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Abstract
In this work, analytical solutions for the time dependences for the concentration of 
each chemical species are determined in a class of nucleation-growth type kinetic 
models of nanoparticle formation. These models have an infinitely large number of 
dependent variables and describe the studied process without approximations. Sym-
bolic solutions are found for the mass kernel (where reactivity is directly propor-
tional to the mass of a nanoparticle) and the diffusion kernel (where reactivity is 
independent of the size of the nanoparticle). The results show that the average par-
ticle size is primarily determined by the type of the kernel function and the ratio of 
the rate constants of spontaneous nucleation and particle growth. The final distribu-
tion of nanoparticle sizes is a continuously decreasing function in each studied case. 
Furthermore, the time dependences of the concentrations of monomeric units show 
the induction behavior that has already been observed in many experimental studies.

Keywords Nucleation kinetics · Kernel function · Moment · Nanoparticle growth · 
Symbolic solution · Autocatalysis

1 Introduction

Nanoparticles are increasingly considered for application in various ways in new, 
advanced technologies, probably the most significant of them is their use as catalysts 
or catalyst supports, not only in industrial settings but also as parts of user application 
devices or materials, e.g. self-cleaning mirrors or coatings or small-scale water purifi-
cation systems [1–3]. A high number of nanoparticle synthesis methods have already 
been developed [1–12], and by now it is clear that the size of a nanoparticle funda-
mentally influences both its catalytic activity and toxicity. Therefore, controlling the 
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size (and to a lesser extent, the shape) of nanoparticles is of primary importance for the 
potential applications.

The size distribution of nanoparticles is a central question in nanoparticle synthe-
sis. It is clear that this distribution is governed by the formation kinetics of the nano-
particles, and nanoparticles are typically thermodynamically unstable compared to the 
bulk solid phase. So the control of particle size and distribution must rely on kinetic 
considerations.

Kinetic models of nanoparticle formation are usually complicated. The reason for 
this fact is that fundamental kinetic considerations require that each nanoparticle with 
a different size should be handled as a separate chemical species. Consequently, in any 
system of kinetic ordinary differential equations, the number of dependent variables 
is very high. Notable progress has been reached in handling such systems using the 
principle of lumping, which means that a number of different chemical species are han-
dled as a single species and the form of the rate law is adjusted to allow for this fact 
[13–24]. Recently, the technique mechanism-enabled population balance modeling has 
been introduced [21, 24], which is able to give meaningful predictions for particle size 
distributions.

In our previous article [25], we showed that the analytical solution of a non-lumped 
kinetic model is still possible despite the fact that it has an infinite number of concen-
tration variables. The model itself was based on pervious experimental results and 
theoretical considerations [4, 5, 26–31]. In the present work, we show that similar 
analytical solutions can be found in a limited number of other kinetic models as well. 
This paper will first state a general nucleation-growth type kinetic model, than identify 
the cases in which finding a symbolic solution is feasible. In two cases in addition to 
the one already known [25], the full solution is presented. In a number of other cases, 
some partial solutions are available. The main text of this paper will state all solutions 
without derivations or proofs. For those who are interested in the mathematical details, 
these are deposited in the Supplementary Information.

2  Results and discussion

A general nucleation-growth type kinetic model In this paper, a general class of models 
for nanoparticle formation will be considered, which is based on previous attempts to 
build such models and a comparison of experimental results [4, 5, 26–31]. The model 
contains three different kinds of steps, two of which represent nucleation, whereas the 
third one includes particle growth.

In the following models, M will denote a single monomeric unit of the nanoparticle, 
P will be a nucleation inductor, whereas  Ci will represent a nanoparticle that contains 
exactly i monomeric units (i is a positive integer). The first step is called spontaneous 
nucleation. The chemical reaction and the rate equation are given as follows:

The positive integer n here represents the lowest number of monomeric units that 
form a meaningful nucleus. It should be noted that not even n = 1 is excluded from 

(1)nM
kn
��������→ Cn rM = kM[M]n
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the present analysis. Chemically, this would represent a case where only one mono-
meric unit is necessary for nucleation and possibly some other, unspecified reactants 
that do not influence the rate of the reaction.

The second step is also a nucleation step, but it is imagined to be caused by an 
external inductor P:

Note that using such inductors is very common in polymerization studies [31], and 
nanoparticle formation experiments also often include a reagent whose only role is 
to help the formation of first nanoparticle nuclei [1–12].

The third step is nanoparticle growth, and is represented by the following chemi-
cal process and rate equation:

This simple notation actually represents an infinitely large number of possible steps. 
It is assumed that nanoparticle growth can only occur through the stepwise addition 
of monomeric units, which means that the possible reaction of different nanoparti-
cles with each other (called aggregation) is excluded from nucleation-growth type 
models. The function K(i) in Eq. 3 is called a kernel function, it describes how the 
growth rate constant of a nanoparticle depends on its size [26–30]. Four possible 
and practically useful kernel functions are shown in Table 1.

The mass kernel implies that the reactivity of a nanoparticle is directly propor-
tional to its mass, which is proportional to the number of monomeric units in it. The 
surface kernel assumes that the reactivity is proportional to the surface of the nano-
particle. The Brownian kernel [26] shows a proportionality with the diameter (or 
radius) of the nanoparticle, whereas the diffusion kernel posits that the reactivity is 
independent of the particle size. The name of this last kernel function derives from 
the fact that the expected value of a diffusion controlled rate constant is independent 
of the size of a particle in general: the lower mobility of a larger particle is exactly 
compensated by the fact that it has a larger reactive cross section [32]. In the follow-
ing considerations, we will show possible analytical results for the mass and diffu-
sion kernels. We also attempted to use the surface and Brownian kernels, but thus 
far have found no meaningful possibilities to extract analytical solutions.

The system of simultaneous ordinary differential equations that describes the 
general model investigated here is as follows:

(2)P + nM
kp
��������→ Cn rP = kP[P]

(3)Ci +M
kg,i
�����������→ Ci+1 i ≥ n rg,i = K(i)kg[M]

[

Ci

]

Table 1  Typical kernel 
functions in the nucleation-
growth type nanoparticle 
formation models

Name Kernel function

mass kernel K(i) = i
surface kernel K(i) = i2/3

Brownian kernel K(i) = i1/3

diffusion kernel K(i) = 1
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The typical initial conditions of nanoparticle formation are such when at time t = 0, 
the initial concentration of the monomeric unit is  [M]0, the initial concentration of 
the inductor is  [P]0, whereas all of the nanoparticles are absent, i.e.  [Ci]0 = 0.

As in our initial study [25], it is useful to introduce dimensionless (or scaled) physi-
cal properties to simplify the differential equation somewhat. This process does not 
limit the general nature of the results obtained in any way. Dimensionless concentra-
tions m, p, and ci, dimensionless time τ, and dimensionless rate constants α and 

β are introduced as follows:It should be noted that all of these properties are non-
negative real numbers because of their physical meaning. Using these new, dimen-
sionless quantities, Eq. 4 can be re-stated as follows:

(4)

d[M]

dt
= −nkM[M]n − nkP[P] −

∞
∑

j=n

K(j)kg[M][Cj]

d[Cn]

dt
= kM[M]n + kP[P] − K(n)kg[M][Cn]

d[Ci]

dt
= K(i − 1)kg[M][Ci−1] − K(i)kg[M][Ci] i > n

d[P]

dt
= −kP[P]

(5)

ci =
[Ci]

[M]0

m =
[M]

[M]0

p =
[P]

[M]0

� = kg[M]0t

� =
kM[M]n−2

0

kg

� =
kP

[M]0kg

(6)

dm

d𝜏
= −n𝛼mn − n𝛽p − m

∞
∑

j=n

K(j)cj

dcn

d𝜏
= 𝛼mn + 𝛽p − K(n)mcn

dci

d𝜏
= K(i − 1)mci−1 − K(i)mci i > n

dp

d𝜏
= −𝛽p
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Some possible analytical solutions of Eq.  6 will be shown in this article. As the 
induction is either exclusively spontaneous or induced in practical cases, only the 
case αβ = 0 will be considered for the mass and diffusion kernel functions. Also, 
the physically meaningful models are typically characterized by α « 1and p0 =  [P]0/
[M]0 « 1.

General remarks Obviously, the solutions of Eq.  6 depend on the particular 
kernel function and the values on n. However, there are a few considerations that 
can be applied independently of these variables.

First, it can be seen that the last part in Eq.  6 (for the derivative of p) is a 
stand-alone ordinary differential equation. So whenever β > 0, the time depend-
ence of p can be given very simply:

Here p0 is the initial value of p at t = 0 (i.e. p0 =  [P]0/[M]0).
Furthermore, the qth moment of the variables ci is often a useful mathematical 

tool during the solution. It is defined as:

It should be noted that q can be any real number, it is neither an integer nor neces-
sarily positive. The first moment (q = 1) has a clear physical meaning: it gives the 
total number of monomeric units present in the nanoparticles. For the first moment, 
the following differential equation can be derived:

This derivative is exactly the opposite of the derivative for m in Eq. 6, so the follow-
ing equation is valid:

As all ci values are zero at t = 0, so the initial value of μ1 is also 0. In addition, the 
initial value of m is 1 because of the scaling. Therefore, integrating Eq. 10 gives the 
following formula:

This equation is the same as the mass conservation law for the system (i.e. none 
of the processes changes the total number of monomeric units in the system). It is 
also noted that the time derivative of μ1 is always positive, which means that it is a 
monotonically increasing function and by the same argument, m is a monotonically 
decreasing function of dimensionless time.

(7)p = p0e
−��

(8)�q =

∞
∑

i=n

iqci

(9)
d�1

d�
= n�mn + n�p +

∞
∑

i=n

K(i)mci

(10)
d�1

d�
+

dm

d�
= 0

(11)�1 + m = 1
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The zeroth moment (μ0) also has a physical meaning: it is the sum of the con-
centrations of the nanoparticles. It is connected to the other functions by the fol-
lowing differential equation:

Again, it must be remarked that μ0 is a monotonically increasing function. It is also 
interesting to note that for induced nucleation (α = 0), μ0 only depends on the nucle-
ation process irrespectively of the kernel function used, and its time dependence can 
be given as follows:

With this equation, the general considerations seem to be exhausted. Further results 
will be given for specific kernel functions.

Diffusion kernel, spontaneous nucleation This is the specific case for which 
K(i) = 1 and β = 0. The infinite sum appearing in the first part of Eq. 6 (giving the 
time derivative of m) becomes identical to μ0 in this case:

Considering Eq. 12 with β = 0 together with the previous equation, and also recall-
ing the fact that μ0 is monotonically increasing, m can be sought as a function of μ0 
instead of τ:

It seems difficult to find a general solution of this ordinary differential equation for 
any value of n. However, only positive integers are physically meaningful here. The 
case n = 1 is a particularly simple one as the right hand side does not depend on m in 
this case, and the equation can be solved by a simple integration:

Note that the initial condition is μ0 = 0 when m = 1, it was already built into the 
solution given in Eq. 16. It is clear that the final value (at τ = ∞) of m is zero as 
all monomeric units are consumed. Therefore, the final value μ0 can be found by 
substituting m = 0 into Eq. 16. The result is:

Substituting Eq. 16 back into Eq. 12 at β = 0 gives the following ordinary differential 
equation for μ0:

(12)
d�0

d�
= �mn + �p

(13)�0 = p0
(

1 − e−��
)

(14)
dm

d�
= −n�mn − m�0

(15)
dm

d�0

= −n −
�0

�
m1−n

(16)m = −
1

2�
�2
0
− �0 + 1

(17)lim
�→∞

�0 =
√

�2 + 2� − �
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This is a separable differential equation, its solution can be found after lengthy, 
but routine calculations (th stands for the hyperbolic tangent function, arth for the 
inverse hyperbolic tangent function in the formula):

Through Eq.  19, the time dependences of all ci functions become available in an 
analytical form. Using the same strategy of considering the dependence on μ0 rather 
than directly on τ, the relevant part of Eq. 6 can be transformed into a system of lin-
ear, first order ordinary differential equations:

This class of ordinary differential equations is encountered in chemical kinetics [33]. 
The general solution is:

So the full analytical solution was found for the case of diffusion kernel, spontane-
ous nucleation, n = 1.

Now moving on for n = 2, Eq. 15 takes the following particular form:

The solution of this ordinary differential equation can only be given in an implicit 
form:

The notation arctan refers to the arcus tangent function here. This implicit form 
cannot be used directly at m = 1, but there the initial conditions give μ0 = 0 directly. 
Also, the solution is restricted to the case α ≠ 4. This is not much of a limitation as 
α  ≪  1 under typical conditions that are physically relevant. Furthermore, the final 
value of μ0 can be given for the case as well:

(18)d�0

d�
= −

�2
0

2
− ��0 + �

(19)�0 = −� +
√

�(2 + �) th

�

�
√

�(2 + �)

2
+ arth

��

�

2 + �

�

�

(20)

dc1

d𝜇0

= 1 −
c1

𝛼

dci

d𝜇0

=
ci−1

𝛼
−

ci

𝛼
i > 1

(21)ci = � − �e−�0∕�

i−1
∑

j=0

1

j!

(�0

�

)j

(22)
dm

d�0

= −1 −
�0

�m

(23)

2

√

�

1 − �
arctan

(√

�

1 − �

�0 + m

�0

)

= �

√

�

1 − �
+ ln

(

�2
0

�
+ 2m�0 + m2

)
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For other positive integer values of n, no analytical formulas could be obtained.
Diffusion kernel, induced nucleation This is the specific case for which K(i) = 1 

and α = 0. Equations 7 and 13 are valid here, so the final value of the zeroth moment 
can be given readily:

Under these conditions, the differential equation for m takes the following form:

The solution is:

No analytical expressions were found for the ci variables in this case.
Mass kernel, spontaneous nucleation This is the specific case for which K(i) = i 

and β = 0. The infinite sum appearing in the first part of Eq. 6 (giving the time deriv-
ative of m) becomes identical to μ1, which – as shown in Eq.  11—is identical to 
1 − m. Consequently, the first part of Eq. 6 becomes a stand-alone ordinary differen-
tial equation giving the dependence of m on τ:

This is a separable ordinary differential equation. Yet a general solution of this equa-
tion does not seem to be accessible. However, similarly to the case of diffusion ker-
nel, formulas can be found for the smallest values of n.

For n = 1, the solution of Eq. 28 is:

The same solution for n = 2 is:

For n = 3, the solution remains implicit:

For higher values of n, no meaningful formulas could be obtained.

(24)lim
�→∞

�0 =
√

�e

√

�

1−�

�

arctan
�√

�

1−�

�

−
�

2

�

(25)lim
�→∞

�0 = p0

(26)
dm

d�
= −n�p0e

−�� − mp0
(

1 − e−��
)

(27)m = ep0∕�−p0e
−��∕�−p0� − n�p0e

−p0e
−��∕�−p0�

�

∫
0

ep0e
−��∕�+p0�−��d�

(28)
dm

d�
= −n�mn − m(1 − m)

(29)m =
� + 1

�e(�+1)� + 1

(30)m =
1

1 − 2� + 2�e�

(31)

� =
1

√

1 − 12�

�

arth

�

6�m − 1
√

1 − 12�

�

− arth

�

6� − 1
√

1 − 12�

��

+
1

2
ln
�

1 −
1

3�m
+

1

3�m2

�
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It was found that for the mass kernel function, it is convenient to consider con-
centrations ci as a function of m rather than τ. In this way, the ordinary differen-
tial equation defining cn is as follows:

Again, no general solution was found for this form, but particular formulas have 
been obtained for specific values of n. For n = 1, the solution is:

For n = 2, the solution of Eq. 32 is:

For n = 3, the software Mathematica returned a symbolic solution of Eq. 32 using 
hypergeometric functions in the complex number plane (see Supplementary Infor-
mation), it was so complicated that any attempts to use it in practice seemed futile.

For variables ci (i > n) considered as a function of τ, the relevant part of Eq. 6 
reduces to the following form:

This equation makes it possible to calculate the variables ci successively once the 
first one (i.e. cn) is known. For n = 1, the general solution is found as:

The case n = 2 here bears some special practical relevance [4, 5, 17]. In our 
previous publication that was solely dedicated to this particular system [25], 
lengthy derivations were developed to show that the analytical solution is:

For higher values of n, the successive solution procedure could not even be started 
as no explicit formulas were gained for cn at n ≥ 3.

Unlike in the case of the diffusion kernel, μ0 does not play a special role for 
the mass kernel in obtaining the analytical solution. Yet the value of the zeroth 
moment has some importance on its own when the average particle size is cal-
culated, which is the most common property available from experimental works. 
This property can be calculated by integrating Eq. 12 at β = 0:

(32)
dcn

dm
=

ncn − �mn−1

n�mn−1 + (1 − m)

(33)c1 =
� − �m

1 + � − m

(34)c2 = −
�

4� − 6
(1 + 2m) +

3�

4� − 6

(

1

2�
−

m

2�
+ m

)2∕(2�−1)

(35)
dci

dm
=

ici − (i − 1)ci−1

n𝛼mn−1 + 1 − m
i > n

(36)ci =
�

i

(

1 − m

� + 1 − m

)i

(37)

ci =
�(i − 1)!(−1)i−1(m − 1)

∏i

j=2
(2� − j − 1)

+

i
�

j=2

�
�

j2 − 1
�

j(2� − j − 1)

�

i − 1

j − 1

�

(−1)j
�

�

1 − m

2�
+ m

�j∕(2�−1)

− 1

�
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Alternatively, μ0 can also be sought as the function of m by combining Eqs. 28 and 
38:

For n = 1, the zeroth moment can be given based on both equations:

The same can be done for n = 2:

For n = 3, an explicit analytical formula can be given for the dependence on m:

Similar explicit formula could not be obtained for n ≥ 4.
Mass kernel, induced nucleation This is the specific case for which K(i) = i and 

α = 0. Equations 7, 13 and 25 are valid for this case as well. Under these condi-
tions, the differential equation for m takes the following form:

The software Mathematica identified a solution of this differential equation with the 
confluent hypergeometric and gamma functions (see Supplementary Information), 
but this was too complicated for any practical use.

Particle size average and distribution in the final state In experimental studies 
of nanoparticle formation, the average particle size is the most common property 
that is used to characterize the process. As shown previously [25], the average 
number of monomeric units (N) in the nanoparticles formed can be simply calcu-
lated as the ration of the first and the zeroth moments:

As defined in Eq. 44, N is a function of time (or m). In typical experimental works, 
on the other hand, it is only determined after the completion of the process [1–12], 
so the most relevant property from theoretical studies is its limiting value at infinite 
time:

(38)
d�0

d�
= �mn

(39)
d�0

dm
= −

�

n� + (1 − m)m1−n

(40)�0 = �(� + 1)� + � ln

(

1 + �

1 + �e(�+1)�

)

= � ln
(

1 +
1

�
−

m

�

)

(41)

�
0
=

�

(1 − 2�)(1 − 2� + 2�e� )
+

�� − � + 2�2

(1 − 2�)2
−

� ln (1 − 2� + 2�e� )

(1 − 2�)2
=

�m − �

1 − 2�
+

� ln

(

1

2�
−

m

2�
+ m

)

(1 − 2�)2

(42)

�0 =
1 − m

3
+

(1 − 6�)

9�
√

1 − 12�
arth

�

(1 − m)
√

1 − 12�

1 + 6�m − m

�

−
1

18�
ln
�

1

3�
−

m

3�
+ m2

�

(43)
dm

d�
= −n�p0e

−�� − m(1 − m)

(44)N =
�1

�0

=
1 − m

�0
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For induced nucleation, N∞ = 1/p0 always holds. Table 2 summarizes the analytical 
formulas obtained for N∞ in various models.

The five different functions (N∞ vs. α) are displayed graphically in Fig. 1. It is 
seen that large average particle sizes are expected when the rate constant of the 
spontaneous nucleation is orders of magnitude smaller than the rate constants of 
particle growth. In addition, the curves are close to independent of the value of n.

Experimental determinations of nanoparticle size distributions are also com-
mon in the literature [1–12]. Similarly to the average sizes, this is also almost 
exclusively done in the final state. For the three systems where the full solution of 
the model was obtained, these distributions can be given by finding the values of 
ci in the final state.

For the diffusion kernel at n = 1:

(45)N∞ =
1

limm→0 �0

Table 2  Formulas suitable for calculating the average number of monomeric units in nanoparticles at the 
end of the process for spontaneous nucleation

Diffusion kernel Mass kernel

n = 1 1
√

�2+2�−�

1

� ln

(

1+
1

�

)

n = 2 1
√

�
e
−
√

�

4−�

�

arctan

�√

�

4−�

�

−
�

2

�

(1−2�)2

2�2−�−� ln (2�)

n = 3  − 18�
√

1−12�

6�
√

1−12�+
√

1−12� ln (3�)+2(1−6�)arth
�
√

1−12�
�

Fig. 1  The average number of 
monomeric units in a particle 
(N∞) as a function the dimen-
sionless rate constant of the 
spontaneous nucleation (α) in 
various models. D1: diffusion 
kernel with n = 1; D2: diffusion 
kernel with n = 2; M1: mass 
kernel with n = 1; M2: mass 
kernel with n = 2; M3: mass 
kernel with n = 3
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Similarly, for the mass kernel at n = 1:

For the mass kernel at n = 2:

For the mass kernel at n = 2, whose solution was already found in our previous work, 
it was pointed out there is no extremum on the distribution as ci values decrease 
monotonically as i increases, although the actual numerical calculations are difficult 
because of the large binomial coefficients with alternating signs [25, 34, 35]. It was 
shown here that the final distributions are also monotonically decreasing for both the 
diffusion kernel and the mass kernel at n = 1 (see Supplementary Information).

Time dependence of the concentration of the monomeric unit In some cases, 
the concentration of the monomeric unit could be followed as a function of time 
in experimental studies [5]. Therefore, the dependence of the dimensionless con-
centration of the monomeric unit on dimensionless time is shown in Fig. 2 for the 
two cases where the solution is reported the first time in the present paper (dif-
fusion and mass kernels with n = 1). Figure  2 shows that the time dependences 
show the peculiar induction behavior [36, 37] that was observed in a number of 
experimental studies [13–15, 18, 38].

(46)lim
�→∞

ci = � − �e1−
√

1+2∕�

i−1
�

j=0

1

j!

�

√

1 + 2∕� − 1
�j

(47)lim
�→∞

ci =
�

i

(

1

� + 1

)i

(48)

lim
�→∞

ci =
�(i − 1)!(−1)i

∏i

j=2
(2� − j − 1)

+

i
�

j=2

�
�

j2 − 1
�

j(2� − j − 1)

�

i − 1

j − 1

�

(−1)j
�

�

1

2�

�j∕(2�−1)

− 1

�

Fig. 2  The dimensionless 
concentration of the monomeric 
unit (m) as a function of dimen-
sionless time (τ) in two models 
at α =  10−4. D1: diffusion kernel 
with n = 1; M1: mass kernel 
with n = 1



1820 Journal of Mathematical Chemistry (2021) 59:1808–1821

1 3

3  Conclusion

In addition to the one solution already known, this work has shown that full sym-
bolic solutions are available for the kinetic ordinary differential equations of two 
other nucleation-growth type nanoparticle formation models. The presented analy-
sis also implies that reaching similar achievements would be very difficult for other 
models. Therefore, for experimentally important cases, using approximations is 
probably inevitable. However, the approximations should not necessarily involve 
lumping variables. For any approximations in kinetic models of nanoparticle 
growth, the three known exact analytical solutions should serve as benchmark tests 
for proving the validity of the approach.
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