Skip to main content
Log in

Topological data analysis for the energy and stability of endohedral metallofullerenes

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Topological data analysis is a useful data analysis method that combines the mathematical theory of topology with computational methods to study the valuable relationships hidden in data. Persistent homology is an effective tool in computational topology, used to measure the topological characteristics of data. In this paper, we make the quantitative predictions of the energy and stability of endohedral metallofullerenes molecules, based on topological features computed by the persistent homology. The features indicate topological properties such as Betti numbers, i.e. the number of n-dimensional holes in the molecule data space, and associate them with the structure of endohedral metallofullerenes. Using the barcode informations, we analyse the energy and stability of endohedral metallofullerenes molecules Ni@C\(_{n}\) (even n = 20, 24 \(\sim\) 52, 60, 70), and get excellent correlation coefficients 99.97\(\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.B. King, Chemical Applications of Topology and Graph Theory (Elsevier, Amsterdam, 1983)

    Google Scholar 

  2. P.G. Mezey, Topological Theory of Molecular Conformations In Structure and Dynamics of Molecular Systems (Reidel, Dordrecht, 1985)

    Google Scholar 

  3. P.G. Mezey, Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987)

    Google Scholar 

  4. P.G. Mezey, Shape group studies of molecular similarity: shape groups and shape graphs of molecular contour surfaces. J. Math. Chem. 2(4), 299–323 (1988). https://doi.org/10.1007/BF01166298

    Article  CAS  Google Scholar 

  5. P.G. Mezey, Topology of Molecular Shape and Chirality, in New Theoretical Concepts for Understanding Organic Reactions. (Springer, Dordrecht, 1989). https://doi.org/10.1007/978-94-009-2313-3_4

    Chapter  Google Scholar 

  6. P.G. Mezey, Topological Quantum Chemistry. in Reports in Molecular Theory (CRC Press, 1990)

  7. C. Liang, K. Mislow, Classification of topologically chiral molecules. J. Math. Chem. 15(1), 245–260 (1994). https://doi.org/10.1007/BF01277563

    Article  CAS  Google Scholar 

  8. H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002). https://doi.org/10.1007/s00454-002-2885-2

    Article  Google Scholar 

  9. A. Zomorodian, G. Carlsson, Computing persistent homology. Discrete Comput. Geom. 33, 249–274 (2005). https://doi.org/10.1007/s00454-004-1146-y

    Article  Google Scholar 

  10. G. Carlsson, Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009). https://doi.org/10.1090/S0273-0979-09-01249-X

    Article  Google Scholar 

  11. P.G. Mezey, Shape in chemistry: an introduction to molecular shape and topology (VCH, 1993)

  12. A. Hatcher, Algebraic topology. Cambridge University Press (2002)

  13. G. Rote, G. Vegter, Computational Topology: An Introduction, in Effective Computational Geometry for Curves and Surfaces. (Springer, Berlin Heidelberg, 2066), pp. 277–312. https://doi.org/10.1007/978-3-540-33259-6_7

    Chapter  Google Scholar 

  14. D. Kozlov, Combinatorial algebraic topology (Springer Verlag Berlin Heidelberg, 2008). https://doi.org/10.1007/978-3-540-71962-5

    Article  Google Scholar 

  15. M. Karelson, V.S. Lobanov, A.R. Katritzky, Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 96(3), 1027–1044 (1996). https://doi.org/10.1021/cr950202r

    Article  CAS  PubMed  Google Scholar 

  16. P.G. Mezey, Shape-similarity measures for molecular bodies: a 3d topological approach to quantitative shape-activity relations. J. Chem. Inf. Comput. Sci. 32(6), 650–656 (1992). https://doi.org/10.1021/ci00010a011

    Article  CAS  Google Scholar 

  17. A.J. Zomorodian, Topology for computing (Cambridge University Press, 2005)

  18. H. Edelsbrunner, J. Harer, Persistent homologya survey. In Contemp Math, Am Math Soc 453, 257–282 (2008). https://doi.org/10.1090/conm/453/08802

    Article  Google Scholar 

  19. K. Mischaikow, V. Nanda, Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput. Geom. 50(2), 330–353 (2013). https://doi.org/10.1007/s00454-013-9529-6

    Article  Google Scholar 

  20. K.L. Xia, X. Feng, Y.Y. Tong, G.W. Wei, Persistent homology for the quantitative prediction of fullerene stability. J. Comput. Chem. 36, 408–422 (2015). https://doi.org/10.1002/jcc.23816

    Article  CAS  PubMed  Google Scholar 

  21. K.L. Xia, G.W. Wei, Multidimensional persistence in biomolecular data. J. Comput. Chem. 36(20), 1502–1520 (2015). https://doi.org/10.1002/jcc.23953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D. Chen, M. Z. Zhang, H. B. Chen, Z. W. Xie, G. W. Wei, F. Pan, Persistent homology for the quantitative analysis of the structure and stability of carboranes. Chinese J. Struc. Chem., 39(6), 999-1008 (2020). http://manu30.magtech.com.cn/jghx/EN/abstract/abstract2503.shtml

  23. Y. Yao, J. Sun, X. Huang, G.R. Bowman, G. Singh, M. Lesnick, L.J. Guibas, V.S. Pande, G. Carlsson, Topological methods for exploring low-density states in biomolecular folding pathways. J. Comput. Phys. 130(14), 144115 (2009). https://doi.org/10.1063/1.3103496

    Article  CAS  Google Scholar 

  24. A.S. Blevins, D.S. Bassett, Topology in biology. In Handbook of the mathematics of the arts and sciences (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-319-70658-0_87-1

  25. B.D. Fabio, C. Landi, A Mayer-Vietoris formula for persistent homology with an application to shape recognition in the presence of occlusions. Found. Comput. Math. 11(5), 499–527 (2011). https://doi.org/10.1007/s10208-011-9100-x

    Article  Google Scholar 

  26. G. Carlsson, T. Ishkhanov, V.D. Silva, A. Zomorodian, On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008). https://doi.org/10.1007/s11263-007-0056-x

    Article  Google Scholar 

  27. A. Suzuki, M. Miyazawa, J.M. Minto, T. Tsuji, I. Obayashi, Y. Hiraoka, T. Ito, Flow estimation solely from image data through persistent homology analysis. Sci. Rep. 11(1), 17948 (2021). https://doi.org/10.1038/s41598-021-97222-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. K.L. Xia, Z. Li, L. Mu, Multiscale persistent functions for biomolecular structure characterization. Bull. Math. Biol. 80(1), 1–31 (2018). https://doi.org/10.1007/s11538-017-0362-6

    Article  CAS  PubMed  Google Scholar 

  29. S.Q. Ren, C.Y. Wu, J. Wu, Weighted persistent homology. Rocky Mountain J. Math. 48(8), 2661–2687 (2018). https://doi.org/10.1216/RMJ-2018-48-8-2661

    Article  Google Scholar 

  30. X. Liu, X.J. Wang, J. Wu, K.L. Xia, Hypergraph-based persistent cohomology (HPC) for molecular representations in drug design. Brief. Bioinform. 22(5), bbaa411 (2021). https://doi.org/10.1093/bib/bbaa411

    Article  PubMed  Google Scholar 

  31. H.W. Kroto, J.R. Heath, S.C. O Brien, R.F. Curl, R.E. Smalley, C\(_{60}\): Buckminsterfullerene. Nature 318(6042), 162–163 (1985). https://doi.org/10.1038/318162a0

  32. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Solid C\(_{60}\): a new form of carbon. Nature 347(6291), 354–358 (1990). https://doi.org/10.1038/347354a0

    Article  Google Scholar 

  33. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of fullerenes and carbon nanotubes (Academic Press, 1996)

  34. D.M. Guldi, N. Martin, Eds. Fullerenes: from synthesis to optoelectronic properties (Springer Dordrecht, 2002). https://doi.org/10.1007/978-94-015-9902-3

  35. B.J. Cox, N. Thamwattana, J.M. Hill, Mechanics of atoms and fullerenes in single-walled carbon nanotubes. II. Oscillatory Behaviour. Proc. R. Soc. A. 463(2078), 477–494 (2007). https://doi.org/10.1098/rspa.2006.1772

    Article  CAS  Google Scholar 

  36. H.W. Kroto, The stability of the fullerenes C\(_n\), with \(n\) = 24, 28, 32, 36, 50, 60 and 70. Nature 329(6139), 529–531 (1987). https://doi.org/10.1038/329529a0

    Article  CAS  Google Scholar 

  37. B. Wang, G.W. Wei, Object-oriented persistent homology. J. Comput. Phys. 305, 276–299 (2016). https://doi.org/10.1016/j.jcp.2015.10.036

    Article  PubMed  PubMed Central  Google Scholar 

  38. A.A. Popov, S. Yang, L. Dunsch, Endohedral fullerenes. Chem. Rev. 113(8), 5989–6113 (2013). https://doi.org/10.1021/cr300297r

    Article  CAS  PubMed  Google Scholar 

  39. Y. Chai, T. Guo, C.M. Jin, R.E. Haufler, L.P.F. Chibante, J. Fure, L.H. Wang, J.M. Alford, R.E. Smalley, Fullerenes with metals inside. J. Phys. Chem. 95(20), 7564–7568 (1991). https://doi.org/10.1021/j100173a002

    Article  CAS  Google Scholar 

  40. H. Shinohara, Endohedral metallofullerenes. Rep. Prog. Phys. 63(6), 843–892 (2000). https://doi.org/10.1088/0034-4885/63/6/201

    Article  CAS  Google Scholar 

  41. X. Lu, L. Bao, T. Akasaka, S. Nagase, Endohedral Metallofullerenes, in Encyclopedia of Polymeric Nanomaterials. (Springer, Berlin Heidelberg, 2015), pp. 730–741. https://doi.org/10.1007/978-3-642-29648-2_362

    Chapter  Google Scholar 

  42. A.S. Sinitsa, T.W. Chamberlain, T. Zoberbier, I.V. Lebedeva, A.M. Popov, A.A. Knizhnik, R.L. McSweeney, J. Biskupek, U. Kaiser, A.N. Khlobystov, Formation of nickel clusters wrapped in carbon cages: toward new endohedral metallofullerene synthesis. Nano Lett. 17(2), 1082–1089 (2017). https://doi.org/10.1021/acs.nanolett.6b04607

    Article  CAS  PubMed  Google Scholar 

  43. T. Wang, C. Wang, Functional metallofullerene materials and their applications in nanomedicine, magnetics, and electronics. Small 15(48), 1901522 (2019). https://doi.org/10.1002/smll.201901522

    Article  CAS  Google Scholar 

  44. T. Yu, M. Zhen, J. Li, Y. Zhou, H. Ma, W. Jia, C. Wang, Anti-apoptosis effect of amino acid modified gadofullerene via a mitochondria mediated pathway. Dalton Trans. 48(22), 7884–7890 (2019). https://doi.org/10.1039/C9DT00800D

    Article  CAS  PubMed  Google Scholar 

  45. B. Wu, T. Wang, Y. Feng, Z. Zhang, L. Jiang, C. Wang, Molecular magnetic switch for a metallofullerene. Nat. Commun. 6(1), 6468 (2015). https://doi.org/10.1038/ncomms7468

    Article  CAS  PubMed  Google Scholar 

  46. C. Zhao, H. Meng, M. Nie, L. Jiang, C. Wang, T. Wang, Anisotropic paramagnetic properties of metallofullerene confined in a metal-corganic framework. J. Phys. Chem. C 122(8), 4635–4640 (2018). https://doi.org/10.1021/acs.jpcc.7b11353

    Article  CAS  Google Scholar 

  47. M. Yamada, M.T.H. Liu, S. Nagase, T. Akasaka, New horizons in chemical functionalization of endohedral metallofullerenes. Molecules 25(16), 3626 (2020). https://doi.org/10.3390/molecules25163626

    Article  CAS  PubMed Central  Google Scholar 

  48. T. Akasaka, X. Lu, Structural and electronic properties of endohedral metallofullerenes. Chem. Record 12(2), 256–269 (2012). https://doi.org/10.1002/tcr.201100038

    Article  CAS  Google Scholar 

  49. K. Kobayashi, S. Nagase, Structures and electronic states of endohedral dimetallofullerenes: M\(_{2}\)@C\(_{80}\) (M = Sc, Y, La, Ce, Pr, Eu, Gd, Yb and Lu). Chem. Phys. Lett. 262(3–4), 227–232 (1996). https://doi.org/10.1016/0009-2614(96)01069-X

    Article  CAS  Google Scholar 

  50. K. Kobayashi, S. Nagase, Structures of the Ca@C\(_{82}\) isomers: a theoretical prediction. Chem. Phys. Lett. 274(1–3), 226–230 (1997). https://doi.org/10.1016/S0009-2614(97)00647-7

    Article  CAS  Google Scholar 

  51. K. Kobayashi, S. Nagase, Structures and electronic states of M@C\(_{82}\) (M = Sc, Y, La and Lanthanides). Chem. Phys. Lett. 282(3–4), 325–329 (1998). https://doi.org/10.1016/S0009-2614(97)01328-6

    Article  CAS  Google Scholar 

  52. K. Kobayashi, S. Nagase, M. Yoshida, E. Osawa., Endohedral metallofullerenes are the isolated pentagon rule and fullerene structures always satisfied? J. Am. Chem. Soc. 119(51), 12693–12694 (1997). https://doi.org/10.1021/ja9733088

    Article  CAS  Google Scholar 

  53. C.R. Wang, T. Kai, T. Tomiyama, T. Yoshida, Y. Kobayashi, E.M. Nishibori, M. Takata, H. Sakata, Shinohara. C\(_{66}\) Fullerene encaging a scandium dimer. Nature 408(6811), 426–427 (2000). https://doi.org/10.1038/35044195

    Article  CAS  PubMed  Google Scholar 

  54. A. Cerri, B.D. Fabio, M. Ferri, P. Frosini, C. Landi, Betti numbers in multidimensional persistent homology are stable functions. Math. Meth. Appl. Sci. 36(12), 1543-C1557 (2013). https://doi.org/10.1002/mma.2704

    Article  Google Scholar 

  55. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Molec. Graphics 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  56. J.C. Hausmann, On the vietoris-rips complexes and a cohomology theory for metric spaces. In Prospects in Topology (AM-138) (Princeton University Press, 1996) pp. 175–188. https://doi.org/10.1515/9781400882588-013

  57. H. Edelsbrunner, J. Harer, Computational Topology: an Introduction. Am Math Soc (2009). https://doi.org/10.1090/mbk/069

    Article  Google Scholar 

  58. J.E. Goodman, J. ORourke, Handbook of Discrete and Computational Geometry (Chapman and Hall/CRC, 2004)

  59. V. D. Silva, G. Carlsson, Topological estimation using witness complexes. SPBG(Symposium on Point - Based Graphics), 4, 157-166 (2004). https://doi.org/10.2312/SPBG/SPBG04/157-166

  60. H. Edelsbrunner, E.P. Mücke, Three-dimensional alpha shapes. ACM Trans. Graph. 13(1), 43–72 (1994). https://doi.org/10.1145/174462.156635

    Article  Google Scholar 

  61. H. Adams, A. Tausz, M. Vejdemo-Johansson, Javaplex: a research software package for persistent (Co). Homology (2014). https://doi.org/10.1007/978-3-662-44199-2_23

    Article  Google Scholar 

  62. Vidit Nanda, Perseus: the persistent homology software. http://www.sas.upenn.edu/\(\sim\)vnanda/perseus

  63. C. Maria, P. Dlotko, V. Rouvreau, M. Glisse, Rips complex. In GUDHI user and reference manual. GUDHI Editorial Board, (2021). https://gudhi.inria.fr/doc/3.4.1/group\_\_rips\_\_complex.html

  64. U. Bauer, Ripser: efficient computation of Vietoris-Rips persistence barcodes. J. Appl. and Comput. Topology 5, 391–423 (2021). https://doi.org/10.1007/s41468-021-00071-5

    Article  Google Scholar 

  65. B. T. Fasy, J. Kim, F. Lecci, C. Maria, Introduction to the R package TDA, (2014). arXiv:1411.1830

  66. R. Ghrist, Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008). https://doi.org/10.1090/S0273-0979-07-01191-3

    Article  Google Scholar 

  67. D. Cohen-Steiner, H. Edelsbrunner, J. Harer, Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007). https://doi.org/10.1007/s00454-006-1276-5

    Article  Google Scholar 

  68. P. Bubenik, P.T. Kim, A statistical approach to persistent homology. Homol. Homotopy Appl. 9(2), 337–362 (2007). https://doi.org/10.4310/HHA.2007.v9.n2.a12

    Article  Google Scholar 

  69. P. Bubenik, Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(3), 77–102 (2015). https://jmlr.csail.mit.edu/papers/volume16/bubenik15a/bubenik15a.pdf

    Google Scholar 

  70. P. Bubenik, P. Dlotko, A persistence landscapes toolbox for topological statistics. J. Symb. Comput. 78, 91–114 (2017). https://doi.org/10.1016/j.jsc.2016.03.009

    Article  Google Scholar 

  71. J.W. Rohlf, Modern Physics from \(\alpha\) to \(Z^o\) (John Wiley, 1994)

  72. B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990). https://doi.org/10.1063/1.458452

    Article  CAS  Google Scholar 

  73. B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000). https://doi.org/10.1063/1.1316015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No.11771116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wang, Y., Ding, Y. et al. Topological data analysis for the energy and stability of endohedral metallofullerenes. J Math Chem 60, 337–352 (2022). https://doi.org/10.1007/s10910-021-01309-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-021-01309-4

Keywords

Navigation