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Abstract
Measures of delocalization in phase space are analyzed using Rényi entropies, espe-
cially two of which play an important role in characterizing extension and shape of
distributions: the linear entropy related to the participation number and the Shannon-
entropy.Thedifferenceof these two, termedas structural entropy, has been successfully
applied in a large variety of physical situations and for variousmathematical problems.
A very similar quantity has coincidentally been used as a measure of complexity by
some other authors. Hereby we show that various semiclassical phase space represen-
tations of quantum states can be well described by the structural entropy providing
a transparent picture in relation to the thermodynamic description. Thermodynamic
and quantum fluctuations are analytically treated for the special case of harmonic
oscillators invoking the Einstein model of heat capacity. It is demonstrated that the
thermal uncertainty relations are linked to the delocalization over the phase space. For
respective limits of zero temperature implying quantum behavior or infinite temper-
ature implying classical behavior we also show which quantities remain useful. As
a byproduct the thermal extension of the phase space distribution can be calculated
that is directly related to a decoherence parameter introduced by Zurek in a different
context.
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1 Introduction

Investigation of quantum systems in phase space provides further insight as compared
to the real space or momentum space marginals. A quantum sate in principle is com-
pletely given in any of the latter two representations with the Fourier transformation
connecting one to the another. However, especially in the case of systemswith aHamil-
tonian that is a combination of terms with real space and momentum space eigenbasis
the interplay of these terms reveal finer details in case of investigating in phase space
as has been presented in an earlier paper of ours [1], where we have applied an analysis
first introduced and widely used by Pipek and coworkers [2–14]. The analysis devel-
oped for any type of distributions is based on their information content and their spread
over the available basis. Not only the effective size of these distributions but also its
shape, especially the deviations from uniformity has been put together. There has been
a continuous interest in the application of these methods developed earlier. The most
recent applications include Vogel spirals [15], and Colonscopy Image Processing with
fuzzy inference optimization in the selection of the rulebase parameters [16, 17], just
to select a few.

Coincidentally there has been a development of the so-called complexity analy-
sis of distributions starting from the early work of López-Ruiz, Mancini and Colbet
(LMC) [18, 19]. That idea was extended by a very wide range of papers and later on
López-Ruiz [20] noticed the direct and simple relation between Pipek’s parameters
and the one termed as LMC complexity. Apparently the structural entropy introduced
by Pipek and coworkers is nothing else but the log of LMC, hence both are equivalent
and in most cases provide very similar or in some cases complementer answers to the
questions of complexity and shape analysis. The definition of structural entropy has a
somewhat more solid mathematical basis using Rényi entropies [21].

In the subsequent part we first outline the model and phase space quantities under
consideration, then in the next part provide analogous quantities based on a thermal
formulation. In a further section we discuss the thermal uncertainty in phase space
and the final section is left for conclusions.

2 Themodel and phase space quantities

The example we work out in detail is the textbook problem of a linear harmonic
oscillator (HO). Its simplicity allows for a transparent application and analysis of the
questions formulated above together with an analytical treatment providing simple
results in closed form. Moreover, this analysis is directly connected to the study of the
Einstein solid and its thermodynamic properties, thus allowing for a direct connec-
tion between thermodynamic and quantum mechanical and semiclassical phase space
formulation. This part follows similar analysis but goes beyond the one presented in
the papers by Penin [22–25]. For more details, please, refer to those papers and the
references cited there.

On the other hand the eigenstates of the HO play an important role in the definition
of coherent states which are essential in the phase space mapping of quantum systems,
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hence in the understanding of the correspondence between the classical and quantum
realms including the phenomenon of decoherence.

Let us start already with the phase space representation of a harmonic oscillator at
finite temperature, T > 0,

μβ(x, p) = 〈z|ρ|z〉, (1)

through the matrix element of the density operator, ρ, using the complex coordinates
z related to (x, p) of phase space as

z = 1

2

(
x

σx
+ i

p

σp

)
, (2)

where σx and σp are either certain broadenings connected through the uncertainty,
σxσp = �. The ρ is defined as

ρ = 1

Z
e−βH (3)

with Z being the partition sum in the form of

Z = Tr
{
e−βH

}
. (4)

In these expressions temperature appears through β = (kBT )−1, which is the usual
inverse temperature where kB is Boltzmann’s constant.

The Hamiltonian, H , in our case is given as

H = p2

2m
+ 1

2
mω2x2. (5)

The solution of the eigenvalue equation H |n〉 = En|n〉 yields the eigenenergies

En = �ω

(
n + 1

2

)
, (6)

The matrix elements of the density operator in Eq. (1) can be calculated using the
eigenstates |n〉 with the result

μβ(z) = 1

Z

∑
n

e−βEn | 〈z|n〉 |2, (7)

which is nothing else, but the Husimi function [26–28] representation of the density
operator ρ over phase space. Hereby we can specify the parameters in Eq. (2) as
σx = √

2�/mω. Since

| 〈z|n〉 |2 = |z|2n
n! e−|z|2 , (8)

therefore the closed form for Eq. (1) reads as [29, 30]

μβ(z) = (1 − e−β�ω)e−(1−e−β�ω)|z|2 . (9)
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This is a density over the phase space which is normalized as

∫ ∫
dxdp

2π�
μβ(x, p) = 1. (10)

The great advantage of the analysis of HO states is that the partition sum can readily
be calculated and expressed as a function of β�ω in a closed form as

Z(β) =
[
2 sinh

(
β�ω

2

)]−1

. (11)

This expression allows for further thermodynamic definitions of entropy, ST , the mean
energy, U , and the specific heat, CV , respectively, which we will look at later.

This is the point where we should mention the Einstein solid, the first model of
heat capacity. In that case the partition sum of the system of N lattice sites in a d = 3
dimensional solid is nothing else but the product of 3N HOs given in Eq. (11),

ZN (β) =
[
2 sinh

(
β�ω

2

)]−3N

. (12)

therefore all types of entropies introduced from now on are nothing else but the
entropies obtained for the solid divided by 3NkB .

In order to characterize the properties of this phase space distribution we may
introduce various measures. First the measure of its extension can be defined using
the participation number,

D−1
H =

∫ ∫
dxdp

2π�
μ2

β(x, p), (13)

We introduced the index H which stands for Husimi, emphasizing that the above
representation of the density matrix Eq. (9) is nothing else but the Husimi function,
i.e., the coherent state representation of the density operator in Eq. (1). For a similar
purpose Wehrl introduced the entropy [31] in analogy with the Shannon–entropy

IW = −
∫ ∫

dxdp

2π�
μβ(x, p) lnμβ(x, p), (14)

with a lower bound noticed by Lieb [32]. Using Eq. (9) in these definitions we get

D−1
H = 1

2

(
1 − e−β�ω

)
, (15)

which gives a direct and thermal measure of localization of the Husimi function in
phase space. The same way we obtain the Wehrl entropy in a closed form

IW = 1 − ln
(
1 − e−β�ω

)
. (16)
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We have to emphasize that Wehrl’s entropy and the extension, DH , are both special
cases of Rényi’s entropies of the Husimi function [1] which can be defined as

R(H)
q = 1

1 − q
ln

∫ ∫
dxdp

2π�
μ
q
β(x, p). (17)

Note that in all of the above entropy like definitions and generalizations Boltzmann’s
constant, kB is supposed to multiply these quantities. Using the phase space represen-
tation of the HO, Eq. (9), we obtain a simple closed from of the integral in Eq. (17)

∫ ∫
dxdp

2π�
μ
q
β(x, p) = ‘

1

q

(
1 − e−β�ω

)q−1
. (18)

Therefore the Rényi–entropies can be evaluated as

R(H)
q = − ln

(
1 − e−β�ω

)
− ln q

1 − q
. (19)

In the limit of q → 1 this definition yields the Wehrl–entropy, IW , (see Eq. (16))
and for q = 2 we get R(H)

2 = ln DH . On the other hand, exponentiating these values
of Rq we get the extensions at different orders, i.e., the qth order moments of the
distribution. We also have to note that D−1

H is also termed as purity which is related
to the so called linear entropy.

Apart from being generalizations of the Wehrl–entropy, the Rényi–entopries have
some further valuable properties which were exploited in a number of previous works.
Not only the extension but also the distribution under investigation may be character-
ized using a special combination of these entropies. In Ref. [1] the structural entropy,
Sstr , has been introduced for phase space distributions. This quantity is nonnegative
and can be calculated as a difference of the Shannon–entropy, R(H)

1 = IW , and the

extension entropy, R(H)
2 = ln DH as

S(H)
str = IW − ln DH . (20)

This definition can obviously be extended and applied in any other case. In the present
investigation using Eqs. (15) and (16), we get

S(H)
str = 1 − ln 2 , (21)

which shows that the phase space distirbution here for the case of the HO, has an
overall Gaussian shape (see Eq. 9) over a two dimensional phase space. The fact that
S(H)
str is independent from the value of β�ω can be readily seen from the expression

Eq. (19).
Notice that for the case of a HO one could investigate another widely applied

phase space distribution introduced by Wigner[33], which in general does not yield a
nonnegative phase space distribution like the Husimi function but at least its x and p
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marginals are nothing else but the correct real space andmomentum space distributions
of the density operator or the eigenstates of the system. In the present case of HO,
however, the Wigner function yields a slightly different Gaussian form that is still a
nonnegative distribution.

3 Thermodynamic quantities

Now we turn to thermodynamic quantities using the expression of the partition sum
(11) and define first the entropy, ST as

ST = ln Z − d ln Z

d ln β
, (22)

which, using Eq. (4) yields

ST = β�ω

eβ�ω − 1
− ln

(
1 − e−β�ω

)
. (23)

This entropy on the other hand is nothing else but the von Neumann entropy

ST = −Tr{ρ ln ρ}. (24)

As before we can introduce the Rényi–entropy generalization of this quantity the
following way,

R(T )
q = 1

1 − q
ln Tr{ρq}. (25)

With the help of the expression for the partition sum, Z(β�ω), given in Eq. (11), we
may obtain the explicit form of these entropies using the following expression

I (T )
q = Tr{ρq} = Z(qβ�ω)

Zq(β�ω)
= 2q−1 sinhq(β�ω)

sinh(qβ�ω/2)
(26)

R(T )
q = 1

1 − q
ln I (T )

q (27)

In analogy with the phase space distribution, we may also define a thermodynamic
measure of the extension of the density operator using

D−1
T = Tr{ρ2} , (28)

which is a special case of the Rényi entropy with q = 2 [(see Eq. (27)], i.e., R(T )
2 =

ln DT . For the case of the HO we find

DT = e2β�ω − 1

(eβ�ω − 1)2
. (29)
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The thermodynamic analogue of the structural entropy can also be calculated as

Sstr = ST − ln DT , (30)

which for the case of the HO leads to

S(T )
str = β�ω

eβ�ω − 1
+ ln

(
eβ�ω − 1

e2β�ω − 1

)
. (31)

Clearly this expression has a limit of Eq. (21) for β�ω → 0, i.e. in the classical limit
we do get the desired and expected value. The T /T0 dependence of ST (Eq. (23)),
R(T )
2 = ln DT (Eq. (29)), STstr (Eq. (31)) together with IW (Eq. (16)) are given in

Fig. (1). Notice the cross-over regime in the behavior of STstr of the low temperature
limit, vanishing complexity and large temperature limit of the complexity of theHusimi
function represented by aGaussian over the two-dimensional phase space, seeEq. (21).
The β�ω → 0 limit, as it should, shows the classical behavior.

For completeness using the expression of the partition sum, Eq. (11), we give the
expressions for the free energy, F , the mean energy,U , and the specific heat, CV . The
respective quantities read [34]

F = − 1

β
ln Z(β) = 1

β
ln

(
eβ�ω − 1

)
− �ω

2
, (32)

U = F + β
∂F

∂β
= �ω

2

eβ�ω + 1

eβ�ω − 1
, (33)

CV = −β2 ∂U

∂β
= (β�ω)2eβ�ω

(eβ�ω − 1)2
. (34)

These functions are depicted in Fig. (2) as a function of T /T0, where T0 = �ω/kB .
Again the respective low- and high temperature limits provide the expected behavior
for thermodynamic functions, e.g. the free energy, the mean energy, the specific heat
and the entropy.

4 Uncertainty at finite temperature

The application of Husimi distributions already involves an inherent use of Heisen-
berg’s uncertainty principle through the gaussian broadenings in both, x and
p-directions. The size of the Husimi distribution over the phase space is then cal-
culated as

�H = (�X)H (�P)H . (35)

This quantity can be calculated using the variances over coordinate and momentum,
which therefore are expected to give a generalized uncertainty relation valid for finite
temperature, β. Furthermore, as Zurek pointed it out [35, 36], the typical size of the
states over the phase space are related to the decoherence properties of the system.

123



284 Journal of Mathematical Chemistry (2023) 61:277–287

Fig. 1 Several entropies of the density operator vs. T /T0, where T0 = �ω/kB . The inset shows the Sstr
for both the Husimi distribution and that obtained using the density matrix

Fig. 2 The mean energy, the free energy, the specific heat, and the entropy vs T for the harmonic oscillator
in units of T0 = �ω/kB

Let us define the variances of the phase space distribution over coordinate and
momentum since both 〈x〉H and 〈p〉H vanish

〈x2〉H =
∫

dx x2ρ(x, p) = 2

1 − e−β�ω
σ 2
x (36)

and

〈p2〉H =
∫

dp

2π�
p2ρ(x, p) = 2

1 − e−β�ω
σ 2
p, (37)

where σx and σp are the broadenings due to the coherent state representation with
σxσp = �. Therefore we obtain using Eq. (15),

�H = DH
�

2
(38)
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Clearly the low temperature limit, β → ∞, yields the lowest value for �H = �

since then DH → 2. The minimum is twice as much as the usual �/2 because the
uncertainty due to the state and that of the Husimi function add up equal contributions
of �/2. The high temperature limit, on the other hand, shows a divergent uncertainty
that is in accord with the expectations.

The virial theorem also relates the mean energy (33) to both 〈x2〉 and 〈p2〉 with
U = mω2〈x2〉 and U = 〈p2〉/(2m). Hence we easily obtain

〈x2〉 = σ 2
x
eβ�ω + 1

eβ�ω − 1
, (39)

and

〈p2〉 = σ 2
p
eβ�ω + 1

eβ�ω − 1
, (40)

which, using Eqs. (36) and (37), are directly linkedwith the corresponding phase space
values as

〈x2〉H = 2

1 + e−β�ω
〈x2〉 (41)

and

〈p2〉H = 2

1 + e−β�ω
〈p2〉, (42)

and hence we obtain

�x�p = (DH − 1)
�

2
. (43)

The latter expression shows that in the quantum limit of β → ∞ DH → 2 therefore
the expected minimum uncertainty is obtained in this limit. On the other hand for
large enough temperature the phase space and quantum uncertainties equal and they
are large.

Finally let us discuss the rate at which this system is capable to decohere. The
parameter describing this situation has been introduced by Zurek [35, 36]

α = �

�H
. (44)

In Fig. 3 the behavior of α is shown as a function of T /T0 where T0 = �ω/kB . For low
enough temperatures the parameter remains constantly unity keeping coherent system
but as it decreases decoherence occurs more probably. It is remarkable that at T = T0,
i.e. when β�ω = 1, the decoherence is already substantial, α ≈ 0.632.

5 Conclusions

In this paperwe have analyzed the characterization of quantum states using generalized
entropies. We have shown that the appropriate low-T and high-T limits naturally
follow in the case of using Rényi-entropies. Especially the so-called structural entropy
being defined as the difference between two prominent Rényi entropies provides more
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Fig. 3 The decoherence parameter introduced by Zurek

detailed behavior in the correspondence between the quantum and classical pictures.
In fact it is able to mark the cross-over region quantum and classical as a function
of the parameter �ω/kBT . As the structural entropy happens to be in direct relation
with the so-called LMC complexity measure, we can trace the complexity properties
of quantum and classical descriptions.

Furthermore, as a byproduct, it is shown that the space extension of the Husimi
function of a quantum state is shown to obey a temperature dependent uncertainty
principle. Further investigations of quantum systems in phase space representation
show a very rich picture that is unaccessible in the marginal, position or momentum
space representations. These results will be presented in subsequent publications.
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