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Abstract
A mixed supersymmetric-algebraic approach is employed to generate the minimum 
uncertainty coherent states of the hyperbolic and trigonometric Rosen–Morse oscil-
lators. The method proposed produces the superpotentials, ground state eigenfunc-
tions and associated eigenvalues as well as the Schrödinger equation in the factor-
ized form amenable to direct treatment in the algebraic or supersymmetric scheme. 
In the standard approach the superpotentials are calculated by solution of the Riccati 
equation for the given form of potential energy function or by differentiation of the 
ground state eigenfunction. The procedure applied is general and permits deriva-
tion the exact analytical solutions and coherent states for the most important model 
oscillators employed in molecular quantum chemistry, coherent spectroscopy (fem-
tochemistry) and coherent nonlinear optics.

Keywords Coherent states · Rosen–Morse I and II oscillators · Algebraic methods · 
Supersymmetric method

1 Introduction

The coherent states discovered by Schrödinger in 1926 [1] are usually defined in the 
following manner [2]: (1) they are eigenstates of the annihilation operator, (2) they 
minimize the generalized position-momentum uncertainty relation and (3) they 
arise from the operation of a unitary displacement operator to the ground state of 
the oscillator. Definitions: (1) refers to Barut–Girardello [3] or, after generalization, 
Gazeau–Klauder states [4], (2) stands for Nieto–Simmons [5] states, whereas (3) repre-
sents Klauder–Perelomov coherent states [6–8]. From the metodological point of view, 
the coherent states can be constructed using irreducible representations of a Lie group 
[8], an algebraic approach [9], supersymmetric quantum mechanics (SUSYQM) [10] 
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or mixed algebraic-supersymmetric approach proposed by Molski [11]. In the latter 
case, the method generates not only well-known coherent states of the harmonic and 
Morse [12] oscillators but also so far unknown coherent states of the Wei [13], gen-
eralized Morse and modified Kratzer-Fues [14, 15] ones. In this work, we extend the 
research area to construct the minimum-uncertainty coherent states of the hyperbolic 
Rosen–Morse (HRM) [16] and trigonometric Rosen–Morse (TRM) oscillators [17]. 
Those models are widely used in many areas of exact sciences including quantum chro-
modynamics (quark interactions) [18], N-fold supersymmetries in Schrödinger, Pauli 
and Dirac equations [19], SUSYQM [17, 20], the theory of molecular vibrations [16, 
21] and other fields of modern chemistry [22, 23] and physics [24].

Although the Gazeau-Klauder states of the TRM oscillator have already been con-
structed by Chenaghlou and Faizy [25], the correctness of their procedure employed 
has been criticized by Fakri and Dehghani [26]. They proved that the claimed coher-
ency for the TRM wavefunctions cannot actually exist. The minimum-uncertainty 
coherent states for the symmetric HRM oscillator have been obtained also by Nieto and 
Simmons [27] but they employed a simplified form V(q) = V0 tanh(aq)

2 of the origi-
nal Rosen–Morse potential V(q) = B tanh(q∕d) − Csech(q∕d)2 . Hence, the problem 
of construction of coherent states of the HRM and TRM oscillators still remains to 
be solved. In view of this, the main objective of the present study is construction of 
the coherent states of the HRM and TRM oscillators, which minimize the generalized 
position-momentum uncertainty relation. We shall also be concerned with obtaining 
exact analytical solutions and coherent states for the rotating TRM oscillator with pos-
sible application in generating coherent states of the hydrogen atom in the expanding 
universe or the strong interactions of quarks—the fundammental constituent of hadrons

2  The method

In the standard algebraic or supersymmetric treatment, the vibrational dimensionless 
Schrödinger equation ( ℏ = m = 1)

is solved using a factorization procedure converting Eq. (1) to the form

in which ΔEn0 = En − E0 , q = r − r0 denotes a spatial variable, r0 is an equilibrium 
distance whereas Â and Â† represent annihilation and creation operators defined by 
x(q) which satisfies the commutation relation 

[
x(q), p̂

]
= idx(q)∕dq . The explicit 

(1)
[
1

2
p̂2 + V(q) − E0

]
|n >= ΔEn0|n >, p̂ = −i

d

dq

(2)Â†Â|n >= ΔEn0|n >,
[
Â, Â†

]
= −

dx(q)

dq
,

(3)Â =
1√
2

�
d

dq
− x(q)

�
, Â† =

1√
2

�
−

d

dq
− x(q)

�
,
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form of x(q) can be determined for a given form of the potential energy function, 
using the Riccati equation [17]

Vital for the approach proposed is the assumption that the second term in the Riccati 
equation (4) can be specified in the form

in which

is expanded into a power series of |x(q)| < 1 . Now, successive applications of the 
zero-, first-, second- and higher-order terms allow us to calculate x(q) and then the 
ground state eigenfunction |0 > by integration of Eq. (5) and annihilation equation 
Â|0 >= 0 yielding

Additionally, from (4) one gets the potential V(q) and the ground state eigenvalue 
E0 , whereas |0 > permits the construction of the coherent states |𝛼 > being the eigen-
states of the annihilation operator Â

It has been proved [11] that such states minimize the generalized position-momen-
tum uncertainty relation [9]

which can be specified in an alternative form

including f(x) as an genuine component of the uncertainty relation (9). Hence, they 
satisfy two fundamental requirements established for the minimum-uncertainty 
coherent states of harmonic and anharmonic oscillators.

In algebraic methods, x(q) is treated as a vibrational (harmonic or anharmonic) vari-
able [9], whereas in SUSYQM x(q) (with negative sign) is interpreted as a superpoten-
tial W(q) = −x(q) [17], which permits conversion of the Schrödinger equation (1) to 

(4)V(q) − E0 =
1

2

[
x2(q) +

dx(q)

dq

]
.

(5)
dx(q)

dq
= −f (x)

(6)f (x) = c1(x + c0∕c1) + c2(x + c0∕c1)
2 +…

(7)∫
dx

f (x)
= −q, |0 >= exp

[

∫ x(q)dq

]

(8)Â�𝛼 >= 𝛼�𝛼 >= 𝛼�0 > exp(
√
2𝛼q).

(9)
(Δx(q))2(Δp)2 ≥ 1

4
<𝛼|dx(q)

dq
|𝛼>2,

dx(q)

dq
= −i[x(q), p̂] = −

[
Â, Â†

]
,

(10)(Δx(q))2(Δp)2 =
1

4
<𝛼|f [x(q)]|𝛼>2
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the factorized form (2) straightforward to analytical treatment. Hence, having obtained 
the ground state solution, one may derive the eigenfunctions and associated eigenvalues 
for excited states using supersymmetric (SUSYQM) formalism [17]. In this approach, 
two operators Ĥ and Ĥ†

form the two-component Hamiltonian [17]

including fermionic Ĥ and bosonic Ĥ† components, respectively. They are super-
symmetric partners of each other and correspond to an isospectral pair of potentials 
V(q) and V(q)† defined in the following manner

The Hamiltonians Ĥ and Ĥ† as well as their eigenfunctions 𝜓n = |n > , 𝜓†
n
=< n| and 

the associated eigenvalues En , E†
n
 are interrelated via the well-known manner ( n > 0 ) 

[17]

Hence, knowing all eigenfunctions of Ĥ one can determine the eigenfunctions of Ĥ† 
by making use of the operator Â , and vice versa application of Â† makes it possible 
to reconstruct all eigenfunctions of Ĥ from those of Ĥ† except for the ground state 
E0 . In view of this, the combination of algebraic and SUSYQM methodology per-
mits obtaining a full quantum characteristic of the oscillators including ground and 
excited states. To this aim we work in the following scheme

In the case of the shape-invariant potentials, the unnormalized excited states |n > 
and associated eigenvalues En can be generated by multiple action of the creation 
operator on the ground state |0 > [17]

(11)

Ĥ =
1√
2

�
−

d

dq
+W(q)

�
1√
2

�
d

dq
+W(q)

�
= Â†Â,

Ĥ† =
1√
2

�
d

dq
+W(q)

�
1√
2

�
−

d

dq
+W(q)

�
= ÂÂ†

(12)ĤS =

[
Ĥ 0

0 Ĥ†

]

(13)
V(q) − E0 =

1

2

[
W(q)2 −

dW(q)

dq

]
,V(q)† − E

†

0
=

1

2

[
W(q)2 +

dW(q)

dq

]
,

V(q)† =V(q) +
dW(q)

dq
, forE0 = E

†

0
.

(14)
Ĥ
(
Â†𝜓†

n

)
= E†

n

(
Â†𝜓†

n

)
Ĥ†

(
Â𝜓n

)
= En

(
Â𝜓n

)

E†
n
= En+1,𝜓

†
n
=
(
En+1

)−1∕2
Â𝜓n+1,𝜓n+1 =

(
E†
n

)−1∕2
Â†𝜓†

n
.

(15)f (x) ⟶ x(q),W(q) ⟶ V(q),V(q)†,E0, |0 >⟶ |n >,< n|,En,E
†

n
for n > 0.

(16)�n >=
√
2n
�
Â†

�n�0 >
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and substitution of |n > into the wave equation (1), which yields the energy spectrum 
En.

In the algebraic approach, the eigenfunctions of the excited states |n > are calcu-
lated in the form of a product of the ground state solution and the polynomial func-
tion F(u)n

expressed in an adequate variable u(q) [17]. F(u)n usually represents the generalized 
hypergeometric function including Bessel, Jacobi (Legendre, Gegenbauer, Cheby-
chev), Laguerre or Romanovski functions as the special cases. Introducing a trial 
function (17) into (1) one gets the general equation [28, 29]

generating a polynomial term in the form depending on a,  b,  c,  d,  e parameters. 
Application of the proper boundary conditions to solutions of (18) permits calcula-
tion of the eigenvalues En of (1) in the quantized form.

3  The HRM oscillator

A detailed mathematical analysis of the impact of f(x) on the form of quantum solu-
tions generated in the mixed scheme reveals [11] that they depend not only on dif-
ferent powers n = 0, 1, 2 of the truncated series (6) but also on the relations between 
parameters c0, c1, c2 and the presence or absence of the term (x + c0∕c1)

l for l < n in 
the series (6). In this work, we, introduce another modification of the expansion (6), 
assuming its form as

Inserting a special case of (19)

into the first of the Eqs.(7) and then integrating it with respect to x-coordinate yields

The equation derived above can be reverted generating x(q) in the q-dependent form

Having introduced x(q) one may pass to calculate |0 > , V(q) and E0 by taking advan-
tage of Eqs. (7) and (4). In the first case one gets

(17)|n >= F(u)n|0 >

(18)
(
aq2 + bq + c

)
F(u)

��

n
+ (dq + e)F(u)

�

n
− �nF(u)n = 0, n = 0, 1, 2…

(19)f (x) = c1(x ± c0∕c1) ± c2(x ± c0∕c1)
2 +… ci > 0

(20)f (x) = c0 − c2(x − c0∕c1)
2

(21)−
�
c0c2

�−1∕2
tanh−1

�
c2(c0 − c1x)

c1
√
c0c2

�
= −q.

(22)x(q) = −

�
c0

c2
tanh(q

√
c0c2) +

c0

c1
.
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or equivalently, after trigonometric simplification employing identity 
1 − tanh2(z) = cosh−2(z) = sech(z)2

Here N0 = i1∕c2 in which i =
√
−1 is an imaginary number. Taking advantage of the 

Eqs. (4) and (22) as well as the first derivative of x(q)

one may convert the Schrödinger equation (1) to the form

Redefining constants appearing in Eqs. (24)–(26)

one may convert (24) and (26) to the forms oryginally obtained by Rosen and Morse 
[16]

in which

The eigenfunction |0 > and eigenvalue E0 derived represent the exact analytical 
ground state solutions for the HRM potential. In particular, the energy formula (30) 
is a special case of the more general expression

(23)�0 >= exp

�
c0

c1
q

��
tanh

�
q
√
c0c2

�2
− 1

� 1

2c2

(24)�0 >= N0 exp

�
c0

c1
q

�
cosh

�
q
√
c0c2

�− 1

c2 .

(25)
dx(q)

dq
= −c0

�
1 − tanh

�
q
√
c0c2

�2�
= −c0sech

�
q
√
c0c2

�2

(26)

�
−
1

2

d2

dq2
−

c0

c1

�
c0

c2
tanh

�
q
√
c0c2

�
−

1

2

�
c0

c2
+ c0

�
sech

�
q
√
c0c2

�2
+

1

2

�
c2
0

c2
1

+
c0

c2

��
�0 >= 0.

(27)c0 =
b0

d2
, c1 =

b0

a0d
, c2 =

1

b0
,
√
c0c2 =

1

d
,

(28)|0 >= N0 exp
(
a0z

)
cosh (z)−b0

(29)
{
−
1

2

d2

dq2
+ B tanh (q∕d) − Csech(q∕d)2 − E0

}
|0 >= 0,

(30)

E0 =
1

2

(
c2
0

c2
1

+
c0

c2

)
=
(
a2
0
+ b2

0

)
∕2d2,

−
c0

c1

√
c0

c2
= −

a0b0

d2
= B,

1

2

(
c0

c2
+ c0

)
=

b2
0
+ b0

2d2
= C.

(31)

En = −
ℏ2

2md2

�
a2
n
+ b2

n

�
, bn =

√
� + 1∕4 − n − 1∕2, an = −�∕(2bn)n = 0, 1, 2…
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obtained together with excited states |n >

in the algebraic scheme by Rosen and Morse [16]. Here, Nn is normalizattion con-
stant reported in [30], Fn(u) stands for the hypergeometric function expressed in the 
coordinate u(q) whereas

Having derived |0 > with x(q) appearing in the annihilation operator Â one may con-
struct the coherent states of the HRM oscillator employing the formula (8)

which are eigenstates of the annihilation operator

and minimize the generalized uncertainty relation (10)

including x(q) defined by (22).
To obtain the full SUSYQM characteristics of the HRM oscillator we need the 

superpotential W(q) and the partner potential V(q)† defined by (13). Taking advan-
tage of Eqs. (22), (25) and (27) one qets

indicating that the potentials V(q)† and V(q) are interrelated via substitution 
C ⟶ C − b0d

−2 in V(q), hence the HRM potential belongs to the class of shape 
invariant functions [17].

(32)
|n >= Nn exp

(
anq∕d

)
cosh (q∕d)−bnFn

(
−n, (4𝛾 + 1)1∕2 − n;an + bn + 1;u

)

(33)u =
1

2

[
1 + tanh (q∕d])

]

(34)� =
2md2B

ℏ2
= −2a0b0, � =

2md2C

ℏ2
= b0(b0 + 1)

(35)��⟩ = exp
�
a0q∕d

�
cosh (q∕d)−b0 exp(

√
2�q),

(36)
1√
2

�
d

dq
+

b0

d
tanh(q∕d) −

a0

d

�
��⟩ = ���⟩,

(37)
�
Δx(q)

�2
(Δp)2 =

1

4
⟨��f (x)��⟩2, f (x) = b0∕d

2 − (x − a0∕d)
2∕b0

(38)W(q) = −x(q) =
b0

d
tanh

(q
d

)
−

a0

d

dW(q)

dq
=

b0

d2
sech

(q
d

)2

(39)

V(q) = −
a0b0

d2
tanh

(q
d

)
−

b0(b0 + 1)

2d2
sech

(q
d

)2

= B tanh
(q
d

)
− Csech

(q
d

)2

(40)
V(q)† = −

a0b0

d2
tanh

(q
d

)
−

b0(b0 − 1)

2d2
sech

(q
d

)2

= B tanh
(q
d

)
−
(
C − b0d

−2
)
sech

(q
d

)2
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4  The TRM oscillator

The methodology proposed can also be applied to obtain quantum solutions for the 
TRM oscillator [17] by taking advantage of the generating function (19) in the form

defined directly by the potential parameters instead of ci included in (19). To sim-
plify mathematical calculations, we can also use the Maple processor for symbolic 
calculations which enables quick solution of the Eq. (5) given in the form

yielding

Here, C′ stands for a constant to be calculated in the next step of derivation of the 
ground state eigenfunction of the TRM oscillator by making use of

in which N0 = exp[C] is normalizattion constant whose explicit form is reported in 
[31], whereas the potential and ground state eigenvalue are determinable using (43)

In the equations specified above, q-variable is defined in the range 0 ≤ q ≤ �  hence 
we can calculate the constant C′ by making use of the boundary condition |0 >= 0 
for q = 0 providing C� = 0 . Having derived the ground state eigenfunction (44) one 
may generate the excited states and associated eigenvalues

using algebraic approach or SUSYQM nethod described in details in [20]. The poly-
nomial function Fn(u) in Eq. (46) is the solution to the equation

(41)f (x) = a + a−1
[
x(q) + ba−1

]2

(42)
dx(q)

dq
+ a + a−1

[
x(q) + ba−1

]2
= 0

(43)x(q) = a cot
(
q + C�

)
− ba−1.

(44)
�0⟩ = exp

�

∫q

x(q)dq + C

�
= N0 exp

�
a ln

�
sin(q + C�)

�
− ba−1q)

�
=

N0 exp
�
−bqa−1

�
sin(q + C�)a,

(45)

V(q) − E0 =
1

2

[
x(q)2 +

dx(q)

dq

]
=

1

2

{[
a cot

(
q + C�

)
− ba−1

]2
− asin(q + C�)−2

}

=
a(a − 1)

2
csc(q + C�)2 − b cot(q + C�) −

1

2

(
a2 −

b2

a2

)
.

(46)�n⟩ = exp
�
−bq(a + n)−1

�
sin(q)a+nF(u)n, u = cot(q)

(47)En =
1

2

[
(a + n)2 −

b2

(a + n)2

]
n = 0, 1, 2…
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in which

and explicit forms of Fn(u) are presented in [20].
Proceeding in a similar manner as in the case of the HRM oscillator, we can con-

struct the minimum uncertainty coherent states taking advantage of the ground state 
solution (44) in an arbitrary normalization

which are eigenstates of the annihilation operator

and minimize the generalized uncertainty relation (9)

including x(q) specified by (43).
The methodology applied to TRM oscillator can be extended to include rotational 

degree of freedom by making use of the generating function (41) with

providing ground state eigenfunction

potential and l-dependent vibrational ground state eigenvalue

in which C� = 0 as |0l >= 0 for q = 0 . The potential energy function V(q) specified 
in a slightly changed form

has been employed to formulate [32] the hydrogen atom problem in Einstein’s 
closed universe R1 ⊗ S3 with a positive constant curvature , to describe [33] 
quantum motion of a charge dipole perturbed by another charge dipole interact-
ing via modified Coulomb’s potential, to model [18] the strong interactions of 

(48)(1 + u2)F
��

n
(u) + (�n + 2�nu)F

�

n
(u) +

[
�n(�n − 1) − a(a − 1)

]
Fn(u) = 0

(49)�n = −(a + n), �n =
2b

a + n
, n = 0, 1, 2…

(50)��⟩ = exp
�
−bqa−1

�
sin(q)a exp

�√
2�q

�
,

(51)
1√
2

�
d

dq
− a cot (q) + ba−1

�
��⟩ = ���⟩,

(52)
�
Δx(q)

�2
(Δp)2 =

1

4
⟨��f (x)��⟩2, f (x) = a + a−1

�
x(q) + ba−1

�2

(53)a = l + 1, l = 0, 1, 2…

(54)|0l >= N0 exp
[
−b(l + 1)−1q

]
sin(q + C�)l+1,N0 = exp[C],

(55)

V(q) − E0 =
1

2

{[
(l + 1) cot

(
q + C�

)
− b(l + 1)−1

]2
− (l + 1)sin(q + C�)−2

}
=

l(l + 1)

2
csc(q + C�)2 − b cot(q + C�) −

1

2

[
(l + 1)2 − b2(l + 1)−2

]

(56)2V(q) = l(l + 1) csc(q)2 − 2b cot(q)l = 0, 1, 2… q = r∕d.
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quarks—fundammental constituents of hadrons and other areas of modern chemis-
try [22, 23] and physics [24].

Having derived the vibrational ground state eigenfunction one may calculate the 
exicited eigenstates using the algebraic approach providing [18]

in which F2b∕(k+1),−(k+1)

k−l
[cot(q)] stands for the Romanovski polynomials. For the 

vibrational ground state n = k − l = 0 and rotational l-state one gets

hence, the minimum uncertainty coherent states for the rotatating TRM oscillator

are the eigenstates of the l-dependent annihilation operator

and minimize the generalized uncertainty relation (9) adopted to the rotational case

Here, x(q) defined by (43) with a = l + 1 , denotes the trigonometric Rosen–Morse 
variable. The formulae specified above are consistent with those obtained for the 
rotational coherent states of the Kratzer-Fues oscillator [34]. Hence, one may expect 
that the quark-diquark systems can be excited via resonant interactions with the laser 
beam producing a strong electromagnetic pulse [35]. It can generate in molecules 
and nuclei [36–39] peculiar coherent effects such as: self-induced transparency, 
excitation of coherent superposition of rotational states, periodic alternations of the 
refractive index, soliton formation and others.

The pseudopotential W(q) and the partner potential V(q)† vital for the SUSYQM 
approach can be calculated by taking advantage of Eqs. (5) and (43) ( a = l + 1 ) 
yielding

(57)
�kl⟩ = Nk,l sin(q)

k+1 exp

�
−

bq

k + 1

�
F2b∕(k+1),−(k+1)
n

[cot(q)],

k = 0, 1, 2.., l = 0, 1, 2… , k, n = k − l

(58)Ek = (k + 1)2 −
b2

(k + 1)2

(59)�ll⟩ = Nl,l sin(q)
l+1 exp

�
−

bq

l + 1

�
,

(60)��l⟩ = sin(q)l+1 exp
�
−b(l + 1)−1q

�
exp

�√
2�q

�
,

(61)
1√
2

�
d

dq
− (l + 1) cot (q) + b(l + 1)−1

�
��l⟩ = ���l⟩,

(62)

�
Δx(q)

�2
(Δp)2 =

1

4
⟨�l�f (x)��l⟩2, f (x) = (l + 1) + (l + 1)−1

�
x(q) + b(l + 1)−1

�2
.

(63)W(q) = −x(q) = −(l + 1) cot (q) + b(l + 1)−1
dW(q)

dq
=

(l + 1)

sin(q)−2
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The equation presented above reveals that the partner potential V(q)† is interrelated 
with V(q) via substitution l ⟶ l + 1 in V(q), hence the TRM potential for rotating 
systems belongs to the class of shape invariant functions [17].

5  Conclusions

Coherent states of anharmonic oscillators have been constructed using several alter-
native approaches applied to Morse [5, 9, 40–42], Pöschl-Teller [43], hydrogen atom 
[44, 45], double-well and linear(gravitational) [27] as well as unusual potentials [46] 
taken as examples. In the present study, the minimum-uncertainty coherent states of 
the HRM and TRM oscillators have been obtained within the mixed supersymmet-
ric-algebraic method, which permits generating not only the coherent states of the 
well-known anharmonic oscillators but also deriving superpotentials without neces-
sity of using the ground-state wave function or solving the Riccati equation for a 
given form of the potential energy function. Consequently, the Schrödinger equation 
can be derived in the factorized form amenable to direct treatment in the algebraic 
or SUSYQM scheme [47]. In the standard approach, the superpotentials are gen-
erated by solution of the Riccati equation (4) for the selected potentials V(q) [17], 
hence, this procedure is difficult to follow. The new approach permits derivation of 
the potentials and associated superpotentials starting from Eq. (5) in which the term 
f(x) is expanded into a power series of x(q) and then used to generate the coherent 
states for different orders and forms of the expansion (6). In this way one may con-
struct exact analytical solutions and associated coherent states for the most impor-
tant model oscillators employed in molecular quantum mechanics, coherent spec-
troscopy (femtochemistry) and coherent nonlinear optics embracing a wide class of 
problems under consideration [48–51]. From the metodological point of view, the 
method presented can be considered as a generalization [52, 53] of the phenomeno-
logical university (PU) theory [54, 55] to include the quantum systems. Hence, the 
results obtained in this work permit enriching the quantum class Q2 (second-order 
expansion of f(x)) of PU by the new subclasses Q3

2
 and Q4

2
 . In view of this the final 

classification of the second order PU embraces the following subclasses: Q0
2
 for Wei 

[13], Q1
2
 for Hulthen [56, 57], Q2

2
 for Kratzer-Fues [14, 15], Q3

2
 for HRM [16] and Q4

2
 

for TRM [17] oscillators, respectively.
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(64)V(q) =
l(l + 1)

2
csc(q) − b cot(q)V(q)† =

(l + 1)(l + 2)

2
csc(q) − b cot(q)
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