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Abstract
We defined the topological charge and bump number for fullerenes. All even fullerene
isomers from C20 up to C70 were constructed. After optimizing the geometry of the
molecules the relation between the topological charge, the bump number and the
atomization energy were analysed.
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1 Introduction

Fullerenes, a family of closed-cage carbon molecules, have attracted considerable
interest since their discovery in 1985 [1, 2]. Several excellent books and reviews
details the advances achieved in the field of chemistry and physics of fullerenes (see
e.g. [3–7] and the references therein). In past decades a new research area has emerged
in mathematical chemistry providing a topological and graph theoretical descriptions
of fullerenes [8–12]. Fullerenes are topologically distinct from other allotropes of
carbon, such as diamond or graphite. They are unable to transform into different class
of allotropes unless breaking and reformation of the molecular bonds. States with
this absence of continuity in topology are often termed topologically protected, or
topologically stable. In the last decade a new topologically protected magnetic object,
a spin swirling vortex-like magnetic Skyrmion received widespread attention due to
its potential application in spintronic devices [13, 14]. In a Skyrmion the magnetic
moments swirl so that the spins at its periphery point in the opposite direction to
the spins at the center. Skyrmions can be characterized by their topological charge
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which is a measure of the winding of the normalized atomic magnetic moments. The
mathematical concept of Skyrmions was first introduced in high energy physics [15].
There are some studies [16, 17] which established a relation between the Skyrmion
solutions in nuclear physics and fullerene cages.

In the present paper we introduce a topological charge in a manner similar to the
winding number of magnetic Skyrmions, but instead of magnetic moments at different
lattice sites unit vectors parallel to appropriately chosen hybrid orbitals of the carbon
atoms are considered. A fullerenemolecule is a trivalent polyhedron with exactly three
edges joining every vertex occupied by a carbon atom. The three edges starting from
a vertex define the directions of the p orbitals in the sp hybrids parallel to the bonds.
Applying the orthogonality requirements the fourth sp orbital pointing out of the cage
can easily be constructed. These orbitals will be referred as π orbitals in the following,
however, rigorously defined π orbitals exist only in planar molecules. The topological
charge of a fullerene will be calculated based on these out of cage π orbitals.

In this paper we construct all even fullerene isomers from C20 up to C70. After
optimizing the geometry of the molecules the relation between the topological charge
and the atomization energy is analysed.

2 Method

Based on the algorithms described in Ref. [18] we have constructed all of the 30579
fullerene isomers Cn for each even n with 20 ≤ n ≤ 70. After minimizing the total
energies we calculated the π -orbitals at each atom. With the help of these π -orbitals
we defined and calculated the topological charges of the generated isomers.

2.1 Construction of fullerene isomers

For each even n with 20 ≤ n ≤ 70 we applied the spiral conjecture [18] for pro-
ducing the spiral code of all of the isomers. According to the spiral conjecture the
surface of a fullerene polyhedron may be unwound in a continuous spiral strip of
edge-sharing pentagons and hexagons such that each new face in the spiral after the
second shares an edge with both (a) its immediate predecessor in the spiral and (b) the
first face in the preceding spiral that still has an open edge. Since all of the fullerenes
contain twelve pentagons the spiral code contains a list of twelve numbers indicating
their position in the spiral. See Ref. [18] for the details of the construction of the
adjacency matrix. As an example of the spiral code for the buckminsterfullerene is
(1, 7, 9, 11, 13, 15, 18, 20, 22, 24, 26, 32). With the help of the spiral code we cal-
culated the adjacency matrix A of the system. Here Ai j = 1 if atoms i and j are
neighbours and Ai j = 0 in other cases.

We used the topological coordinate method [18] to calculate the initial coordinates
of the fullerene described by the given spiral code. An eigenvectorCk of the adjacency
matrix A is a bi-lobal eigenvector, if the atoms of the fullerene can be put in two sets
S1 and S2 where in both sets the atoms are connected and the set S1 contains all of
atoms i if for the Ck

i coefficient Ck
i > 0 and the set S2 contains all of the atoms i
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with the property Ck
i < 0 [18, 19]. Finding the three bi-lobal eigenvectors and their

corresponding eigenvalues Ckx , akx ; C
ky , aky ;C

kz , akz , of matrix A, the topological
coordinates (Xi ,Yi , Zi ) of atom i are

Xi = Ckx
i sx

Yi = C
ky
i sy

Zi = Ckz
i sz

(1)

and the scaling factors are the followings:

sx = 1√
a1 − akx

sy = 1
√
a1 − aky

sz = 1√
a1 − akz

(2)

where a1 is the highest eigenvalue of the adjacency matrix.
Using as input the topological coordinates, we minimized the total energy with the

help of the Brenner potential [20]. Here we applied the conjugate gradient method and
supposed only interactions between the neighbouring atoms. The initial configuration
provided by the topological method is close enough to the configuration belonging to
the local minimum that the optimization procedure can not destroy the cage like struc-
ture [21]. In the next step we continued the minimization with a Density Functional
Theory adjusted Tight Binding method (DFT-TB) [22].

2.2 Calculation of the hybrid orbitals

Supposing the atomic orbitals |s〉, |px 〉, |py〉, |pz〉 on each carbon atom, we defined
the following hybrid orbitals [23, 24]:

|h1〉 = N1(|s〉 + λ1|p1〉)
|h2〉 = N2(|s〉 + λ2|p2〉)
|h3〉 = N3(|s〉 + λ3|p3〉)
|hπ 〉 = Nπ (|s〉 + λπ |pπ 〉)

(3)

where |p1〉, |p2〉 and |p3〉 are |p〉 functions directed along the three inter-nuclear axes
to the adjacent atoms. That is |pi 〉 = uix |px 〉 + uiy |py〉 + uiz |pz〉 and the unit vector

ui = (uix , u
i
y, u

i
z) points to the adjacent atom i . Tomake the description simplerwe call

the orbitals |h1〉, |h2〉 and |h3〉 σ -orbitals and the |hπ 〉 orbital π -orbital. The angles
between the σ -orbitals are (θ12, θ23, θ31) and the angles between a σ -orbital and a
π -orbital are (θ1π , θ2π , θ3π ).

123



338 Journal of Mathematical Chemistry (2023) 61:335–342

From the orthogonality conditions of the functions |h1〉, |h2〉 and |h3〉 follows

λ21 = − cos θ23

cos θ12 cos θ31

λ22 = − cos θ31

cos θ23 cos θ12

λ23 = − cos θ12

cos θ31 cos θ23

(4)

The orthogonality conditions of the functions |hi 〉, and |hπ 〉 gives

1 + λ1λπ(u1xu
π
x + u1yu

π
y + u1z u

π
z ) = 0

1 + λ2λπ(u2xu
π
x + u2yu

π
y + u2z u

π
z ) = 0

1 + λ3λπ(u3xu
π
x + u3yu

π
y + u3z u

π
z ) = 0

(5)

Taking differences of the above equations yields

(u3xλ3 − u2xλ2)u
π
x + (u3yλ3 − u2yλ2)u

π
y + (u3zλ3 − u2zλ2)u

π
z = 0

(u1xλ1 − u3xλ3)u
π
x + (u1yλ1 − u3yλ3)u

π
y + (u1zλ1 − u3zλ3)u

π
z = 0

(u2xλ2 − u1xλ1)u
π
x + (u2yλ2 − u1yλ1)u

π
y + (u2zλ2 − u1zλ1)u

π
z = 0

(6)

Substituting the λ values of Eqs. (4) into (6) and after simplification we obtain

(u3x cos θ12 − u2x cos θ31)u
π
x + (u3y cos θ12 − u2y cos θ31)u

π
y (7)

+ (u3z cos θ12 − u2z cos θ31)u
π
z = 0 (8)

(u1x cos θ23 − u3x cos θ12)u
π
x + (u1y cos θ23 − u3y cos θ12)u

π
y (9)

+ (u1z cos θ23 − u3z cos θ12)u
π
z = 0 (10)

(u2x cos θ31 − u1x cos θ23)u
π
x + (u2y cos θ31 − u1y cos θ23)u

π
y (11)

+ (u2z cos θ31 − u1z cos θ23)u
π
z = 0 (12)

The solution of the above equations give the π - orbital unit vectors uπ =
(uπ

x , uπ
y , uπ

z ) for each atom of the fullerene.

2.3 Definition of the topological charges

In the continuum case, the topological charge Q of a three-component spin field
s(x, y), s(x, y)2 = 1, is defined [25] by

Q = 1

4π

∫∫

A
s(∂x s × ∂ys) dx dy (13)
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which is the number of times the s(x, y) winds around the sphere S2. The meaning of
this definition can be understood from the followings.

A solid angle � in steradians equals the area of a segment on a sphere with unit
radius.

� =
∫∫

A

ndA
ρ2 (14)

Here ρ = 1 is the radius of the sphere and n is the normal vector of the surface. Let
us take the spin field s(x, y) at the following three positions s(x, y), s(x + dx, y)
and s(x, y + dy). As these are unit vectors, from the previous Equation follows, that
drawing them from the same origin, their endpoints determines the following solid
angle d�

d� = ndA = n(s(x + dx, y) − s(x, y)) × (s(x, y + dy) − s(x, y)) =
= n(∂x sdx) × (∂ysdy) = s(∂x s) × (∂ys)dxdy

(15)

In the case of infinitesimally small surface element the normal vector n can be replaced
by one of spin field vectors in the last step. Substituting Eqs. (15) into (14) gives (13).

The definition of the topological charge of a discrete lattice of spins si , s2i = 1,
where i runs over all the lattice sites is [25, 26]

Q = 1

4π

∑

l

�l (16)

with [26–28]

cos

(
�l

2

)
= 1 + si s j + si sk + s j sk√

2(1 + si s j )(1 + s j sk)(1 + sksi )
(17)

where l runs over all elementary triangles of the hexagonal lattice, �l is the solid
angle, i.e. the area of the spherical triangle with vertices si , s j and sk .The sites i , j
and k of each elementary triangle are numbered in such a way that the rotation vector
defined by the order i j k shows to the direction of the positive z axis. The sign of �l

is determined as sign (�l) = sign
(
si (s j × sk)

)
.

2.4 Calculation of the topological charges of fullerenes

When we calculated the hybrid orbitals |h1〉, |h2〉, |h3〉 and |hπ 〉, we obtained the
unit vectors uπ = (uπ

x , uπ
y , uπ

z ) for each atom of the structure. We shall use these
unit vectors for calculating the topological charges of the fullerene. As the fullerenes
contain only pentagons and hexagons, we divide each polygon into triangles drawing
diagonals from a vertex for each polygon. The topological charge of fullerenes is given
by the Eq. (16), but Eq. (17) is replaced by
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cos

(
�l

2

)
= 1 + uπ

i u
π
j + uπ

i u
π
k + uπ

j u
π
k√

2(1 + uπ
i u

π
j )(1 + uπ

j u
π
k )(1 + uπ

k u
π
i )

(18)

where l runs over all elementary triangles of the pentagons and hexagons, �l is the
solid angle, i.e. the area of the spherical triangle with vertices uπ

i , u
π
j and u

π
k . The sites

i , j and k of each elementary triangle are numbered in such a way that the rotation
vector defined by the order i j k shows out of the fullerene surface. The sign of �l is

determined as sign (�l) = sign
(
uπ
i (uπ

j × uπ
k )

)
.

We define also the quantity bump number of fullerenes as

Qb = 1

4π

∑

l

|�l | (19)

Namely when �l is negative the surface has a negative curvature which can be inter-
preted as the surface bumps up or down. The bump number has the relation 1 ≤ Qb.
The value 1 = Qb belongs to the case of zero bumps.

3 Results

We have calculated the relaxed geometry, the atomisation energy Eat , the topological
charges and the bump numbers for all of the 30579 fullerene isomers Cn for each even
n with 20 ≤ n ≤ 70. The atomisation energies were defined as

Eat = Etot

n
− Ea (20)

where Etot is the tight binding total energy of the fullerene with n carbon atoms and
Ea is the tight binding total energy of one isolated carbon atom [22].

Applying Eqs. (16) and (18) we obtained that the topological charge �l equals
to one for each fullerenes, independent of n and isomer. From this follows that the
average topological charge �tr iangle of a triangle equals to �tr iangle = 1

2(n−2) . This
follows from Euler’s theorem V − E + F = 2 and that each pentagon and hexagon
was divided in order into 3 and 4 triangles.

Figure 1a, b, c, and d show in order the atomisation energies in the function of
the bump numbers Qb for fullerenes C60,C66,C20 −C58 and C70. Usually the bump
number of the most stable fullerenes equals to one. We have found the tendency, that
as the stability of the fullerenes decreases the maximum value of the bump number
increases as well. There are also fullerenes of value Qb = 1 even for low stability
fullerenes too.

In conclusion we can say that for fullerenes the topological number equals to one
and the bump number increases as the stability of the fullerenes decreases, but there
are bump numbers with the value one at structures of lower stability as well.
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Fig. 1 The atomization energy Eat as the function of the bump number Qb for the aC60, bC66, cC20−C68
and d C70 fullerenes
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