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Abstract
In this work, a new version of Rényi’s divergence is presented. The expression 
obtained is used as a tool to identify molecules that could share some chemical or 
structural properties, and a data basis set of 1641 molecules is used in this study. 
Our results suggest that this new form of Rényi divergence could be a useful tool 
that will eventually permit complementary studies in which the main goal is to 
obtain molecules with similar properties.

Keywords Rényi’s entropy · Rényi’s divergence · Chemical similarity · Chemical 
reactivity

1 Introduction

Perhaps, currently in the modern sciences, there are no clear barriers between fields; 
for example, let us consider two different areas such as biology and computer sci‑
ences which in the last decade formed a field called bioinformatics. A similar situ‑
ation happens with chemistry, in where there are no clear separations between the 
modern chemistry, physics, mathematics, and computer sciences; in this regard, a 
new discipline of chemistry called cheminformatics or molecular informatics has 
emerged in recent years. In this area, one of the objectives is to find molecules that 
may have some chemical or physical properties of interest.

In the last year, in which, for practically the entire population of the world, it 
was suggested to stay isolated at home, all the scientific community was called to 
participate in the ‘JEDI Grand Challenge: Billion molecules against COVID-19’. In 
an announcement by The Joint European Disruptive Initiative that was published on 
the main page of the journal ‘Molecular Informatics’, one can read, ‘The Joint Euro-
pean Disruptive Initiative has announced a May 1st launch of the Billion Molecules 
against Covid19 Grand Challenge, with awards of up to € 2 million for the winners.’ 
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for which the main objective is ‘to screen billions of molecules with blocking inter-
actions relevant to SARS-CoV-2 and fast-track the route to a therapeutic treatment.’

It is interesting to note that to address a problem such as the mentioned before, 
there are two necessary ingredients; the first, of course, is the equations, which 
must be defined using solid fundamentals, instead of empirical, heuristic, or statis‑
tical assumptions, and the second is the algorithms, that is, how can we improve 
the search of biological, chemical, or physical properties that a group of molecules 
could have in common to obtain a biological or chemical agent that permits to define 
of a set of molecules that may act as a good treatment or even a vaccine.

In this sense, cheminformatics is an area that has a strong link with QSAR anal‑
ysis [1]; however, it is not common to find that such analyses are complemented 
by descriptors based on the formal fundamentals of theoretical chemistry. In this 
regard, perhaps the first proposal of a similarity coefficient based on electron density 
was done in the late 1970s by Carbó [2].

On the other hand, according to Willett [3], a cheminformatics analysis has three 
components, (i) a structure representation, (ii) a weighting scheme, and (iii) a simi‑
larity coefficient; in the first case, the analysis consists of performing a comparison 
of the structure between two molecules, using as a criterion the structural repre‑
sentation of the molecules in 2D or 3D; in the second case, one has to define a fin‑
gerprint of several molecules considering the number of the apparition of certain 
functionals groups, and in the last case, the analysis consists of choosing certain 
coefficients defined in terms of the number of features present in the compounds to 
analyze. In this sense, clearly one can define a vast number of such coefficients [4]; 
for example, in Todeschini’s work, the authors analyzed 51 different coefficients [5], 
which could be an attractive aspect to perform some studies in the field of medicinal 
chemistry [6]. However, it is worthwhile to mention that the majority of these coef‑
ficients were defined in a heuristic way.

In this work, we propose the use of a new definition of Rényi’s divergence that 
can be used as a tool to find molecules that could have some chemical or structural 
properties in common.

In the following section, we present a brief background of Rényi’s divergence and 
its mathematical properties.

2  Theoretical background

Since the publication of Shannon’s work in the 1940s, information theory [7] has 
been applied in several areas of science and technology. In chemistry, the use of 
the ideas of information theory started in the 1970s, and these studies were princi‑
pally focused on the study of atoms and simple systems using Shannon’s entropy in 
position and momentum spaces; in the 1990s, with the advantages of computers, it 
was possible to extend these studies to simple molecules and some simple chemi‑
cal processes. In this line, it was also possible to show that Shannon’s entropy can 
be related to some important concepts of quantum chemistry, such as the chemical 
reactivity, electron correlation, and structural stability of the molecules [8–17].
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On the other hand, in the 1960s, the idea of generalizing Shannon’s entropy 
emerged, and today, one can find three generalizations of it: (i) Rényi’s entropy 
[18] (ii) the Havrda and Charvát entropy [19] and (iii) Tsallis’ entropy [20]. The 
first two were proposed in the 1960s, while the third one was proposed at the end 
of the 1980s.

Considering a historical point of view, perhaps Rényi’s work can be consid‑
ered the first attempt to generalize Shannon’s entropy. Since the 1990s, Rényi’s 
entropy has been profusely used in the field of atomic and molecular physics 
[21–36], and these works were focused on the study of the electron correlation 
phenomenon.

Nevertheless, we would like to address the attention of the readers to another con‑
cept, also proposed by Rényi, which is the divergence, and it can be interpreted as a 
measure that compares and quantifies the difference between two probabilistic dis‑
tributions. It is defined as

and

in which the sets {pi} and {qj} are probabilistic distributions that fulfill 0 ≤ pi ≤ 1 , 
0 ≤ qj ≤ 1 , and 

∑n

i=1
pi = 1 , 

∑m
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2. R
�
 is permutationally symmetric; that is, the total value of this measure does not 

change if the elements p1, p2,… , pn and q1, q2,… , qm are labeled in a different 
way, which implies that the pairs (p1, q1), (p2, q2),… can permute among them‑
selves.

3. R
�
≥ 0.

4. Based on the previous property, then one can infer that the minimum value of R
�
 

is zero.

In the field of information theory, it is well known that Rényi’s entropy is a gener‑
alization of Shannon’s entropy; in this regard, Rényi’s divergence is a generaliza‑
tion of several divergence measures. For example, if one considers � = 0 , Eq. (4) 
becomes,

An interesting aspect of this equation is that if one applies the exponential func‑
tion to obtain e−R�=0 , one obtains a discrete version of Carbó’s similarity coefficient, 
which is related to the overlap of two distributions [38–41].

If we consider � = 1∕2 , Eq. (3) becomes,

which is known as the Bhattacharyya coefficient [42] and has been used extensively 
in the field of computational sciences as a measure of overlap between two statistical 
distributions.

When � → 1 , Eq. (3) converges to the Kullback–Leibler entropy [43],

Other interesting aspect of Eq. (3) appears when � = 2 ; in this case, Eq. (3) has the 
following form,

in this equation, one can recognize the terms p
2

i

qj
 and 

q2
j

pi
 as terms associated with the 

chi‑squared distribution, which is a useful tool in statistical analyses.
In general, we can say that Eqs. (5), (6), (7) and (8) can be used as measures that 

permit the comparison of two different probabilistic distributions.
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In this regard, if one extrapolates these equations to the context of quantum 
chemistry, then one obtains a set of so‑called quantum similarity coefficients. Thus, 
if one wants to express Eq. (4) in its quantum version, then it is necessary to rewrite 
it in terms of two diagonalized density matrices, namely, �A and �B . These density 
matrices are related to the quantum states of the systems A and B; therefore, we can 
write Eq. (4) in terms of the trace of �A and �B to obtain

where the superscript indicates the quantum version of Eq. (4), which can be rewrit‑
ten in the following compact and simplest form:

To apply Eq. (9) to systems such as atoms, molecules, macromolecules, it is neces‑
sary to use two diagonalized density matrices, in which each element of their trace 
is an occupation number; in the theoretical chemistry field, the occupation num‑
bers are subject to 0 ≤ �k ≤ 2 , 

∑l

k=1
�k = N , where N is the electron number. It is 

convenient to clarify that such numbers are restricted to the values of 0, 1, 2 when 
they are obtained through mono‑determinantal methodologies, such as HF or DFT; 
moreover, when they are obtained through multideterminantal methodologies as CI 
or CC, they are subject to 0 ≤ �k ≤ 2 , where �k ∈ ℝ and 
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use such numbers with Eq. (10) they have to be normalized as ��
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k
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fills all criteria of a probabilistic distribution, which is one of the main ingredients of 
any information measure.

Perhaps the most interesting aspect of Eq. (10) is that it permits comparison of 
the quantum information of two molecular systems, which are described by two den‑
sity matrices, and such matrices, according to Dirac, completely describe the state 
of the quantum systems [44]. In this sense, it is not hard to see that Eq.  (10) can 
represent a quantum superposition; that is, in the context of quantum mechanics, a 
quantum superposition is considered a sum of states to obtain a new state. For exam‑
ple, if one considers Eq. (9) with � = 0 , it is evident that this equation is reduced to 
a sum of logarithms, and each logarithm has an argument for the states, �A and �B ; 
therefore, one can interpret the numerical results obtained with Eq.  (10) also as a 
quantum superposition.

On the other hand, in the context of density functional theory, there are three 
main concepts linked to chemical reactivity, hardness, softness, and chemical poten‑
tial [45], which are defined as
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where the chemical potential, � , is define as

and � is Mulliken’s electronegativity definition [46].
Equations (11), (12) and (13) can be rewritten in terms of the electron affinity, A, 

and the ionization potential, I, as

and

Using Koopman’s theorem and under the LCAO approximation, the last three equa‑
tions can be rewritten in terms of the HOMO and LUMO energies as

and

In general, Eqs. (17), (18) and (19) are used as powerful tools to study how a mol‑
ecule can react under different chemical conditions; for this reason, we consider that 
such equations are important to complement our study.

In the following section, we present some numerical results when Eq. (10) is applied 
to a large set of molecules; our analysis is complemented by the numerical results of 
Eqs. (17), (18) and (19).
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3  Results

To apply and to show the versatility of Eq. (10), a set of 1641 molecules defined by 
Blair and Thakkar [47] was chosen. Such molecules are closed‑shell molecules, and 
according to the authors, the molecules contain up to 34 atoms and 246 electrons, 
which can be used to study the interrelationships among the properties of molecules 
of organic, biochemical, and pharmaceutical interest.

To perform the calculations of this study, we used Eq.  (10) with the Löwdin 
occupation numbers obtained with the CISD method and DGDZVP basis set, while 
to calculate the hardness, softness and chemical potential in terms of the HOMO 
and LUMO energies, we used the functional M062x with the DGDZVP basis set. 
All calculations were performed with Gaussian 09 [48].

For practical proposes, we chose in a random way one molecule of the set of 
molecules used. The molecule chosen was number 750, tetranitromethane, C(NO2)4 , 
which is a highly explosive chemical used as an oxidizer in rocket propellants and 
is used to increase the cetane number of diesel fuels in the manufacture of liquid 
explosives. It has been classified as possibly carcinogenic to humans [49]. This mol‑
ecule has 98 electrons, a softness value of � = 0.16588 [a.u.], a hardness value of 
S = 3.0142271 [a.u.] and a chemical potential value of � = −0.28717 [a.u.].

In Tables 1, 2, 3 and 4, we present the numerical results of Eq.  (10) using the 
values of � = 0, 0.5, 1, 2 , and in Figs. 2, 3, 4 and 5 are depicted the molecules that 
according to the numerical results of Eq.  (10) may share some properties. At this 
point, we consider that it is opportune to mention that we report only the numerical 
results of the molecules that are similar, instead of the 1641 numerical values of qR

�
 

for each � value considered in this study; however, we present the general trends of 
qR

�
 in Fig. 1a–d. For each case, a percentage of difference of qR

�
 among the mol‑

ecules was chosen because, for example, if one observes Fig. 1a, in which the loca‑
tion of the molecule 750 is highlighted with red lines and follows the horizontal line, 
one can appreciate that there is a dense section in which several molecules appear. 
For that reason, we selected the molecules with a difference of 0.0001%, while for 
qR

�
 with � = 0.5, 1, 2 , the difference used was 0.2%, 0.3% and 0.1%. To obtain small 

sets of molecules, clearly, one can change these percentage values to increase the 
size of the sets; on the other hand, if one follows the vertical line on Fig. 1a, one 

Table 1  Numerical results of Eq. (10) with � = 0

The molecule of reference was tetranitromethane with qR
�
= 10.4080133741532 , N = 98 , 

� = 0.1658800 , S = 3.0142271 , and � = −0.287170 . mol750: tetraspiro[2.0.0.0.2.1.1.1]undecane, 
mol1041: 1,2‑furylpyridin‑2‑one, mol1153: 1H‑tetrazol‑5‑amine, mol1163: 1R‑1,2,2‑trifluoroethoxyben‑
zene

Molecule N qR
�=0 � [a.u.] S [a.u.] � [a.u.]

mol750 80 10.4080133741533 0.2073000 2.4119633 −0.098680
mol1041 84 10.4080133741534 0.1286900 3.8853057 −0.151720
mol1163 90 10.4080133741533 0.1561650 3.2017417 −0.150825
mol1553 82 10.4080133741534 0.1472700 3.3951246 −0.126900
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observes that there are several isoelectronic molecules, with N = 98 , but in the 
majority of the cases, the value of qR

�
 differentiates all these molecules.

In addition, in Fig. 1a–d, it is also possible to observe the effect of the coefficient 
� on qR

�
 ; in such figures, we noticed that for values of � ∈ [0, 1] , the general trends 

have a convex behavior, while for the interval � ∈ (1, 2] , the trends are concave. 

Table 2  Numerical results of Eq. (10) with � = 0.5

The molecule of reference was tetranitromethane with qR
�
= 25.3553653711884 , N = 98 , � = 0.1658800 , 

S = 3.0142271 , and � = −0.287170 . Where, mol58: azulene, mol86: bicyclo‑3,3,1‑nonane, mol149: cin‑
namaldehyde, mol153: cis‑bicyclo‑6,1,0‑nonane, mol239: difuro[3,2‑b:2′,3′‑d]furan, mol567: naphtha‑
lene, mol607: p‑dichlorobenzene, mol776: trans‑2,3‑dimethylnorborane, mol815: vinylsulfonylbenzene, 
mol838: 1′H‑1,2′‑bipyrrole, mol860: 1‑butoxybutane, mol948: 1‑octanol, mol949: 1‑p‑tolylethanone, 
mol999: 1,1,1,2‑tetramethoxyethane, mol1132: 1,4‑dimethylnorborane, mol1335: 2,1H‑pyrrol‑2‑yl‑
1H‑pyrrole, mol1487: 3‑methyl‑1H‑indole

Molecule N qR
�=0.5 � [a.u.] S [a.u.] � [a.u.]

mol58 62 25.3760755737034 0.0964350 5.1848395 −0.148575
mol86 70 25.368376634063 0.2169000 2.3052097 −0.102550
mol149 70 25.3316736530311 0.1228650 4.0695071 −0.177535
mol153 70 25.369118109399 0.2252700 2.2195587 −0.092870
mol239 76 25.3430902879608 0.1281750 3.9009167 −0.122995
mol567 68 25.3766256442875 0.1268800 3.9407314 −0.143010
mol606 76 25.3405865665757 0.1347500 3.7105751 −0.227120
mol776 70 25.3696698654121 0.2321500 2.1537798 −0.107770
mol815 88 25.3704974979544 0.1518400 3.2929399 −0.183810
mol838 70 25.3310663275822 0.1518550 3.2926146 −0.109345
mol860 74 25.3757483615868 0.2250150 2.2220740 −0.102315
mol948 74 25.3750316177502 0.2254400 2.2178850 −0.116470
mol949 72 25.3791298985497 0.1413600 3.5370684 −0.167100
mol999 82 25.350679562435 0.2232550 2.2395915 −0.112635
mol1132 70 25.3696564444162 0.2247200 2.2249911 −0.112970
mol1335 70 25.3305640125937 0.1327850 3.7654855 −0.100355
mol1487 70 25.3773791334903 0.1342000 3.7257824 −0.117240

Table 3  Numerical results of Eq. (10) with � = 1

The molecule of reference was tetranitromethane with qR
�
= 10.378971157751 , N = 98 and � = 0.1658800 , 

S = 3.0142271 , and � = −0.287170 . mol204: di‑t‑butyl sulfoxide, mol563: naphthalen‑1‑amine, mol565: 
naphthalen‑2‑amine, mol815: vinylsulfonylbenzene, mol879: 1‑chloro‑1,3‑butadiene

Molecule N qR
�=1 � [a.u.] S [a.u.] � [a.u.]

mol204 90 10.541193464482 0.1690700 2.9573549 −0.106900
mol563 76 10.8810027096117 0.1176650 4.2493519 −0.126665
mol565 76 10.8832930882276 0.1193050 4.1909391 −0.127765
mol815 88 10.5894488246596 0.1518400 3.2929399 −0.183810
mol879 84 10.6721705605749 0.2106800 2.3732675 −0.142970
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Therefore we can say that depending on the � value used, we can find more or fewer 
molecules because some could be or could not be in the same position. This can be 
inferred easily by comparing the position of the molecule of reference used, which is 
depicted in the figures mentioned previously.

Observing the four tables, one can note that depending on the � value used, dif‑
ferent molecules are found that according to Eq. (10) are informationally equivalent. 
For example, with � = 0 (see Table 1 and Fig. 2), the molecules 750, 1041, 1153 
and 1163 are equivalent under the perspective of qR

�
 . These molecules have struc‑

tures constituted mainly by rings, and three of them present aromaticity, while the 

Table 4  Numerical results of Eq. (10) with � = 2

The molecule of reference was tetranitromethane with qR
�
= 5.48769619636878 , N = 98 and � = 0.1658800 , 

S = 3.0142271 , and � = −0.287170 . mol242: diisobutyl sulfone, mol546: N‑pyrazin‑2‑ylmethanesulfon‑
amide, mol879: 1‑chloronaphthalene, mol1640: 9H‑purine‑2,6,8‑trione

Molecule N qR
�=2 � (a.u.) S (a.u) � (a.u)

mol242 98 5.36699258960823 0.2105750 2.3744509 −0.132485
mol546 90 5.77672947791593 0.1415950 3.5311981 −0.176035
mol879 84 5.91519112233904 0.1238100 4.0384460 −0.151740
mol1640 86 5.81025974210546 0.1360050 3.6763354 −0.146185
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Fig. 1  Trends of qR
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 with � = 0, 0.5, 1, 2
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structure of tetranitromethane is tetrahedral (see Fig. 2). From a chemical reactivity 
point of view, the molecules 1041, 1153, and 1163 have similar values of softness, 
hardness, and chemical potential; however, if we compare such values with the val‑
ues of tetranitromethane, we find that molecule 1163 has the closest value of hard‑
ness and softness but that its value of chemical potential differs significantly. Thus, 
based on the numerical results, we conclude that 1R‑1,2,2‑trifluoroethoxybenzene is 
similar to tetranitromethane.

In Table 2 are reported the numerical results of Eq.  (10) with � = 0.5 , and the 
graphic representation of the molecules of this case is shown in Fig. 3. The first gen‑
eral observation that we note is that with this value of � , it is possible to find more 
molecules in comparison with the previous case, but this case, the numerical values 
of qR

�
 present a percentage difference of 0.2%. As in the previous case, this set of 

molecules constitutes mostly rings, but in this case, there are two linear molecules 
present in the set (see Fig. 3). Now, if we compare the values of softness, hardness, 
and chemical potential, it is possible to reduce this set of molecules. In this case, 
we find that only molecules 815 and 838 have similar hardness values � = 0.15184 
[a.u.] and � = 0.151855 [a.u.] in comparison with the value for tetranitromethane 
of � = 0.16588 [a.u.]. A similar situation happens with the hardness; however, the 
chemical potential of molecules 815 and 838 differs by almost 0.1 a.u with respect 
to that of tetranitromethane.

In Tables 3 and 4, we present the results of qR
�
 . Using the values of � = 1 and 2, 

as in the first case, these values of � produce values of qR
�
 with a small percentage 

difference. In both sets are present molecules with rings, and all they have some of 
the most electronegative atoms; nevertheless, in the case of the set with � = 2 we 
also find two linear molecules (see Figs. 4 and 5). When a value of � = 1 is consid‑
ered, only molecules 204 and 815 have similar hardness and softness values, while 

Fig. 2  Graphic representation of the molecules: mol750, mol563, mol565, mol815, mol879, used in 
Table 1
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the chemical potential is different by more than 50% with respect to tetranitrometh‑
ane. On the other hand, with the value of � = 2 , the four molecules differ consider‑
ably in all their chemical reactivity parameters with respect to tetranitromethane.

Fig. 3  Graphic representation of the molecules: mol58, mol86, mol149, mol153, mol239, mol567, 
mol607, mol776, mol815, mol838, mol860, mol948, mol949, mol999, mol1132, mol1335, mol1487, 
used in Table 2
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In Table 5, we summarize our findings of qR
�
 . In this case, it was possible to reduce 

the set of molecules to four molecules. Based on this table, we note that molecule 
204, di‑t‑butyl sulfoxide, with � = 1 , has hardness and softness values close to tetrani‑
tromethane, which is the molecule of reference. This result may be explained in terms 
of the structure of both molecules (see Fig. 6). In this figure, one can observe that both 
molecules are semispherical, while the rest of them have rings and are semiplanar. 
Another interesting observation of the results presented in Table 5 is that the numerical 

Fig. 4  Graphic representation of the molecules: mol204, mol1041, mol1153, mol1163, used in Table 3

Fig. 5  Graphic representation of the molecules: mol242, mol546, mol879, mol1640, used in Table 4
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results of qR
�
 with � = 0.5, 1 suggest that molecule 815, vinylsulfonylbenzene, has sim‑

ilar properties to tetranitromethane; however, we also note that while the hardness and 
softness in several cases match with the molecule of reference, the chemical potential 
does not.

In conclusion, we can say that the version of Rényi’s divergence presented in this 
work could be an effective tool used in conjunction with the descriptors of the chemi‑
cal reactivity to complement studies where the main propose is to find some chemical 
systems that may share some properties.

Fig. 6  Graphic representation of the molecules: mol204 mol815, mol838, mol1163, used in Table 5

Table 5  Selection molecules that could share some chemical properties

mol204: di‑t‑butyl sulfoxide, mol815: vinylsulfonylbenzene, mol838: 1′H‑1,2′‑bipyrrole, mol1163: 
1R‑1,2,2‑trifluoroethoxybenzene

Molecule N qR
�

� � [a.u.] S [a.u.] � [a.u.]

Tetranitromethane 98 – – 0.165880 3.0142271 −0.28717
mol204 90 10.541193464482 1 0.169070 2.9573549 −0.106900
mol815 88 10.5894488246596 1 0.151840 3.2929399 −0.183810
mol815 88 25.3704974979544 0.5 0.151840 3.2929399 −0.183810
mol838 70 25.3310663275822 0.5 0.151855 3.2926146 −0.109345
mol1163 90 10.4080133741533 0 0.156165 3.2017417 −0.150825
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4  Conclusion

In this work, we presented a new version of Rényi’s divergence defined in terms 
of two diagonalized density matrices. The equation proposed in this work satisfies 
rigorously all the properties of any informational measure. Our results suggest that 
Eq. (10) with values of � = 0.5 and � = 1 produces the best sets of molecules that 
may share some properties.

Finally, we consider that our expression of Renyi’s divergence could be a good 
candidate to complement studies in which the main goal is the search for chemical 
systems with similar properties or as a tool to classify sets of molecules that may 
share some physical or chemical properties.

Appendix

In this appendix, we present an explicit development on how we transform Eq. (3) 
into Eq. (4); first let us consider Eq. (3),

When one applies the logarithm properties, ln(a) + ln(b) = ln(ab) , then the term 
ab produces n × m operations; however, it is important to remark that the term 
ln(a) + ln(b) produces n + m operations. For this reason, it is necessary to introduce 
a constant knm = nm in each term of Eq. (2) to avoid such inconsistency; in the fol‑
lowing lines, we show how this constant, knm , works,

From this last equation, it is clear that,

(20)R
�
=

1

� − 1

(

ln
1

knm

n
∑

i=1

m
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p�
i
q1−�
j

+ ln
1

knm

n
∑

i=1

m
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i

q�
j

)

.

(21)

R
�
=

1

� − 1

(

ln
1

knm

n
∑

i=1

m
∑

j=1

p�
i
q1−�
j

+ ln
1

knm

n
∑

i=1

m
∑

j=1

p1−�
i

q�
j

)

,

=
1

� − 1
ln

[(

1

knm

n
∑

i=1

m
∑

j=1

p�
i
q1−�
j

)(

1

knm

n
∑

i=1

m
∑

j=1

p1−�
i

q�
j

)]

,

=
1

� − 1
ln

[

1

k2
nm

n
∑

i=1

m
∑

j=1

n
∑

i=1

m
∑

j=1

p�
i
q1−�
j

p1−�
i

q�
j

]

,

=
1

� − 1
ln

[

1

k2
nm

nm

n
∑

i=1

m
∑

j=1

piqj

]

,

=
1

� − 1
ln

n
∑

i=1

m
∑

j=1

piqj

knm
,

=
1

� − 1
ln

n
∑

i=1

m
∑

j=1

p�
i
q�
j
.



253

1 3

Journal of Mathematical Chemistry (2022) 60:239–254 

Acknowledgements N. Flores‑Gallegos wishes to thank the CONACyT, the PRODEP‑SEP program for 
support.

Declarations 

Conflict of interest The author declare that he has no conflict of interest.

References

 1. N. Nikolova, J. Jaworska, QSAR Comb. Sci. 22, 1006 (2003)
 2. R. Carbo, L. Leyda, M. Arnau, Int. J. Quantum Chem. 17, 1185 (1980)
 3. P. Willett, Mol. Inf. 33(6), 403 (2014)
 4. G.M. Maggiora, V. Shanmugasundaram, in Chemoinformatics and Computational Chemical Biol-

ogy, Methods in Molecular Biology, vol. 672, ed. by J. Bajorath (Springer, Berlin, 2011)
 5. R. Todeschini, V. Consonni, H. Xiang, J.D. Holliday, M. Buscema, P. Willett, J. Chem. Inf. Model. 

52, 2884 (2012)
 6. G. Maggiora, M. Vogt, D. Stumpfe, J. Bajorath, J. Med. Chem. 57(8), 3186 (2014)
 7. C.E. Shannon, Bell Syst. Tech. J. 27, 379 and 623 (1948)
 8. P. Ziesche, Int. J. Quantum Chem. 56, 363 (1995)
 9. P. Gersdorf, W. John, J. Perdew, P. Ziesche, Int. J. Quantum Chem. 61, 935 (1997)
 10. A. Grassi, Int. J. Quantum Chem. 108, 774 (2008)
 11. A. Grassi, Int. J. Quantum Chem. 111, 2390 (2011)
 12. Garry T. Smith, Hartmut L. Schmider, Vedene H. Smith Jr., Phys. Rev. A. 65, 32508–1 (2002)
 13. Alex D. Gottlieb, Norbert J. Mauser, Phys. Rev. Lett. 95, 123003–1 (2005)
 14. Luigi Delle Site, Int. J. Quantum Chem. 115, 1396 (2015)
 15. N. Flores‑Gallegos, Chem. Phys. Lett. 666, 62 (2016)
 16. N. Flores‑Gallegos, Chem. Phys. Lett. 692, 61 (2018)
 17. Paul Ziesche, Vedene H. Smith Jr., Minhhuy Hô, Sven P. Rudin, Peter Gersdorf, Manfred Taut, J. 

Chem. Phys. 110, 6135 (1999)
 18. A. Rényi, Proc. Fourth Berkeley Symp. Math. Stat. Prob. 1, 547 (1961)
 19. J. Havrda, F. Charvát, Kybernetika 3(1), 30 (1967)
 20. C. Tsallis, J. Stat. Phys. 52(1–2), 479 (1988)
 21. J.C. Bolívar, A. Nagy, E. Romera, Phys. A 498, 66 (2018)
 22. B. Godó, A. Nagy, Chaos 27, 073104 (2017)
 23. B. Godó, A. Nagy, Chaos 26, 083102 (2016)
 24. A. Nagy, E. Romera, Europhys. Lett. 109, 60002 (2015)
 25. B. Godó, A. Nagy, J. Phys. Conf. Ser. 410, 012090 (2013)
 26. E. Romera, R. del Real, M. Calixto, S. Nagy, A. Nagy, J. Math. Chem. 51, 620 (2013)
 27. A. Nagy, E. Romera, Phys. A 391, 3650 (2012)
 28. M. Calixto, A. Nagy, I. Paradela, E. Romera, Phys. Rev. A. 85, 053813 (2012)
 29. I. Hornyák, A. Nagy, Int. J. Quantum Chem. 112, 1285 (2012)
 30. E. Romera, A. Nagy, Phys. Lett. A. 375, 3066 (2011)
 31. A. Nagy, E. Romera, Phys. Lett. A. 373, 844 (2009)
 32. A. Nagy, E. Romera, Int. J. Quantum Chem. 109, 2490 (2009)
 33. E. Romera, R. López‑Ruiz, J. Sanudo, A. Nagy, Int. Rev. Phys. 3, 207 (2009)
 34. E. Romera, A. Nagy, Phys. Lett. A. 372, 4918 (2008)
 35. E. Romera, A. Nagy, Phys. Lett. A. 372, 6823 (2008)
 36. N. Flores‑Gallegos, J. Math. Chem. 59(7), 1822 (2021)
 37. Tim van Erven, Peter Harremoës, IEEE Trans. Inf. Theory 60(7), 3797 (2014)

(22)
1

� − 1
ln

n
∑

i=1

m
∑

j=1

p�
i
q�
j
=

1

� − 1

(

ln

n
∑

i=1

p�
i
+ ln

m
∑

j=1

q�
j

)

.



254 Journal of Mathematical Chemistry (2022) 60:239–254

1 3

 38. Ramon Carbó‑Dorca, Emili Besalú, J. Mol. Struct. (Teochem) 451, 11 (1998)
 39. P. Bultinck, X. Gironés, R. Carbó‑Dorca, in Reviews in Computational Chemistry, vol. 21. ed. by 

K.B. Lipkowitz, R. Larter, T.R. Cundari (John Wiley & Sons, Inc., 2005), pp. 127–207
 40. R. Carbó, B. Calabuig, J. Quantum Chem. 42, 1681 (1992)
 41. R. Carbó, B. Calabuig, J. Quantum Chem. 42, 1696 (1992)
 42. A. Bhattacharyya, News Bull. Calcutta Math. Soc. 35, 99 (1943)
 43. S. Kullback, R.A. Leibler, Ann. Math. Stat. 22(1), 79 (1951)
 44. P.A.M. Dirac, Math. Proc. Camb. Philos. Soc. 26(3), 376 (1930)
 45. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, 

Oxford, 1989), pp. 87–104
 46. Robert S. Mulliken, J. Chem. Phys. 2, 782 (1934)
 47. Shamus A. Blair, Ajit J. Thakkar, Comput. Theor. Chem. 1043, 13 (2014)
 48. Gaussian 09, Revision E.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, 

J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, 
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. 
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, 
J. A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, 
V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, 
S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bak‑
ken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. 
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. 
Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. 
Fox, Gaussian, Inc., Wallingford CT (2013)

 49. F. Soler‑Rodríguez, M.P. Míguez‑Santiyán, Encyclopedia of Toxicology, 3rd edn. (Academic Press, 
London, 2014), pp. 512–514

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Rényi’s divergence as a chemical similarity criterion
	Abstract
	1 Introduction
	2 Theoretical background
	3 Results
	4 Conclusion
	Acknowledgements 
	References




