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Abstract
Two-electron transfer by fast heavynuclei fromheliumlike targets is studied.Adetailed
sequence of comprehensive computations is carried out in a large keV–MeV range of
the projectile energies. This set is illustrated with total cross sections for double cap-
ture by alpha particles from helium atoms using several frequently applied four-body
quantum-mechanical distortedwavemodels with the correct boundary conditions. The
sensitivity of the obtained total cross sections is examined for different choices of the
bound and continuum states. Especially at high energies, the influence of the compact-
ness of the bound states is investigated by reference to the mechanism of the velocity
matching kinematic double electron capture. Also considered is the dependence of
these cross sections on the electronic screening of the projectile and the target nuclear
charges in the bound and continuum states. The impact of this electronic shielding
on total cross sections is assessed by reference to the corresponding bare nuclear
charges in the bound and continuum states. Relative to all the available experimental
data (100–6000 keV), the found striking model-dependence implies that two-electron
transfer is sharply different from the associated one-electron transfer involving the
same colliding particles.

Keywords Double charge exchange · Correct boundary conditions · Distorted waves

1 Introduction

We analyze double electron capture by a heavy nucleus of charge ZP from a heliumlike
target of nuclear charge ZT. Intermediate and high impact energies are considered by
applying several frequently used quantum-mechanical distorted wave methods with
the correct boundary conditions. The concept of the correct boundary conditions for
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double capture [1–3] is the same as for single capture [4]. Yet, in practice, most of
the past applications of the customary distorted wave methods met with some huge
surprises when passing from single to double capture, irrespective of whether the
correct boundary conditions are fulfilled or disregarded.

In principle, vastly different choices of distorted waves are allowed under the pro-
vision that they are consistent with the distorting perturbation potentials and the
correct asymptotic behaviors of the corresponding total scattering wave functions.
Such choices can yield symmetric or asymmetric distorted wave methods. Symmetric
methods do not need to separate the treatments of the homo-nuclear (ZP = ZT) and
hetero-nuclear (ZP �= ZT) collisions. On the other hand, for asymmetric methods,
care should be exercised to select the physically appropriate variant (with the post or
the prior interactions) depending on the ratio of the incident and target nuclear charges.

Given this constrained freedomof choices of distortedwaves, a number of four-body
(4B) methods have been introduced for single and double capture collisions. Some
of the most frequently utilized theories are ’the boundary-corrected first Born’ (CB1-
4B) [5, 6], ’the continuum distorted wave’ (CDW-4B) [7, 8], ’the boundary-corrected
continuum intermediate state’ (BCIS-4B) [9], the Born distorted wave (BDW-4B)
[10, 11] and ’the continuum distorted wave - eikonal initial state’ (CDW-EIS-4B) [12]
methods. The BCIS-4B and BDW-4Bmethods use the CB1-4Bmethod in one channel
and the CDW-4B method in the other channel.

As to single charge-exchange, abundant experience with heliumlike and multi-
electron targets demonstrated that these distorted wave methods systematically agree
very well or excellently with measurements. Moreover, all the mentioned methods
are in reasonably good mutual agreement for total cross sections within a common
validity domain E(keV/amu) ≥ 80 max{Ii , If }, where Ii and If are the initial- and
final-state ionization potentials, respectively [4].

By reference to virtually all the existing experimental data on total cross sections,
the three-body boundary-corrected first Born (CB1-3B) method [4] for single capture
by heavy nuclei from hydrogenlike and multi-electron targets emerged as ultimately
the most successful first-order theory over a wide keV-MeV energy interval [13, 14].
Moreover, for single capture, the three-body second-order theories, e.g. the CDW-
3B, CDW-EIS-3B, BCIS-3B and BDW-3B methods are also successful in providing
reliable total cross sections at intermediate and high energies [15–17].

Some unexpected surprises were encountered in double capture by heavy nuclei
from heliumlike targets. Namely, for such more complex collisions, no distorted wave
method met with success uniformly throughout their anticipated validity domain of
impact energies. For instance, in asymmetric double capture by protons from helium,
H+ +He(1s2) → H−(1s2)+He2+, the CDW-4Bmethod was in excellent agreement
with the experimental data above about 100 keV [7, 8].

However, for symmetric double capture by α−particles from helium, He2+ +
He(1s2) → He(1s2) +He2+, the CDW-4B method underestimated the experimental
data by a factor of 2-10 at 250 ≤ E ≤ 3000 keV [10, 11]. For this collision, at the same
energies, the CDW-EIS-4B method suffered a complete breakdown by underestimat-
ing the measured total cross sections by 3-4 orders of magnitudes [12]. Moreover, for
the same scattering, the CB1-4B method had a drastic failure above 2000 keV/amu
through overestimation of the experimental data by 2–3 orders of magnitude [1–3]. As
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such, in this process, the first- and second-order methods predicted the diametrically
opposite behaviors of total cross sections as a function of impact energy. Specifically,
total cross sections in the CB1-4B method are too high, whereas those in the CDW-4B
and CDW-EIS-4Bmethods are too low relative to the corresponding findings from the
measurements.

On the other hand, for this identical double capture problem, reproduction of the
experimental data by the BCIS-4B and BDW-4B methods is either within a factor
of 2 or excellent below or above 1000 keV, respectively. It then follows that double
capture is extremely sensitive to different choices of distorted waves and distorting
potentials, even when relying exclusively upon the methods with the correct boundary
conditions.

This is all the more unusual, especially in comparison to a relatively mild sensi-
tivity of single capture to vastly different selections of distorted waves and distorting
potentials. It should be emphasized, however, that the requirement for the orbital com-
pactness in double capture is very demanding. In double capture, the two electrons
from the target must be at nearly the same place at about the same time to be simulta-
neously captured by the projectile.

A strong model-dependence of theoretical descriptions of double capture might
partially be attributed to the ’multiplicative effect’ of the electronic distortions included
either in one (BCIS-4B, BDW-4B) or both (CDW-4B, CDW-EIS-4B) channels of
scattering. Therein, this effect is manifested in the appearance of the product of the
two electronicCoulombwave functions (or their eikonal asymptotes) in the entrance or
exit channels or both. In single capture, the same mentioned methods contain only one
electronic Coulomb distortion (or its eikonal asymptote) per channel. The implication
is that e.g. some linear errors in distorted wave models for single capture could be
exacerbated and become quadratic (or even of a higher order) for double capture.

Given all the intertwined issues, it is difficult to assess the relative influence of
various contributing factors to double capture by examining simultaneously several
effects. Instead, it could be more insightful to examine separately some of the salient
characteristics of double capture, as envisaged in the present study.We choose to focus
on the Slater screening effect because of its direct influence on the critically important
compactness of the initial and final bound state orbitals.

Our goal is broader, however, because of aiming to assess the role of the electronic
shielding of the nuclear charges in both the bound and continuum states in the entrance
and exit channels. To this end, three different settings are considered for the mentioned
pivotal collision, He2+ + He(1s2) → He(1s2) + He2+, such as (i) bound and con-
tinuum states unscreened: ZP,T = 2, (ii) bound states screened: Z eff

P,T = 1.6875 and
continuum states unscreened: ZP,T = 2 as well as (iii) bound and continuum states
screened: Z eff

P,T = 1.6875.
The role of the addressed effects is evaluated by reference to all the experimental

data from different measurements available at 100-6000 keV (Allison [18], Nikolaev
et al [19], Pivovar et al [20], Berkner et al [21], McDaniel et al [22], DuBois [23], de
Castro Faria et al [24], Schuch et al [25], Afrosimov et al [26]).

Atomic units will be used throughout unless otherwise stated.
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2 Theory

We consider non-radiative, non-relativistic double electron capture by a heavy projec-
tile nucleus P of incident velocity v from a heliumlike target (taken at rest), which has
a heavy nucleus T. This process is schematized as follows:

ZP + (ZT; e1, e2)i −→ (ZP; e1, e2) f + ZT (Double capture), (2.1)

where ek is k th electron (k = 1, 2) and the parentheses indicate the bound states
with the usual sets of the initial and final quantum numbers {i, f }, respectively. The
charge and mass of nucleus K are denoted by ZK and MK (K=P, T), respectively.
In the adopted atomic units, the electron mass me is me = 1. The reduced masses
in the entrance and exit channels in process (2.1) are μi = MP(MT + 2)/M and
μ f = MT(MP + 2)/M, respectively, with M = MP + MT + 2.

All the four particles {ZP, ZT, e1, e2} in process (2.1) are viewed as being the active
participants to the transition i → f . Each of them is treated quantum-mechanically
in the CB1-4B, CDW-4B, CDW-EIS-4B, BCIS-4B and BDW-4B methods. For the
geometry of process (2.1), let sk and xk be the position vectors of the k th electron
relative to P and T, respectively (k = 1, 2). Further, let R be the relative vector of ZP
with respect to ZT. For the relative motion of heavy particles, the quantities r i and r f

are introduced as the position vectors of P and T with respect to the centers-of-masses
of the atomic systems (ZT; e1, e2)i and (ZP; e1, e2) f , respectively.

Vector R can be decomposed as R = ρ+v Ẑ.Here,ρ is a two-dimensional vectorial
component of R in the scattering plane (XOY) and Ẑ is the unit vector of the Z-axis.
Vector v is taken to be along the Z-axis, so that ρ · v = 0.

The initial and final wave vectors are labeled by ki = μivi and k f = μ f v f ,where
vi and v f are the velocities of the incident and scattered projectile, respectively. In the
heavymass limit, forward scattering dominates and,moreover, with the target assumed
to be at rest, it follows that v f ≈ vi ≡ v. We take ki to be the momentum vector of
P with respect to (ZT; e1, e2)i , whereas k f is the momentum vector of (ZP; e1, e2) f
relative to T. For heavy particle collisions, the standard mass limits 1/MP,T � 1 in
process (2.1) will consistently be used throughout.

We will also discuss non-radiative, non-relativistic single electron capture for the
same entrance channel as in process (2.1), but with a different exit channel, as sym-
bolized by:

ZP + (ZT; e1, e2)i −→ (ZP, e1) f1 + (ZT, e2) f2 (Single capture), (2.2)

where { f1, f2} is the standard set of the final quantumnumbers of the two hydrogenlike
atomic systems.

As elaborated in Ref. [2], the CB1-4B, CDW-4B, CDW-EIS-4B, BCIS-4B and
BDW-4B methods have the following exponential term in common:

D ≡ eiki ·r i+ik f ·r f = eiα·(s1+s2)+iβ·(x1+x2), (2.3)
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where α and β are the momentum transfer vectors given by the relations1

α = η − v+v̂

2
, β = −η + v−v̂

2
, α + β = −v, v± = v ± εPf − εTi

v
. (2.4)

Here, η is the vector of the transverse momentum transfer with the property η · v =
0. Further, εTi and εPf are the binding energies associated with the initial and final
bound-state wave functions ϕi (x1, x2) and ϕ f (s1, s2) of the two-electron systems
(ZT; e1, e2)i and (ZP; e1, e2) f in the entrance and exit channels of process (2.1),
respectively.

We will now list the working formulae for the transition amplitudes in the CB1-
4B, CDW-4B, CDW-EIS-4B, BCIS-4B and BDW-4B methods for double capture in
process (2.1). The prior and post forms of the transition amplitudes are denoted by
the standard symbols T−

i f and T+
i f , respectively. There is no need to give any further

details as they can be found in Ref. [2].
All the analyzed results will be for total cross sections alone. In the CB1-4B, CDW-

4B, CDW-EIS-4B, BCIS-4B andBDW-4Bmethods, total cross sections do not depend
on the internuclear potential nor on any other ρ−dependent phase stemming from
the relative motion of heavy scattering aggregates interacting through the Coulomb
potentials [2]. This should be the case with any other theory which accounts for the
internuclear potential exactly in the heavy mass limit and obeys the correct Coulomb
boundary conditions.

Therefore, the ρ−dependent phases will be omitted throughout. If differential cross
sections are needed, these phases must be included and they can be taken from Ref.
[2]. For differential cross sections in the CDW-4B and CDW-EIS-4B methods for any
value of ZP,T, the difficult Bessel-Fourier numerical quadrature is employed with the
highly oscillatory functions. Advantageously, this is completely unnecessary in the
BCIS-4B and BDW-4B methods for ZP = 2 or ZT = 2 in which case the differential
cross sections are directly proportional to |T±

i f |2 [2].

2.1 The CB1-4Bmethod (prior and post)

T (CB1−4B)−
i f (η ) =

∫∫∫
dx1dx2dR (vR − v · R)2iξDF−

i f , (2.5)

T (CB1−4B)+
i f (η ) =

∫∫∫
dx1dx2dR (vR + v · R)−2iξDF+

i f , (2.6)

F−
i f = ϕ∗

f (s1, s2 )

[
ZP

(
2

R
− 1

s1
− 1

s2

)]
ϕi (x1, x2 ), (2.7)

F+
i f = ϕ∗

f (s1, s2 )

[
ZT

(
2

R
− 1

x1
− 1

x2

)]
ϕi (x1, x2 ), (2.8)

ξ = ZT − ZP

v
. (2.9)

1 There are some misprints in Refs. [2]: and they are corrected here. Therein, on p. 9: 2α · (s1 + s2) + 2β ·
(x1 + x2) should read α · (s1 + s2) + β · (x1 + x2) (number 2 removed). Further, on p. 24 in Ref. [2]:
2α = η − v+v̂ and 2β = −η − v−v̂ should read 2α = η − v+v̂ and 2β = −η − v−v̂, respectively (no
bolding of number 2, but α and β are bolded).
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2.2 The CDW-4Bmethod (prior and post)

T (CDW−4B)−
i f (η ) = −[N �(νP)N (νT)]2

∫∫∫
dx1dx2dR

×
2∏

k=1

1F1(iνT, 1, ivxk + iv · xk)DG−
i f , (2.10)

T (CDW−4B)+
i f (η ) = −[N �(νP)N (νT)]2

∫∫∫
ds1ds2dR

×
2∏

k=1

1F1(iνP, 1, ivsk + iv · sk)DG+
i f , (2.11)

G−
i f = ϕ∗

f (s1, s2)
{
1F1(iνP, 1, ivs2 + iv · s2)∇x1ϕi (x1, x2) · ∇s1 1F1(iνP, 1, ivs1 + iv · s1)

+ 1F1(iνP, 1, ivs1 + iv · s1)∇x2ϕi (x1, x2) · ∇s2 1F1(iνP, 1, ivs2 + iv · s2)
}
, (2.12)

G+
i f = ϕi (x1, x2)

{
1F1(iνT, 1, ivx2 + iv · x2)∇s1ϕ

∗
f (s1, s2) · ∇x1 1F1(iνT, 1, ivx1 + iv · x1)

+ 1F1(iνT, 1, ivx1 + iv · x1)∇s2ϕ
∗
f (s1, s2) · ∇x2 1F1(iνT, 1, ivx2 + iv · x2)

}
, (2.13)

N±(νK) = eπνK/2�(1 ± iνK), νK = ZK

v
(K = P,T). (2.14)

Here, the standard symbols 1F1(a, b, z) and�(z) denote theKummer confluent hyper-
geometric function and the Euler gamma function, respectively. Moreover, νK is the
usual notation for the Sommerfeld parameter.

2.3 The CDW-EIS-4Bmethod (post)

T (CDW−EIS−4B)+
i f (η ) = −[N (νT)]2

∫∫∫
ds1ds2dR

2∏
k=1

(vsk + v · sk)−iνPDG+
i f .

(2.15)

2.4 The BCIS-4Bmethod (prior and post)

T (BCIS−4B)−
i f (η ) = −[N (νT)]2

∫∫∫
dx1dx2dR(vR − v · R)−2iνPDH−

i f , (2.16)

T (BCIS−4B)+
i f (η ) = −[N �(νP)]2

∫∫∫
ds1ds2dR(vR + v · R)−2iνTDH+

i f , (2.17)

H−
i f = ϕ∗

f (s1, s2 )

[
ZP

(
2

R
− 1

s1
− 1

s2

)]
ϕi (x1, x2 )

×1F1(iνT, 1, ivx1 + iv · x1) 1F1(iνT, 1, ivx2 + iv · x2), (2.18)

H+
i f = ϕ∗

f (s1, s2 )

[
ZT

(
2

R
− 1

x1
− 1

x2

)]
ϕi (x1, x2 )

×1F1(iνP, 1, ivs1 + iv · s1) 1F1(iνP, 1, ivs2 + iv · s2). (2.19)
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2.5 The BDW-4Bmethod (prior and post)

T (BDW−4B)−
i f (η ) = −[N �(νP)]2

∫∫∫
dx1dx2dR (vR + v · R)−2iνTDG−

i f , (2.20)

T (BDW−4B)+
i f (η ) = −[N (νT)]2

∫∫∫
ds1ds2dR (vR − v · R)−2iνPDG+

i f . (2.21)

2.6 Common aspects on numerical computations in all themethods

The defining nine-dimensional integrals in all the just listed expressions for the tran-
sition amplitudes are reduced to certain lower dimensions by analytical means. This
is done using the Fourier integral transform, followed by the techniques of Feynman,
Nordsieck and Lewis [7, 9]. Depending on the analyzed distorted wave method, the
remaining two- to four-dimensional integrals in T±

i f must be computed by numerical
quadratures. Thus, in the CB1-4B method, the transition amplitudes are computed by
two- or three-dimensional numerical quadratures [5, 6]. For the CDW-4B, CDW-EIS-
4B, BCIS-4B and BDW-4B methods, the number of numerical quadratures in T±

i f is
three [7–10, 12]. Alternatively, the transition amplitude in the BCIS-4B and BDW-4B
methods can be computed by four-dimensional numerical quadratures [9, 10]. In these
two latter methods, computations by three and four-dimensional numerical quadra-
tures in T±

i f are carried out at several energies to confirm the same accuracy of the
obtained results.

The prior Q−
i f and post Q

+
i f total cross sections are computed from the usual expres-

sions:

Q∓
i f (a

2
0) =

∞∫

0

dη

∣∣∣∣∣
T∓
i f (η )

2πv

∣∣∣∣∣
2

, (2.22)

where a0 is the Bohr radius. Using the relation πa20 = 8.797356 × 10−17cm2, these
cross sections are expressed in cm2 in all the plotted graphs on Figs. 1-10. For the
ground-to-ground state transition, T∓

i f (η ) do not depend on φη, i.e T
∓
i f (η ) = T∓

i f (η ).

The ensuing result of the integration over φη in (2.22) is 2π. Thus, total cross sec-
tions Q∓

i f are computed by three- to at most five-dimensional numerical quadratures,
depending on the employed distorted wave method (as well as on the prior procedure
in the partial analytical reduction of T∓

i f ). Using the CDW-4B, BCIS-4B, BDW-4B
and CB1-4B methods for the symmetric case ZT = ZP = 2 of process (2.1), i.e.
4He2+ + 4He(1s2) → 4He(1s2) + 4He2+, our computations explicitly confirmed that
there is no post-prior discrepancy, as expected.

3 Results

In the illustrations, the general double capture process (2.1) is specified as the symmet-
ric homo-nuclear collisions (ZT = ZP = 2) for the ground-to-ground state transition
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(in computations):

4He2+ + 4He(1s2) −→ 4He(1s2) + 4He2+ (Double capture), (3.1)

as well as for any final state (in measurements)

4He2+ + 4He(1s2) −→ 4He(�) + 4He2+ (Double capture). (3.2)

Moreover, regarding the general single capture process (2.2), we shall also refer to the
homo-nuclear case ZT = ZP = 2 by using only the ground states i = 1s2 as well as
f1 = 1s and f2 = 1s:

4He2+ + 4He(1s2) −→ 4He+(1s) + 4He+(1s) (Single capture). (3.3)

We will start by examining the sensitivity of the computed cross sections to several
initial ϕi and final ϕ f heliumlike ground-state wave functions. The selected wave
functionswith one, two, three and four parameters are due toHylleraas [27], Silverman
et al [28], Green et al [29] and Löwdin [30], respectively.

Throughout, the same given type of the ground-state wave functions centered on ZT
and ZP is used for ϕi and ϕ f , respectively. For instance, the same type of the ground-
state helium wave functions ϕi (x1, x2) and ϕ f (s1, s2) of Hylleraas [27] is employed
for (ZT, 2e)i=1s2 and (ZP, 2e) f =1s2 in the entrance and exit channel, respectively. The
like procedure also applies to each of the other three types of the quoted ground-state
helium wave functions taken one at a time.

The heliumlike wave functions from Refs. [27–30] include only the radial electron-
electron correlations. The extent of this static correlation differs from one function to
another. Thus, for the most frequently used two-parameter ground-state helium wave
function of Silverman et al [28], the included radial correlations are very high (up to
about 95%).

For brevity, regarding the choice of the ground-state wave functions, the sensitivity
test is carried out for the CDW-4B method alone. The results for process (3.1) are
shown in Figs. 1 and 2. Figure 1 has four panels each of which compares two wave
functions at a time. The results for the one-parameter wave function [27] are on every
panel (a-d). The results for the two [28], three [29] and four [30] parameter wave
functions are on panels (a), (b) and (c), respectively. The cross sections for all the four
ground-state wave functions [27–30] are summarized on panel (d). In panels (a-d), the
impact energy and cross sections vary within 102 − 104 keV and 10−28 − 10−15 cm2,

respectively.
At least for this very large span of some 13 orders of magnitudes on the ordinates,

the cross sections are visually observed to be not very much dependent on the choice
of the helium wave functions. This is also partially reflected on panel (d) of Fig. 1,
where the most notable dispersion of the curves occurs at high impact energies.

Figure 2 is an enlarged version of Fig. 1d. In Fig. 2, the increased disparity among
the four bottom curves for double capture in process (3.1) with the augmented impact
energy is more visible than in Fig. 1d. In Fig. 2, at high energies, the larger total cross
sections are seen for the wave function of Silverman et al [28] compared to those
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of Hylleraas [27]. This is attributed to the mentioned strong electron-electron radial
correlations in the ground-state helium wave function of Silverman et al [28]. On the
other hand, Fig. 2 shows that at intermediate energies (100-800 keV), the curves for
four different helium ground-state wave functions are very close to each other. Such
an observation coheres with the well-known fact that in ion-atom collisions, the inter-
electronic correlations play an important role at low and high, but not at intermediate
energies.

Further, it is instructive to juxtapose the total cross sections from the CDW-4B
method for double and single capture in processes (3.1) and (3.3), corresponding to
the upper and lower traces in Fig. 2, respectively. The displayed results for single
capture in the CDW-4B method [31] refer to the ground-state helium wave functions
from Refs. [27, 28]. For these two wave functions, the relative difference between the
corresponding curves (’1’ and ’2’) for single capture (upper plot) is seen in Fig. 2 to
be very similar to that with the associated curves ’1’ and ’2’ for double capture (lower
plot).

In the subsequent analysis, for simplicity, we shall employ only the one-parameter
ground-state helium wave functions. Specifically, besides the one-parameter wave
function of Hylleraas [27], use will also be made of the product of the two hydro-
genlike wave functions, each centered on the same bare nuclear charge, ZT = 2
(entrance channel) and ZP = 2 (exit channel). As such, the difference between this
one-parameter ’hydrogenic model’ and the one-parameter ’Hylleraas model’ is that
the former and the latter treatments are based on the unscreened (ZP,T = 2) and
screened (Z eff

P,T = 1.6875), nuclear charges, respectively.
There is a physical difference between the Hamiltonians for the heliumlike eigen-

value problems in the Hylleraas and hydrogenic models. Of course, it is because of
the presence of 1/r12 in the heliumlike ground-state electronic Hamiltonian that the
minimal variational binding energy is obtained for Z eff

P,T = ZP,T − 5/16 in the Hyller-
aas model. By contrast, the pure hydrogenic model has 1/r12 = 0 from the onset.
As such, the Hylleraas model is correlated (albeit crudely), whereas the hydrogenic
model is completely uncorrelated.

It is then important to assess the sensitivity of total cross sections to the screening
effect inwhich the electrons shield the bare nuclear charges ZP,T = 2.Such a shielding
effect in the CDW-4B method can take place in either the bound or continuum or both
states in each of the two channels. An approach, which is deemed optimal is to consider
the influence of the shielding effect first separately on the bound and continuum states.
Subsequently, a combined effect can be analyzed for the bound and continuum states
considered in concert.

With this goal, Fig. 3 shows the total cross sections from the CDW-4B method for
ground-to-ground-state single capture (upper trace) and double capture (lower trace)
by alpha particles from helium targets. Therein, the full and dashed curves denoted
by 1Hyll and 1Hydr refer to the one-parameter ground-state helium wave functions
with and without screening, i.e. for the nuclear charges Z eff

P,T = 1.6875 (the Hylleraas
model) and ZP,T = 2 (the hydrogenic model), respectively.

In the lower plot, large differences exist between the curves 1Hyll and 1Hydr.Namely,
the cross section ratios QHydr/QHyll for double capture vary within an order of magni-
tude as 1.57, 2.68 and 9.68 at 100, 1000 and 10000 keV, respectively. By comparison,
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the corresponding cross section ratios QHydr/QHyll for single capture are seen to
change within a notably smaller factor (less than three) as 2.75, 1.54 and 2.21 at 100,
1000 and 10000 keV, respectively. In particular, e.g. at 10000 keV, the cross section
ratio QHydr/QHyll (unscreened vs. screened ground states) is about 4.38 times larger
for double than for single capture (9.68/2.21 ≈ 4.38). In Fig. 3, for both consid-
ered cases (the unscreened and screened ground-state wave functions), the CDW-4B
method for double capture uses the two electronic full Coulomb wave functions per
channel centered on the appropriate bare nuclear charges (ZP,T = 2). For single cap-
ture with both the unscreened and screened ground-state wave functions, the CDW-4B
method employs two electronic full Coulomb wave functions altogether, one in the
entrance and the other in the exit channel centered on ZP = 2 and ZT−1, respectively.

There is a physical reason in Fig. 3 for having the curve 1Hydr for the larger nuclear
charge (ZP,T = 2, without screening in ϕi, f ) as lying above the curve 1Hyll for the
lower nuclear charge (Z eff

P,T = 1.6875, with screening in ϕi, f ). This is explained by
means of the mean radius r̄ of an electron in e.g. the hydrogenic model for a fixed
nuclear charge Z , with the principal n and orbital l quantum numbers:

r̄ ≡ 〈Rnl |r |Rnl〉 = 3n2 − l(l + 1)

2Z
. (3.4)

Here, the radial bound-state hydrogenlike wave function is denoted by Rnl . For e.g.
the ground state (n = 1, l = 0), the relation (3.4) simplifies to r̄ = 3/(2Z). This
reciprocal relation between r̄ and Z indicates the extent of compactness or diffuseness
of the given orbital. The larger the Z , the smaller the r̄ . Stated equivalently, the radial
orbitals with a larger Z are compact (compressed, more localized), whereas those with
a smaller Z are diffused (less localized, more spread out).

This can be connected directly to the Heisenberg uncertainty principle for the two
conjugate variables, the particle position in the configuration space and the particle
momentum in the impulse space. Equivalently, the link can be stated on either the
level of the probabilities or the probability amplitudes. The probability amplitudes
are given by the pertinent wave functions in these two spaces. The probabilities are
the squared absolute values of these probability amplitudes. Thus, the more the wave
function is compact in the configuration space (the higher the Z , the lower the r̄ ),
the larger the momentum components of the corresponding function in the impulse
space. Of course, the Fourier transform and its inverse map the given function from
the configuration space to the impulse space and vice versa.

These features of atomic orbitals in the wave functions are of critical relevance
to electron capture, especially at high energies. A fast moving projectile can capture
one or more electrons from a target only if their orbital velocities are sufficiently high
to match the large incident velocities. Therefore, this ’velocity matching’ condition,
involving the incident velocity and the electron velocity, would be more readily satis-
fied for the compact than for the diffused orbitals. In other words, the probability to
capture electrons is higher formore compact than formore diffused orbitals (i.e. for the
larger nuclear charges Z than for the smaller ones). Capture becomes non-negligible
only when there is an appreciable overlap between the initial and final orbitals. At
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high incident velocities, capture is favored by the large momentum components of the
bound states projected on both the projectile and target waves.

Therefore, because it is more likely to capture one or two electrons by an alpha
particle from a helium target with the unscreened (ZT = 2) than with the screened
(Z eff

T = 1.6875) nuclear charges in the ground-state wave functions, we have QHydr >

QHyll, as seen in Fig. 3 from the curves 1Hydr and 1Hyll, respectively. This occurs for
both single and double capture, as is clear from the top and bottom graphs in this
figure.

It should be re-stressed that QHydr and QHyll in the CDW-4B method for double
capture are computed with the electronic full Coulomb wave functions centered on
the unscreened nuclear charges (ZP,T = 2). This permits an unequivocal check of the
sensitivity of total cross sections to the alteration of the nuclear charges ZP,T solely
in the one-parameter ground-state helium wave functions. If the nuclear charges ZP,T
were changed simultaneously in both the bound and continuum wave functions for
double capture, the different effects stemming from these two functions would not be
unambiguously separable.

Continuing further with the analysis, we shall concentrate only on double capture.
The next theme to address is the role of screening of the bare nuclear charges ZP,T
also in the continuum states. One of the ways to investigate the screened continuum
state is to place the Coulomb centers of distortions of the initial and final unperturbed
states onto the effective nuclear charges Z eff

P,T = ZT − 5/16. Such a prescription may
amount to replacing the original problem (2.1) by the following effective problem:

Z eff
P + (Z eff

T ; e1, e2)i −→ (Z eff
P ; e1, e2) f + Z eff

T , (3.5)

where Z eff
P,T = ZP,T −5/16 and i = f = 1s2. For this problem too, the corresponding

correct boundary conditions are satisfied in all the presently analyzed distorted wave
methods. The one-parameter heliumlike ground-state wave functions ofHylleraas [27]
with the damping factors Z eff

P,T in the exponentials are employed in process (3.5). The
total Hamiltonian for process (3.5) does not contain the electron-electron Coulomb
potential 1/r12. Therefore, there could be no further Slater screening of the already
screened nuclear charges Z eff

P,T, implying that process (3.5) is treated as an uncorrelated
collision. To relate to the original problem (2.1), the bare nuclear charge ZP,T in
Z eff
P,T = ZP,T − 5/16 from process (3.5) will now be specified as ZP,T = 2, so that

hereafter we have Z eff
P,T = 1.6875.

To avoid confusion, a clarification might be helpful here because of a twofold role
of the Hylleraas wave function [27]. In processes (2.1) and (3.5), this one-parameter
heliumlike wave function describes the correlated and uncorrelated model, depending
on whether 1/r12 is retained or omitted in the search for the binding energy of the two-
electron atomic system, respectively. In process (2.1), it is ’the hydrogenic model’ that
is uncorrelated (1/r12 = 0). On the other hand, ’the Hylleraas model’ is uncorrelated
in process (3.5) because therein we have 1/r12 = 0.

The total cross sections from the CDW-4B method for processes (3.1) and (3.5)
are displayed in Fig. 4 by the two curves, A and B, respectively. To re-emphasize,
curves A and B are due to the same Hylleraas wave functions for the helium ground
states in both channels. The difference is that curves A and B refer to ZP,T = 2 and
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Z eff
P,T = 1.6875 for the unscreened and screened nuclear charges in the two electronic

full Coulomb wave functions from the entrance and exit channels, respectively.
At all energies, Fig. 4 reveals a notable discrepancy between the results assigned

to the unscreened (curve A) and screened (curve B) electronic full Coulomb wave
functions. Specifically, below 3000 keV, curve B significantly underestimates curve
A. Moreover, curve A itself is in large disagreement with most of the available exper-
imental data shown in Fig. 4. This disagreement is further exacerbated with curve B.
It can be concluded that at all the displayed energies in Fig. 4, the total cross sections
in the CDW-4B method are very sensitive to the screening effect within the Coulomb
wave functions of the initial and final two-electron continuum intermediate states.

Similar sensitivity tests are also made in the BCIS-4B and BDW-4B methods for
processes (3.1) and (3.5). Both methods employ the same Hylleraas ground-state
heliumwave functions [27]with the commonone-parameter Z eff

P,T = 1.6875 appearing
in the two-electron exponentials. They use theCoulombdistortions centered on ZP,T =
2 and Z eff

P,T = 1.6875 for (3.1) and (3.5), respectively. It is seen that the BCIS-4B (Fig.
5) and BDW-4B (Fig. 6) methods are much less sensitive than the CDW-4B method
(Fig. 4) to the choice of the nuclear charges (ZP,T = 2 or Z eff

P,T = 1.6875) in the
Coulomb distortions. More precisely, for either the BCIS-4B (Fig. 5) or BDW-4B
(Fig. 6) methods, it is merely around the Massey peak (in the vicinity of about 100
keV) that there is at most a factor of 2 difference between the results for (3.1) and
(3.5).

It is also of interest to plot together the curves from the BCIS-4B and BDW-4B
methods for processes (3.1) and (3.5), as done in Figs. 7 and 8, respectively. Regarding
process (3.1), with Z eff

P,T = 1.6875 in the bound states and ZP,T = 2 in the continuum
states, Fig. 7 shows that the curves for the cross sections in the BCIS-4B and BDW-4B
methods lie quite close to each other. However, as to process (3.5), with Z eff

P,T = 1.6875
in both the bound and continuum states, the curves from the BCIS-4B and BDW-4B
methods in Fig. 8 coincide exactly with each other, as they should.

To explain this coincidence, it is recalled that for rearrangement collisions, the
two different perturbation potentials in the given transition amplitude are defined by
applying the operator H − E to the initial χ+

i and to the final χ−
f distorted wave

functions. Here, H and E are the total Hamiltonian operator and energy of the whole
system. Let then the initial χ+

i and final χ−
f distorted waves be taken from the CB1-

4B and CDW-4B methods for double capture, respectively. By applying the H − E
operator to χ+

i and χ−
f , the two transition amplitudes would be formulated, the former

in the BCIS-4B method and the latter in the BDW-4B method.
The obtained transition amplitudes from theBCIS-4B andBDW-4Bmethodswould

be identical if the exact bound-statewave functionsϕi, f were known.However, if these
are unavailable (as is actually the case for heliumlike atoms or ions), any approximate
wave functions ϕi, f would yield two different transition amplitudes. On the level of
the corresponding total cross sections, such differences between the BCIS-4B and
BDW-4B methods are seen in Fig. 7. In Fig. 7, the inter-electron potential 1/r12 is
not set equal to zero. Rather, as mentioned earlier, this electron-electron repulsive
potential is a part of the Hylleraas minimization procedure of the expectation value of
the exact total two-electron Hamiltonian, which includes 1/r12.
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However, for process (3.5), using Z eff
P,T = 1.6875 in the initial and final bound

and continuum states, the one-parameter Hylleraas wave functions ϕi, f are, in fact,
the exact ground-state helium wave functions for this completely uncorrelated model
(where 1/r12 = 0 throughout). In such a case, the expressions for the transition
amplitudes would be the same irrespective of whether the operator H − E is applied
to the initial χ+

i or to the final χ−
f scattering states. This is why in Fig. 8, the two

curves from the ensuing theories, the BCIS-4B and BDW-4B methods, are seen to be
coincident.

The main focus in Figs. 4-6 is on the sensitivity of total cross sections with respect
to the screening effect in the Coulomb distortions of the initial and final unperturbed
scattering states in the CDW-4B, BCIS-4B and BDW-4B methods. This is carried out
by considering one method at a time. Thus, Fig. 4 is for the CDW-4B, Fig. 5 for the
BCIS-4B and Fig. 6 for the BDW-4B methods. These methods differ in the choices of
the distorted waves in the total scattering wave functions.

For various practical applications, it is important to establish the relative sensitivity
of total cross sections to the choice of Coulomb distortions when two or more distorted
wave methods are compared. Such a testing is already performed in Figs. 7 and 8
where the BCIS-4B and BDW-4Bmethods are compared. A relatively mild difference
is seen in Fig. 7 between these two methods for process (3.1) with the unscreened
Coulomb distortions. On the other hand, for process (3.5), with the screened Coulomb
distortions, the BCIS-4B and BDW-4B methods give the identical cross sections for
the explained reason.

In the CB1-4B method, there are no electronic distorted wave functions at all.
Instead, the initial and final unperturbed states aremodified by theCoulomb distortions
(the logarithmic phase factors) that describe the relative motion of heavy scattering
aggregates. Even such phases are completely absent from the symmetric collisions
such as (3.1) or (3.2). In the BCIS-4B and BDW-4B methods, both the Coulomb
logarithmic phases for heavy nuclei and the electronic full Coulomb wave functions
are always present, including the homo- and hetero-nuclear cases of process (2.1), i.e.
for ZP = ZT and ZP �= ZT, respectively.

Regarding the first- and second-order theories, the most relevant is to compare the
CB1-4B and BCIS-4B methods. They share the same perturbation interactions (three
electrostatic Coulomb potentials). Moreover, they have the same total scattering wave
functions in one channel, but differ in the other channel. Only the BCIS-4B method
contains the electronic distortions (two full Coulomb wave functions in one channel).
Thus, the relative performance of the CB1-4B and BCIS-4B methods with respect
to the corresponding measurements would inform about the role of the continuum
intermediate states of two electrons in double capture [9].

Figure 9 shows that the CB1-4B method [5, 6] is in very good agreement with
measurements at 175-800 keV. However, at 900-3000 keV, the CB1-4B method over-
estimates the experimental data fromRefs. [18–26] by a factor varying from 3 to about
10. This factor increases to about 20 relative to the measurements from Ref. [25] at
higher energies. However, the only two experimental data points near 4000 keV [25,
26] are controversial as they are themselves in a very large mutual disparity (within a
factor of 20).
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� [24], � [25] and • [26]. For details, see the main text (color online)
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Conversely, below about 600 keV, the BCIS-4B method [9] underestimates the
measurements, within a factor of at most 5. At 900-4000 keV, the BCIS-4B method is
in excellent agreement with the experimental data fromRefs.[19–26]. The discrepancy
between theCB1-4B andBCIS-4Bmethods increaseswith augmentation of the impact
energy. Thus, the ratios of the cross sections from the CB1-4B and BCIS-4B methods
are about 15 and 112 at 100 and 8000 keV, respectively. Such a striking difference
runs contrary to good agreement between these two methods for single capture at
intermediate and high energies [16]. It can then be stated, that the electronic continuum
intermediate states in the BCIS-4B method (second-order) are of critical importance
for double capture compared to the CB1-4B method (first-order), particularly at high
energies.

Figure 10 compares the threemethods that have the identical perturbation potentials
and the final total scattering wave function χ−

f from the exit channel. These methods
differ in the initial total scattering wave functions from the entrance channel. We are
referring here to the CDW-4B, CDW-EIS-4B and BDW-4B methods. They are seen
in Fig. 10 to yield strikingly different total cross sections. The unsatisfactory status
of the CDW-4B method relative to the measurements is already discussed with Fig.
4. The best agreement with the most experimental data is obtained with the BDW-4B
method.

On the other hand, Fig. 10 shows that the CDW-EIS-4B method fails dramatically
below 1000 keV as it underestimates the experimental data by three orders of magni-
tude. Surprisingly, such a complete breakdown of this method occurs well within its
expected main validity domain.

Moreover, the CDW-EIS-4B method underestimates the CDW-4B method in Fig.
10 also by huge factors, ranging from 20 to 4000 at the impact energies decreased
from 1000 to 100 keV, respectively. The enormous difference between the total cross
sections from the CDW-4B and CDW-EIS-4B methods proves that the electronic
eikonalization of the two full Coulomb wave functions in the latter theory is utterly
inadequate. An alternative is to use the eikonalization of the Coulomb distortions due
to the relative motions of heavy particles. This is done in the BDW-4B method which,
as a consequence, largely outperforms the CDW-EIS-4B method in comparison with
the experimental data on double capture.

The discussed multiplicative effect is maximal in the CDW-4B method by the
product of two electronic continuum wave functions in each channel. The underlying
double scattering mechanism might be over-expressed (too demanding) and could
lower the probability for simultaneous capture of two electrons. This might be one of
the reasons for which the CDW-4B method severely underestimates the experimental
data at most energies. On the other hand, restricting the multiplicative effect by having
the product of two electronic continuum wave functions only one channel, the BCIS-
4B and BDW-4B methods yield much better agreement with the measurements than
the CDW-4B method.
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choice of distorted waves and perturbation potentials in the CB1-4B and BCIS-4B methods. Both methods
employ the same ground-state wave function of Hylleraas [27] with one parameter, Zeff

P,T = 1.6875.
There are no Coulomb distortions in the CB1-4B method for symmetric double capture in process (3.1).
The unscreened nuclear charges ZP,T = 2 are used in the BCIS-4B method for the distorted wave and
perturbation potential. Experimental data for process (3.2): � [18], � [19], � [20], � [21], ◦ [22], � [23],
� [24], � [25] and • [26]. For details, see the main text (color online)

123



800 Journal of Mathematical Chemistry (2023) 61:777–804

102 103 104
10−26

10−25

10−24

10−23

10−22

10−21

10−20

10−19

10−18

10−17

10−16

10−15

Experimental Data (Symbols): α+He(1s2) →  He(Σ)+α

1s2 (1S): Ground State, Σ : All Bound States of Helium

 4 MeV: 2 Measurements Differ by a Factor of 20 (   ,   )

Curves:

Four−Body Theories: α+He(1s2) →  He(1s2)+α

CDW−EIS−4B

BDW−4B

CDW−4B

CDW−4B: Continuum Distorted Wave

CDW−EIS−4B: Continuum Distorted Wave Eikonal Initial State

BDW−4B: Born Distorted Wave

Perturbation Potentials: Identical in All Three Methods

Total Scattering States: Initial (Different), Final (Identical)

100 keV: Q
CDW−4B

/Q
CDW−EIS−4B

≈  5000

100 keV: Q
BDW−4B

/Q
CDW−EIS−4B

≈  149

Impact Energy E(keV)

C
ro

ss
 S

ec
tio

n 
Q

(c
m

2 )
Double Electron Capture by Alpha Particles from Helium: Theories and Measurements

Four−Body Second−Order Methods: CDW−4B, CDW−EIS−4B and BDW−4B

Fig. 10 Total cross sections Q(cm2) as a function of impact energy E(keV) for double capture in processes
(3.1) and (3.2) in computations and measurements, respectively. Sensitivity of the results relative to the
choice of distorted waves and perturbation potentials in the CDW-4B, CDW-EIS-4B and BDW-4Bmethods.
All the three methods employ the same ground-state wave function of Hylleraas [27] with one parameter,
Zeff
P,T = 1.6875. They have the identical solution for the distorted wave problem in the exit channel, but

differ in the entrance channel. The unscreened nuclear charges ZP,T = 2 are used for the distorted wave
problems in all the three methods. Experimental data for process (3.2): � [18], � [19], � [20], � [21], ◦
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4 Discussion and conclusions

We carried out a comparative analysis of several of the frequently applied four-body
quantum-mechanical distorted wave methods with the correct Coulomb boundary
conditions for two-electron transfer in ion-atom collisions. Use is made of the newly
performed computations on total cross sections at intermediate and high impact ener-
gies (100-10000 keV). The heliumlike targets (of nuclear charge ZT) are taken to be
impacted by heavy nuclei (of charge ZP and velocity v). In the illustrations, double
electron capture from helium by alpha particles is exemplified by comparing different
theories with measurements.

The influence of the Slater electronic screening of the nuclear charges in the bound
and continuum wave functions is examined within the three second-order theories
in their four-body versions, the continuum distorted wave (CDW-4B), the boundary-
corrected continuum intermediate state (BCIS-4B) and theBorn distortedwave (BDW-
4B)methods. At all the considered energies, themost pronounced differences between
the total cross sections with the bare and screened (effective) nuclear charges are found
in the CDW-4B method. By comparison, no appreciable sensitivity is detected in the
BCIS-4BandBDW-4Bmethods above about 200 and 300 keV, respectively.Moreover,
the total cross sections in the BCIS-4B and BDW-4B methods are everywhere close
to each other when using the screened bound states and the Coulomb distorted wave
functions with the bare nuclear charges. In the case when the same Slater-screened
nuclear charges are employed in the bound and continuum states, the computed total
cross sections in the BCIS-4B and BDW-4Bmethods coincide with each other exactly,
as expected.

Also investigated is the relative sensitivity of total cross sections to eikonaliza-
tions of the full Coulomb continuum wave functions for motions of electrons and
heavy particles. Moreover, the repercussions of different choices of distorted waves
are analyzed. Of particular interest is to juxtapose the three second-order theories that
share the same perturbation potentials and the total scattering wave functions in the
exit channel, but differ in their descriptions of the entrance channel. These are the
CDW-4B, BDW-4B and the four-body continuum distorted wave - eikonal initial state
(CDW-EIS-4B) methods. Regarding the internuclear potential VPT = ZPZT/R, the
CDW-4B, BDW-4B and CDW-EIS-4B methods contain the same product of the ini-
tial and final (complex conjugated) Coulomb logarithmic phase factors for the relative
motion of the two heavy nuclei in the entrance and exit channels, respectively.

In the heavymass unit, this product is reduced to a lone phase, which can be omitted
since it does not contribute to any total cross section. The underlying mechanism,
yielding the internuclear phase, is eikonalization of the full Coulomb wave function
for VPT. Such a Coulomb wave can safely be replaced by its leading asymptotic term
(the logarithmic phase factor) with a negligible error, which is smaller than or equal
to the reciprocal of the large reduced mass of the two heavy nuclei.

Further, the CDW-4B, BDW-4B and CDW-EIS-4B methods possess the identical
product of the two full electronic Coulombwave functions for the final states. After the
said elimination of the internuclear phase from the transition amplitude for computa-
tions of total cross sections, it makes interesting reading to peer into the structure of the
distorted waves for the initial state in these three methods. In the entrance channel, the
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CDW-4B method has the product of the two full electronic Coulomb wave functions
(of variables s1 and s2) centered on ZP.This product is replaced by its asymptotic form
[(vs1 + v · s1)(vs2 + v · s2)]−i ZP/v in the CDW-EIS-4B method. The latter compound
eikonal initial phase (being a valid representation of the associated full Coulomb state
only at large distances) is asymptotically equivalent to (vR − v · R)−2i ZP/v, which is
employed in the BDW-4B method.

It is precisely this equivalence that is crucial for establishing the correct asymptotic
behaviors of the total scattering states in the entrance channel. However, the transition
amplitudes integrate these eikonal phases (alongside the other integrands) over all the
distances in a multi-dimensional configuration space of the four interacting particles.
Moreover, the main contributions to these integrals stem from short distances dictated
by the exponentially attenuated atomic bound-state wave functions. Therefore, while
the eikonal phases [(vs1 + v · s1)(vs2 + v · s2)]−i ZP/v and (vR − v · R)−2i ZP/v are
asymptotically equivalent outside the transition amplitudes, they can still give different
contributions to the computed total cross sections. Such differences, embodied in the
CDW-EIS-4B and BDW-4B methods, are enormous for double capture.

At all the presently considered energies, there exists a strong sensitivity of the
computed total cross sections to the choice of the distorted wave functions in double
capture. In particular, the CDW-EIS-4B method fails flagrantly at all the studied ener-
gies. It hugely underestimates the CDW-4B method and all the available experimental
data by an astonishing factor ranging from 1 to 3 orders of magnitude below 1000
keV. This completely invalidates the procedure of eikonalization of the product of the
two electronic Coulomb continuum wave functions in double capture.

On the other hand, the BDW-4Bmethod largely outperforms both the CDW-4B and
CDW-EIS-4B methods by yielding the total cross sections in a reasonable proximity
of the majority of the existing experimental data in the keV-MeV region, starting
already from about 180 keV. This proves that eikonalization of the full Coulomb wave
functions for the relative motion of heavy particles in the BCIS-4B and BDW-4B
methods for double capture is physically by far more adequate than the usage of the
electronic eikonal phases in the CDW-EIS-4B method. Partly, it is the ’multiplicative
effect’ in the entrance channel (the product of two eikonal electronic phases) that
has a deleterious impact on the performance of the CDW-EIS-4B method for double
capture. The same method with only one eikonal electronic phase for single capture
is in excellent accord with the corresponding measurements.

Regarding the experimental data available for two-electron transfer from helium by
alpha particles, various measurements are also quite dispersed. For instance, the most
pronounced disagreement (within a factor of 20) is at 4000 keV between the total cross
sections measured by Schuch et al [25] and Afrosimov et al [26]. Moreover, above
1500 keV, even the energy behaviors of total cross sections for double capture vary
from one measurement to another.

In particular, the measured cross sections of Schuch et al [25] for their reported two
data points (4000, 6000 keV) are completely out of the trendwith the experimental data
from the other measurements. Such a sharply conflicting circumstance particularly
above 1000 keV does not permit a reasonably realistic assessment of the relative
performance of different high-energy theoreticalmethods. Evidently, for the total cross
sections under the present study (and beyond), it would be desirable to refresh the only
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existing high-energymeasurement database from 1962-1993. Some new experimental
data on total cross sections are much needed to clarify the confusing situation for a
process as fundamental as double capture from helium targets by alpha particles.
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5. Dž. Belkić, Symmetric double charge exchange in fast collisions of bare nuclei with helium-like atomic
systems. Phys. Rev. A 47, 189–200 (1993)
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