the D-dimensional Schrédinger equation with
the KF potential by means of the standard method. Moreover, Shi-hai Dong and Gus-
hua Sun [23] have obtained the exact analytical solutions of the radial Schrodinger
equation with the KF potential in D dimensions. In addition, they have studied the
dependence of the energy eigenvalues on the spatial dimension D. The KF potential
has been extensively investigated by means of the factorization method [24], the
asymptotic iteration method [25], among other analytical methods.

The aim of the present work is to take a different approach and solve Schrédinger
equation analytically with the KF potential by using the NU method and to obtain the
bound state energy levels for the homonuclear and heteronuclear diatomic molecules
N,, H,, O,, NO, HC], CH and LiH.

This work is organized as follows: The NU method is introduced briefly in Sect. 2.
In Sect. 3, the exact eigenvalues are obtained and their corresponding radial eigen-
functions are analytically formulated by solving the radial Schrodinger equation
within the context of the NU method for KF potential. In Sect. 4, we performed
numerical calculations of the rovibrational energy levels for the above-mentioned
DMs. Also, a graphical representation and discussion of the effective potential well
are given. Finally, our work is concluded in Sect. 5 with a summary and concluding
remarks.
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2 The Nikiforov-Uvarov Method

The NU method [26, 27] is dedicated to solving the hypergeometric type equations
of the form:

¢ (x) =0, 2

where 7 (z) is a polynomial of degree at most one, o (x) and & () are polynomials
of degree at most two, ¢ (x) is a hypergeometric-type function, via orthogonal poly-
nomials. Furthermore, the function ¢ (z) takes the form:

V(r) = (2)Y(x), 3)
Equation (2) can be reformulated to a hypergeometric type of equation of the form:
o (x) Yy” () + 7 () Y/ (x2) + \Y (x) =0, 4)

to obtain its solutions. We introduce the following function of a maximum first degree:

A C) - G \/<” (=) - T (I)> — 6 (2) + ko (2). (5)

The maximum first degree of 7 (x) imposes a restriction on the expression under
the radical, its discriminant must be equal to zero. Equating the discriminant to zero
yields a quadratic equation for %, which can be solved algebraically to get the possi-
ble values of % and the corresponding values of 7 (x). It is worth noting that, accord-
ing to the method, we must select the values of 7 (x) for which 7/ (z) < 0.

The hypergeometric type of function Y (z) in Eq. (3) is obtained by Rodrigus
formula:

B, d"

Y(Jﬁ) :Yn (.Z‘) = p(1>%(0n (l’)p(l’)) (6)

where B, is the normalization constant, p (x) is the weight function satisfying the
conditions:

V(o) = T @) @) = o (0)p 0 )
r@) =7 () +2n (2). ®)

According to the NU method, the parameter ) is defined by:
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A=k+7'(x). )

Accordingly, the eigenvalues, Eq. (4), can be obtained from the following equation:

n(TI*l) "

A=X\, =—-n7'(z) - 5O (x)n=0,1,2,3,.... (10)

Itis worth noting that \ and )\, are obtained froma particularresultof Y (z) =Y, (z).
The function ¢ (z), in Eq. (3), is obtained from the following logarithmic derivative:

3

xT

= ) (11)

x

~

¢ ()
@ ()

N

Q

3 Bound state eigenvalues and their corresponding Radial
Eigenfunctions for the KF potential by means of NU Method

The radial equation for KF potential is of the form:

dQRnl (7”) I 2an,] (T) 2/1

o R+ 1)
dr? r dr h2r2

2p

(Enﬂ“Q +Ar — B — ) Ry (7") =0, (12)

where p is the reduced mass, ] is the orbital angular momentum quantum number,
and p, is the vibrational quantum number. Introducing the following parameters:

a=—.=Il1+1),E;=-w,w>0 (13)

the radial equation can be expressed as

2
d 12:112(7“) + %ngin(T) + 7% (—awr’ + aAr — (aB + B)) Ry (r)=0. (14

Comparing Eq. (14) with Eq. (2), we obtain the following:
F(r)=20(r)=7r06(r)=—awr’+ adr — (aB + ) (15)

Hence, by means of Eq. (5) we can write 7 (1) as follows:

77(1"):—%:I:%\/Alozwrz—&-ﬁl(k—aA)r+4(aB+[5)+l. (16)

To determine the constant £, the discriminant must be equal to zero, and as a result
we obtain
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ki = aA =+ /aw (4 (aB+ ) +1). (17)
Inserting Eq. (17) into Eq. (16), 7 (r) can be rewritten as

—1+ 1 Wiawr+\/4(aB+3)+ 1|, fork.

-1+ 1 [Vidawr — \/4(aB+ B) + 1|, fork-

m(r) =

(18)

Accordingly, we select a particular expression for 7 () which meets the condition
7' (r) <0 as

W(T):—% (1—7—&—\/40@7“),7: 4(aB+0)+1. (19)
From Eq. (8), 7 (r) is given by:

7(r)=(y+1) — Vdawr. (20)

From Eq. (9) and Eq. (10), the parameters ) and ), are given by:

A=ad—(v+1)Vaw, 21

Ay = 2ny/aw. (22)
Equating the two equations above, we obtain
aA?

W= (23)

C(2n+1)+9)”

Substituting for the values of the parameters ¢, v, andy we get the bound state
eigenvalues in the form:

—2uA?

EnZ: Q,n:O,l,Q,...,l:0,1,2,...,71

(29

12 <2n F144/2+1)°+ 8;{?)

Equation (24) is identical to the energy eigenvalue equation provided by Eq. (28)
of Ref. [28], if we take the substitution N = 3. Hence, we finally obtain the energy
eigenvalue equation:

81t D,r.
ﬁ 2 8uDyre?
(2n+1) + /(20 + 1) 4 202

En[ = - (25)
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To determine the normalized radial eigenfunctions R,; in terms of the orthogonal
associated Laguerre polynomials, consider Eq. (11) from which we can recast the
logarithmic derivative as follows

Inp (r) :/W(T>dr (26)

o (r)

Inserting the expressions for 7 () and o (r) into the above equation we yield

o (r) = N7 emvaer (27)

Applying the same logarithmic derivative transformation to Eq. (7) yields

In(v(r)= / ;_ E:idr, (28)
from which we get
p(r)=cr’e™ 6 = Viaw. (29)

By means of Eq. (6), Y,, (r) is given by

- d )
Yo () = Bur eV (e ), (30)

which can be compared to the well-known Rodrigues formula for the orthogonal
associated Laguerre polynomials [29]

i 7 gfkeg dn
IHO = i

({-fﬁrk‘e*{) 7 (31)

by taking B, = %, k = v, £ = ér. Hence, we obtain:

e

Yo (r) = L, (or). (32)

Finally, from Egs. (27) and (32) the normalized radial eigenfunctions can be expressed
in terms of the orthogonal Laguerre polynomials as follows

Ry (r)= anr(%)e*%TL;fl (6r). (33)

With the aid of the normalization condition

/TQ(RM (r)dr = 1, (34)
0
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and the result of Ref. [29]

00 2 .
/ t(‘+“367t<L;I (f))th _ Z" ( ﬁ ) F(a + ﬁ +r+ 1)’ (35)
0

r=0\ n—r rl

the normalization constant V,; takes the form:

- !
N, = 63+ e . 36
: \/(2n+7+1)F(n+7+1) (36)
Substituting Eq. (36) into Eq. (33), we finally get
Bl (n+1) =1y _p
Rn = ( 2 ) "2 ,Pp= or. 37
1 (p) \/(2n+7+1)1ﬂ(n+7+1)0 e L) (p),p=or (37

4 Results and discussion

The energy levels for the diatomic molecules HCIl, CH, N,, H,, O,, NO, and LiH are
computed numerically and tabulated in Tables 1, 2, 3, 4 and 5, by means of spectro-
scopic parameters presented in Table 6. The eigenvalues obtained in Tables 1, 2, 3
and 4 are in excellent agreement with the values computed previously by means of
alternative methods [25], [30-32], [34]. To the best of our knowledge, our work is
the first to quantify the energy levels of N, H, and CH DMs in the context of the KF
interaction. With the aim of providing a comparative benchmark against which future
studies can be compared, we have only included our data for these DMs in Table 6.
In Fig. 1, the KF potential is plotted for several DMs; its graphical representation
reveals the nature of the chemical bond and the molecular behavior atr=r.. As shown
in Fig. 1, the potential becomes infinite as the internuclear separation approaches zero
due to the internuclear repulsion. On the other hand, as the molecule decomposes,
the internuclear separation tends to infinity, and consequently, the potential vanishes.
According to Tables 1, 2, 3,4 and 5, and Fig. 1, the eigenvalues of N, are greater than
those of the other diatomic molecules, since its potential depth is sharper and larger

Table 1 Spectroscopic param-

eters for dri)fferent diI:ttorP;lic P arametersb Do (V) i B ¢ (am)

molecules in the ground state 02 5.156658828 1.208  7.997457504
LiH 2.515283695 1.5956 0.8801221
HC1 4.619061175 1.2746  0.9801045
NO 8.043782568 1.1508 7.468441000

b Th . N2 11.93827205 1.0940 7.00335

€ Spectroscopic parameters 4, 4.7446 07416  0.50391
used in this work are taken
from [30], [33], [34] CH 3.947444534 1.1198 0.929931
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Table 2 Energy eigenvalues (in eV) of KF molecular potential for different values of n and [ for ground
state Oy diatomic molecule, where fic = 1973.29 eV A

Oy

n l Present work Ref. [25] Ref. [30] Ref. [31]

0 0 —5.126358490795 —5.126358625 —5.126358620071 —5.126358490

1 0 —5.066640766392 —5.066641151 —5.066641146718 —5.066640766
1 —5.066291938130 —5.066292323 —5.066292321402 —5.066291936

2 0 —5.007960487581 —5.007961116 —5.007961110233 —5.007960488
1 —5.007617701669 —5.007618329 —5.007618327191 —5.007617702
2 —5.006932271122 —5.006932904 —5.006932902380 —5.006932272

3 0 —4.950293762100 —4.950294624 —4.950294618656 —4.950293764
1 —4.949956879787 —4.949957740 —4.949957739138 —4.949956880
2 —4.949283253405 —4.949284119 —4.949284118344 —4.949283254
3 —4.948273159303 —4.948274034 —4.948274032620 —4.948273160

4 0 —4.893617381542 —4.893618469 —4.893618463868 —4.893617382
1 —4.893286268037 —4.893287355 —4.893287353086 —4.893286268
2 —4.892624176321 —4.892625268 —4.892625266816 —4.892624178
3 —4.891631376849 —4.891632476 —4.891632475505 —4.891631378
4 —4.890308274954 —4.890309388 —4.890309384483 —4.890308272

5 0 —4.837908798004 —4.837910103 —4.837910098245 —4.837908798
1 —4.837583322339 —4.837584627 —4.837584625235 —4.837583322
2 —4.836932503438 —4.836933812 —4.836933811639 —4.836932504
3 —4.835956606018 —4.835957923 —4.835957922172 —4.835956606
4 —4.834656026819 —4.834657357 —4.834657353568 —4.834656026
5 —4.833031294198 —4.833032637 —4.833032634174 —4.833031292

than the other ones. Therefore, we detect an increase in the energy eigenvalues as the
molecular potential depth increases.

5 Conclusion

In the present paper, we solved Schrédinger equation for KF potential to get energy
eigenvalues and the corresponding normalized total wavefunctions. Numerical
results are represented for some well-known diatomic molecules. The findings of
this work demonstrate the remarkable precision with which the KF potential models
the diatomic molecular structures and quantifies their bound state energy levels. Our
results can be extended into applications in future research studies.
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Table 3 Energy eigenvalues (in V) of KF molecular potential for different values of n and [ for ground
state LiH diatomic molecule, where fic = 1973.29 eV A

LiH

n l Present Work Ref. [30] Ref. [34] Ref. [32]

0 0 —2.467310100790 —2.467310304097 —2.467310100 —2.467293680

1 0 —2.375818641757 —2.375819214406 —2.375818641 —2.380989203
1 —2.374107386003 —2.374107972668 —2.374107386 —2.380416619

2 0 —2.289323364637 —2.289324266253 —2.289323364 —2.281213703
1 —2.287704688312 —2.287705602815 —2.287704688 —2.280676728
2 —2.284474275211 —2.284475215373 —2.284474275 —2.279603547

3 0 —2.207467005759 —2.207468200275 —2.207467005 —2.187580925
1 —2.205934349403 —2.205935555783 —2.205934349 —2.187076666
2 —2.202875519753 —2.202876749755 —2.202875519 —2.186068862
3 —2.198303413947 —2.198304679122 —2.198303413 —2.184558925

4 0 —2.129923673518 —2.129925128672 —2.129923673 —2.099596786
1 —2.128471048472 —2.128472514560 —2.128471048 —2.099122640
2 —2.125571862731 —2.125573350591 —2.125571862 —2.098175007
3 —2.121238181153 —2.121239701434 —2.121238181 —2.096755197
4 —2.115487942686 —2.115489505754 —2.115487942 —2.094865172

5 0 —2.056395599696 —2.056397286593 —2.056395599 —2.016815899
1 —2.055017529518 —2.055019226505 —2.055017529 —2.016369515
2 —2.052267068844 —2.052268785922 —2.052267068 —2.015477357
3 —2.048155517864 —2.048157264859 —2.048155517 —2.014140642
4 —2.042699680098 —2.042701466576 —2.042699680 —2.012361189
5 —2.035921689479 —2.035923524667 —2.035921689 —2.010141421
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Table 4 Energy eigenvalues (in eV) of KF molecular potential for different values of n and [ for ground
state HCL diatomic molecule, where ¢ = 1973.29 eV A

HCL

n l Present Work Ref. [30] Ref. [34] Ref. [32]

0 0 —4.541847883485 —4.541848211101 —4.534753155 —4.574322886

1 0 —4.393727026093 —4.393727956046 —4.386752765 —4.402122552
1 —4.391292900595 —4.391293850595 —4.384318781 —4.401308521

2 0 —4.252735638062 —4.252737112329 —4.245881301 —4.239466022
1 —4.250417715848 —4.250419208735 —4.243563600 —4.238696688
2 —4.245789522965 —4.245791052967 —4.238935859 —4.237158875

3 0 —4.118423405560 —4.118425371585 —4.111688159 —4.085660853
1 —4.116214406181 —4.116216389518 —4.109479448 —4.084933001
2 —4.111803613368 —4.111805631214 —4.105069242 —4.083478096
3 —4.105205379915 —4.105207449232 —4.098471914 —4.081297704

4 0 —3.990375014951 —3.990377425087 —3.983757778 —3.940076275
1 —3.988268219314 —3.988270645562 —3.981651330 —3.939386976
2 —3.984061421100 —3.984063879462 —3.977445237 —3.938009125
3 —3.977768151242 —3.977770657506 —3.971153046 —3.935944185
4 —3.969408569017 —3.969411138650 —3.962794945 —3.933194375

5 0 —3.868206938397 —3.868209749404 —3.861706429 —3.802136724
1 —3.866196137622 —3.866198963636 —3.859696027 —3.801483303
2 —3.862180946080 —3.862183802008 —3.855681641 —3.800177161
3 —3.856174132198 —3.856177032746 —3.849676057 —3.798219664
4 —3.848194720418 —3.848197679994 —3.841698323 —3.795612890
5 —3.838267839519 —3.838270872139 —3.831773601 —3.792359570
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Table 5 Energy eigenvalues (in V) of KF molecular potential for different values of n and [ for ground
state NO diatomic molecule, where fjc = 1973.29 ¢V A

NO

n l Present Work Ref. [25] Ref. [30] Ref. [31]

0 0 —8.002659243972 —8.002659417 —8.002659419493 —8.002659248

1 0 —7.921456323005 —7.921456839 —7.921456840689 —7.921456326
1 —7.921043308747 —7.921043834 —7.921043829925 —7.921043312

2 0 —7.841483108610 —7.841483956 —7.841483958093 —7.841483114
1 —7.841076333005 —7.841077188 —7.841077185904 —7.841076336
2 —7.840262908797 —7.840263771 —7.840263768523 —7.840262914

3 0 —7.762714895928 —7.762716066 —7.762716067159 —7.762714900
1 —7.762314233959 —7.762315413 —7.762315408528 —7.762314236
2 —7.761513034641 —7.761514218 —7.761514215884 —7.761513040
3 —7.760311547121 —7.760312744 —7.760312738370 —7.760311552

4 0 —7.685127597398 —7.685129079 —7.685129080626 —7.685127602
1 —7.684732927162 —7.684734417 —7.684734413653 —7.684732928
2 —7.683943708988 —7.683945203 —7.683945202003 —7.683943714
3 —7.682760187378 —7.682761696 —7.682761690175 —7.682760192
4 —7.681182728848 —7.681184246 —7.681184244677 —7.681182728

5 0 —7.608697724344 —7.608699509 —7.608699510108 —7.608697730
1 —7.608308926962 —7.608310719 —7.608310715917 —7.608308928
2 —7.607531452229 —7.607533248 —7.607533247563 —7.607531456
3 —7.606365540115 —7.606367349 —7.606367345012 —7.606365544
4 —7.604811550338 —7.604813368 —7.604813367976 —7.604811550
5 —7.602869962094 —7.602871795 —7.602871795644 —7.602869968
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Table 6 Energy eigenvalues (in n
eV) of KF molecular potential
for different values of n and |

for ground states No, Ho, and
CH diatomic molecules, where
hc =1973.29 eV A 2

N, H, CH
—11.883835079230 —4.559168926667 —3.864220075130
—11.776194388350 —4.222654803490 —3.706292206039
—11.775705806490 —4.210031229642 —3.703033870086
—11.670009573639 —3.922068210280 —3.557851738050
—11.669527585037 —3.910767337531 —3.554787137047
—11.668563727603 —3.888364625659 —3.548673956028
—11.565254498035 —3.652471039349 —3.418153682202
—11.564778984580 —3.642314347183 —3.415267756731
—11.563828075463 —3.622175295934 —3.409510771720
—11.562402006115 —3.592395008530 —3.400912266319
—11.461903608392 —3.409745329792 —3.286524763876
—11.461434454635 —3.400583427381 —3.283803889785
—11.460496262923 —3.382413053252 —3.278375957072
—11.459089264788 —3.355534559319 —3.270268419669
—11.457213807350 —3.320382716359 —3.259522020199
—11.359919199001 —3.190435078929 —3.162355295442
—11.359469012927 —3.182142182497 —3.159787122780
—11.358543312861 —3.165692028411 —3.154663635757
—11.357155047390 —3.141350246076 —3.147010388096
—11.355304557876 —3.109501600541 —3.136865307055
—11.352992299136 —3.070634758033 —3.124278220142

N
N B W N = O b W= O W= O NN = O = O O~

J1V(r) (eV)

Fig. 1 Kratzer-Feus-type potential for different diatomic molecules.
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