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Abstract
The theme of this study is within the realm of basic nuclear magnetic resonance 
(NMR) spectroscopy. It relies upon the mathematics of signal processing for NMR 
in analytical chemistry and medical diagnostics. Our objective is to use the fast Padé 
transform (both derivative and nonderivative as well as parametric and nonparamet-
ric) to address the problem of multiplets from J-coupling appearing in total shape 
spectra as completely unresolved resonances. The challenge is exacerbated espe-
cially for short time signals (0.5 KB, no zero filling), encoded at a standard clinical 
scanner with the lowest magnetic field strengths (1.5T), as is the case in the pre-
sent investigation. Water has partially been suppressed in the course of encoding. 
Nevertheless, the residual water content is still more than four times larger than the 
largest among the other resonances. This challenge is further sharpened by the fol-
lowing question: Can the J-coupled multiplets be resolved by an exclusive reliance 
upon shape estimation alone (nonparametric signal processing)? In this work, the 
mentioned parametric signal processing is employed only as a gold standard aimed 
at cross-validating the reconstructions from nonparametric estimations. A paradigm 
shift, the derivative NMR spectroscopy, is at play here through unprecedentedly par-
ametrizing total shape spectra (i.e. solving the quantification problem) by sole shape 
estimators without fitting any envelope.
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1  Introduction

1.1 � The magnetic resonance principle and its experimental confirmation

Nuclear magnetic moments can very accurately be measured by the molecular beam 
method of Stern [1] from 1930. A modification called the molecular-beam resonance 
method of Rabi from 1938 has been used in the first successful demonstration of the 
magnetic resonance effect [2–4]. This detection is based on the magnetic resonance 
principle formulated by Groter [5] in 1936. It states that a precessing gyroscope can 
absorb energy from a periodic perturbation only if the precession frequency is equal 
(or nearly equal) to the frequency of the perturbation. Such a principle is universal, 
as besides nuclear magnetic moments, it applies equally well to any other system 
with angular momentum and magnetic moment.

A key feature of the nuclear magnetic resonance (NMR) spectroscopy is that the 
resonance frequency is proportional to the strength B0 of the externally applied mag-
netic field1. Unlike modern spectrometers and clinical scanners, in the early years 
of NMR, the radiofrequency (RF) field was kept constant, whereas by changing the 
current, the strength B0 of the main magnetic field was varied. In the measurement 
from Ref. [3], the RF field was about 3.5 MHz and the magnetic resonance was 
observed at B0 ≈ 0.2T through the trace of the absorption curve on the oscilloscope 
of the spectrometer.

In Ref. [3], a molecular beam (lithium chloride, LiCl ) was first passed through 
a vacuum chamber before entering the magnetic apparatus. With such an arrange-
ment, nuclei were practically isolated from each other as well as from their chemical 
environment. If all the further measurements continued in a like manner, solely with 
basically free nuclei, the NMR method, great as it is, would nevertheless remain to 
be an exclusively nuclear device tool, thus staying firmly within the boundaries of 
physics alone.

The situation changed dramatically in 1946 by the independent measurements of 
the two competing research groups led by Bloch [6–8] and Purcell [9, 10]. They 
demonstrated the existence of magnetic resonance in condensed matter using water 
and paraffin (containing protons), respectively. Such discoveries definitely crossed 
the borders of physics. These proofs of magnetic resonance in liquid and solid state 
matter paved the road for NMR physics first to other sciences and subsequently to 
technology and industry.

The “nuclear induction” method [6] and the “magnetic resonance absorption” 
method [9] are different, albeit they are both dealing with the same phenomenon, 
magnetic resonance. Bloch et al. [6] measured the current induced in a coil by reori-
entation of the bulk magnetization vector. On the other hand, absorption of the RF 
energy was the subject of measurement by Purcell et al. [9]. It is interesting to see 

1  The standard symbol for magnetic field strength is denoted by H
0
 , whereas B

0
 labels magnetic induc-

tion. This distinction has been made in the older NMR literature. However, for a long time now, the 
NMR literature invariably denotes the magnetic field strength by B

0
 . Hereafter, we shall adhere to this 

latter convention, which has also been adopted in all conventional spectrometers and clinical scanners.
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how the two competing terms coexisted in the early years. When finally Bloch and 
Purcell met, Bloch (“nuclear induction”) adhered to Purcell’s terminology (“nuclear 
magnetic resonance”). However, this stayed only within the realm of nomenclature.

Subsequently, the first commercial NMR spectrometer from 1952 (30 MHz, Var-
ian Associates) and all its successors, including every clinical scanner (that came 
much later) implemented the method of Bloch [6] by encoding time signals or free 
induction decay (FID) curves. It was not an entirely unexpected choice given a close 
collaboration between Bloch’s group and the Varian Associates (founded in 1948 by 
Russel Varian and Sigurd Varian in the Stanford Industrial Park, California). This 
choice of encoding, in fact, gave birth to NMR signal processing. If spectra con-
tinued to be directly measured and displayed on oscilloscopes or computer screens, 
any further resolution improvements could be achieved only by hardware upgrades 
(i.e. building stronger and much more expensive spectrometers to the benefit of 
fewer users). However, by encoding FIDs, these data, being stored in the computer 
memory, become readily accessible to analyses by a variety of signal processors. 
Some signal processors could extract more information from measured FIDs than 
any hardware upgrades. Hence, the importance of software upgrades, as well.

In the first encoding stage of FIDs, what is actually measured is the current 
induced in a coil surrounding a sample (spectrometers) or a part of a human body 
(clinical scanners). Afterwards, a discrete (equidistantly sampled) set of the FID 
data points is obtained from the encoded current by means of an analog-to-digital 
converter (ADC). Upon averaging many such encoded FIDs, the averaged time sig-
nal can be mapped from the time to the frequency domain by various mathematical 
transforms (Fourier, Padé,...) to yield the sought magnetic resonance (MR) spec-
trum. Thus far, surprisingly, all commercial NMR spectrometers and clinical scan-
ners have built-in only the fast Fourier transform (FFT), a linear low-resolution sig-
nal processor with no ability to suppress noise from encoded FIDs.

1.2 � Universal significance of chemical shift

Soon after Refs. [6, 9], there were further key measurements in NMR. Building 
upon the detection of the NMR phenomenon in bulk matter [6, 9], i.e. from nuclei 
in liquids and solids, new experiments [11–20] emerged with the most unexpected 
results. The surprise was in a dependence of resonance frequency on the chemical 
environment of nuclei. Such a resonance frequency displacement (or shift) is called 
chemical shift.

Chemical shifts have been measured not only in single compounds [11–19], but 
also in mixtures of molecules or chemical compounds [20]. The explanation was 
in electronic shielding of nuclei. Atomic and molecular electrons create a small, 
local magnetic field at the nucleus and this weakens the external static field B0 . As a 
result, the nucleus does not resonate at the anticipated Larmor frequency �L associ-
ated with B0 . Rather, it resonates at a smaller resonance frequency 𝜈R < 𝜈L , which is 
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associated with the difference between B0 and the shielding magnetic field due to the 
electronic cloud about the nucleus2.

It is important to refer explicitly to some of the specifics particularly from Refs. 
[13, 14]. Proctor and Yu [13, 14] measured the magnetic moments of several nuclei 
( Mn55 , Co59 , Cl37 , N15 and N14 ). In the case of the isotope N14 of nitrogen, they used 
ammonium nitrate, NH4NO3 . This choice has been made primarily because the sam-
ple NH4NO3 ∶ (i) is highly soluble in water, H2O , and (ii) has two nitrogens per mol-
ecule. Both factors (i) and (ii) were anticipated to enhance the intensity of the signal 
to be detected. However, the result was the observation of two different resonance 
frequencies. They were postulated to be one per group, the ammonium and nitrate 
ions, NH+

4
 and NO−

3
 , respectively.

This assignment was confirmed by two separate measurements [14] using a pair 
of different samples, NH4C2H3O2 and HNO3 , each molecule having only one nitro-
gen. Here, they detected two different resonance frequencies, one for NH4C2H3O2 
and the other for HNO3 , with the former and the latter being in close agreement with 
the respective resonance frequencies for NH+

4
 and NO−

3
 from NH4NO3 . These find-

ings cohere precisely with the said concept of chemical shift, implying that the local 
chemical surrounding of a spin-active nucleus changes its resonance frequency. As 
such, the two identical nitrogen nuclei are nonequivalent because they belong to two 
different groups ( NH4 and NO3 ) of the same molecule ( NH4NO3 ) [14].

The mentioned types of measurements on chemical shifts opened the door of an 
initially pure nuclear physics method, NMR, to e.g. chemistry for studying the struc-
ture of organic compounds (including macromolecules like proteins, lipids, fatty 
acids,...), elemental and isotope composition of various substances, etc.

1.3 � Historic first NMR spectrum from measurements providing quantitative 
information: Ethanol

There seemed to be no dormant period in NMR since its inception. Thus, already in 
1951, the opportunity for exporting NMR from physics to chemistry was seized by 
three physicists, Arnold, Dharmatti and Packard [21]. They furthered the finding of 
Proctor and Yu [13, 14] about nonequivalent behavior of identical nuclei in differ-
ent groups of the same molecule. They made yet another key discovery, critically 
important quantitative information from spectra. One of their chemical compounds 
was ethanol ( CH3CH2OH ), a molecule with 3 sets of protons in 3 different groups, 
methyl ( CH3 ), methylene ( CH2 ) and hydroxyl ( OH ). The three protons from CH3 are 
equivalent and so are the two protons from CH2 , viewed separately in their respec-
tive groups. On the other hand, the protons from CH3 , CH2 and OH are all nonequiv-
alent because they belong to three different groups. The oscilloscope linked to the 

2  In principle, the weak local magnetic field (say �
0
 ) at the nucleus generated by electrons can be paral-

lel to the vector �
0
 or opposite to it, thus leading to an enhanced or reduced B

0
 , respectively. However, in 

most cases these two vectors ( �
0
 and �

0
 ) are in the opposite directions, so that the term magnetic shield-

ing is appropriate as it implies a reduced B
0
 via B

0
− 𝜎 < B

0
 , where 𝜎 > 0 (𝜎 ≡ |�

0
|).
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spectrometer (0.76T) from Ref. [21] clearly showed 3 separate resonance peaks that 
the authors assigned to the 3 groups: CH3, CH2 and OH.

Such an assignment was made from the peak areas of the observed 3 resonances. 
These peak areas satisfied approximately the theoretically predicted relationships 
3:2:1 for the resonance intensities associated with CH3, CH2 and OH , respectively. 
The latter ratios correspond to the numbers 3, 2 and 1 of nuclei in CH3, CH2 and 
OH , respectively. In this low-resolution spectrum of ethanol, with no fine structures, 
the peak areas are used because, as stated in Ref. [21], the peak widths found in the 
measurements were not equal for all the three detected resonances corresponding to 
CH3, CH2 and OH.

Overall, the work reported in Ref. [21] was historical because it was the first 
recorded NMR spectrum ever yielding quantitative information. Its significance can-
not be understated as it implied that the resonance peak area gives the abundance 
of nuclei that contributed to the peak, i.e. to the magnetic resonance phenomenon. 
Hence a huge potential of NMR spectroscopy to identify not only different frag-
ments of an examined molecule, but also the number of nuclei (per fragment) con-
tributing to the given resonance peak.

1.4 � Revisiting the problem of ethanol‑containing spectra

Presently, we shall not address the ethanol problem [21] per se. Rather, ethanol will 
be the main molecule mixed with other molecules, notably methanol and acetate in a 
phantom provided by a manufacturer of MR clinical scanners (1.5T) [22, 23].

Use of phantoms is important for testing the performance of both clinical MR 
scanners and data analyzers (signal processors). A part of the quality control (QC) 
or the quality assurance (QA) programs is to test the reliability and reproducibil-
ity of encoding by using phantoms with the known amount (volumes, molar con-
centrations) of the given substances. With such a goal, a number of encodings of 
time signals for a phantom is performed over an extended period of time (e.g. 1–3 
months) by medical physicists in hospitals. Each measurement would acquire about 
100-200 FIDs for averaging to improve signal-to-noise ratio (SNR). This is usually 
referred to as the number of excitations (NEX). The latter nomenclature comes from 
the occurrence that a slice of a scanned object or tissue is externally excited by RF 
pulses. Time domain data averaging is necessary since all individual FIDs are too 
noisy to be useful for analysis and interpretation.

Manufacturers of MR scanners supply useful phantoms for NMR spectroscopy 
(NMRS), which is called magnetic resonance spectroscopy (MRS) in medicine3. 
For example, there is the General Electric (GE) brain phantom [24, 25] as well 
as the Philips “Phantom A” for proton MRS ( 1HMRS ) and “Phantom B” for 
phosphorus MRS ( 31PMRS ) [22, 23]. In conjunction with 1HMRS , which is the 
method of the present interest, we shall use the Phantom A (the Proton Phantom) 

3  The word “nuclear” is removed in medical applications of magnetic resonance to avoid the patient’s 
potential fear from “nuclear radiation” which is, of course, not present in NMR.
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filled with ethanol, methanol and acetate (alongside some other substances added 
to the mixture for technical purposes).

The GE brain phantom, a plastic sphere (16 cm diameter), is filled with sev-
eral metabolites dissolved in a pH-buffered stock solution. These metabolites 
(also found in the gray matter of normal human brains in approximately simi-
lar amounts) are nitrogen acetyl aspartate (NAA), creatine (Cr), choline (Cho), 
glutamate (Glu), myo-inositol (m-Ins) and lactate (Lac) of molar concentrations 
12.5, 10.0, 3.0, 12.5, 7.5 and 5.0 mM/L, respectively. For technical purposes also 
added are some other substances: potassium phosphate ( KH2PO4 , 50.0 mM), 
sodium hydroxide ( NaOH , 5.0 mM) as well as 0.10% Azide (sodium azide) and 
0.10% GdDPTA (Magnevest).

The polyethylene Philips Phantom A is of a special significance because it bears a 
close relationship with the mentioned first quantified spectrum in NMR history (the 
ethanol spectrum) from Ref. [21]. It is important to see how far this resemblance 
may go. Different resonances in a spectrum interact with each other. Therefore, it is 
intriguing to verify whether the presence of methanol and acetate in the said poly-
ethylene mixture can notably influence the ethanol part of the whole spectrum.

The presently used FIDs have been encoded with water partially suppressed 
(by inversion recovery) at a 1.5T GE clinical scanner (Astrid Lindgren Children’s 
Hospital, Stockholm). The residual water content is left intact for signal process-
ing together with the other substances in the phantom. For encoding and signal 
processing employing the FIDs without water suppression during measurements, 
see our accompanying article [26].

The water-suppressed averaged FIDs are processed here by the nonderivative 
and derivative fast Padé transforms (FPT and dFPT), respectively, in both the par-
ametric and nonparametric versions. Usually, even with the use of encoded water-
suppressed FIDs, the resulting total shape spectra in virtually all shape estimators 
abound with overlapped resonances that offer no quantitative information. How-
ever, this situation with shape estimation has been dramatically changed by the 
introduction of the nonparametric derivative fast Padé transform, dFPT [27–31], 
the main focus of the present study.

Presently, we have a threefold goal. First, to see whether the overlapped peaks 
can be separated in nonparametrically reconstructed total shape spectra or enve-
lopes. Second, staying still with nonparametric envelopes, to peer into the fur-
ther, fine structure of ethanol, the triplet and quartet in the methyl and methylene 
group CH3 and CH2 , respectively. The third goal, which is the most important, is 
to find out whether these J-coupled multiplets can unequivocally be resolved and 
accurately quantified exclusively by the low-order dFPT using only the nonpara-
metric estimations of spectral envelope lineshapes.

Such a stringent benchmarking of signal processing is essential as it deals with 
measured time signals from chemical compounds containing molecules of known 
abundance. A successful performance of a signal processor in these testings is a 
prerequisite for applications to FID data encoded from substances of unknown 
content as well as to samples with the given mixture of chemical compounds, but 
with unknown concentrations of the individual constituents.



370	 Journal of Mathematical Chemistry (2021) 59:364–404

1 3

This kind of inverse problem is the workhorse of medicine viz: the effect is known 
and the cause is sought. It is also routinely practiced in engineering as “reverse engi-
neering”: performance of a given device is recorded. From the output data, the task 
is to reconstruct the input data with the underlying parameters. All of this is, by 
definition, the most salient signature of NMR spectroscopy in physics/chemistry and 
MRS in medical diagnostics [32–34].

2 � Theory

This study on NMR spectroscopy is focused on nonderivative and derivative signal 
processings based on the nonparametric and parametric fast Padé transforms. These 
high-resolution estimations are well known and, as such, need not be presented here 
in full detail. Only the salient features will be briefly illuminated to guide the pres-
entation and analysis in the Result Section. The Padé results will be compared with 
the corresponding Fourier findings to highlight their relative performance especially 
for derivative signal processing.

Time signals encoded from a sample, processed by the Padé methodologies, are 
represented quantum-mechanically by auto-correlation functions. These functions 
describe the time evolution of a general dissipative physical system or sample with 
K constituents (metabolites in MRS). The system is governed by a dynamical non-
hermitean operator (’Hamiltonian’) and, thus, the frequency spectrum is comprised 
of complex eigenvalues (eigenenergies, eigenfrequencies). Most physical eigenfre-
quencies are nondegenerate. Nondegeneracy means that no two or more different 
eigenfrequencies can belong to the same eigenstate of the system. Degenerate spec-
tra can equally well be treated by the fast Padé transform [29, 32, 33].

The auto-correlation function, or equivalently the time signal is given by a linear 
combination of K fundamental complex harmonics zk . Each harmonic function zk is 
a complex exponential exp (i�k�) multiplied by a stationary complex amplitude dk , 
where �k is the complex fundamental angular frequency (eigenfrequency) and � is 
the constant sampling time (or dwell time):

where N is the total signal length. Here, N is related to the total duration T of the 
time signal by T = N� . Quantity T is the total acquisition time in the measurement 
(encoding). The linear frequency �k is connected to �k by �k = 2��k (or generally, 
� = 2�� ). The amplitude dk is the intensity of the k th component zk of the time sig-
nal, dk = |dk| exp (i�k) , where �k is the phase. Stated equivalently, dk is the com-
plex-valued strength of the harmonic zk.

The quantification problem, or equivalently, the spectral analysis problem, is an 
inverse problem with a specific name, the harmonic inversion (HI). It consists of 
reconstructing the unknown fundamental parameters {�k, dk} (1 ≤ k ≤ K) from the 
known time signal data points {cn} (0 ≤ n ≤ N − 1) . The HI problem is linear in dk 
and nonlinear in �k . Thus, determining both �k and dk amounts to solving a nonlinear 

(2.1)cn =

K∑

k=1

dkz
n
k
, n ∈ [0,N − 1] , zk = ei𝜔k𝜏 , Im(𝜔k) > 0,
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problem. Generally, nonlinear problems are not solvable exactly in any way. How-
ever, the HI problem can, in principle, be solved exactly (analytically for 1 ≤ K ≤ 4 
and numerically for K ≥ 5 ) if each of the input data points {cn} is equidistantly sam-
pled via c(t) = c(tn) , where tn = n� , as is customarily the case in NMRS and MRS.

The harmonics {zk} (1 ≤ k ≤ K) represent damped trigonometric oscillations in 
the time domain. Their frequency domain counterparts in a nondegenerate spectrum 
are pure complex Lorentzian lineshapes. Each Lorentzian represents a component of 
the corresponding total shape spectrum. There are K components in an envelope cor-
responding to K harmonics in the time signal. For plotting, various modes of these 
complex spectra are used (e.g. magnitude as well as the real and imaginary parts). 
Such line profiles from spectra represent the response functions of the system to the 
external perturbations. In a physical system containing some degenerate eigenfre-
quencies, the corresponding spectral lineshapes are non-Lorentzians [32, 33].

The exact nonderivative quantum-mechanical spectrum in the frequency domain 
is defined by the finite-rank Green function as the MacLaurin polynomial [32, 33]:

For the given SN , there are two variants of the fast Padé transform denoted by FPT(+) 
or FPT(−) that depend on the z or z−1 , respectively. In the present study, only the 
FPT(−) will be used and the fast Padé transform will be referred to simply as FPT.

For the given expansion (2.2), the nonparametric FPT is introduced by a ratio of 
two polynomials PK�∕QK of generally different degrees (K�

≠ K) . In practice, the 
diagonal (K� = K) and paradiagonal (K� = K − 1) versions of the FPT are computa-
tionally most important due to their best (in the least-square sense) stability features 
of the expansion coefficients of the numerator ( PK′ ) and denominator ( QK ) polyno-
mials [32]. We will presently adopt the diagonal FPT, in which case the total shape 
spectrum reads as:

where

This version of the FPT is in the same variable z−1 as in SN . Therefore, the 
exact finite-rank Green function SN can be approximated by the FPT in the form 
PK(z

−1)∕QK(z
−1) from (2.3) as:

(2.2)SN(z
−1) =

N−1∑

n=1

cnz
−n , z = ei�� .

(2.3)Nonparametric ∶ FPTTot =
PK(z

−1)

QK(z
−1)

,

(2.4)PK(z
−1) =

K∑

r=0

prz
−r , QK(z

−1) =

K∑

s=0

qsz
−s.

(2.5)SN(z
−1) ≈

PK(z
−1)

QK(z
−1)

.
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The polynomial expansion coefficients {pr, qs} in Eq. (2.4) are determined uniquely 
from the condition SN(z−1)QK(z

−1) = PK(z
−1) according to the defining relation 

(2.5) of the FPT:

At first glance, there are two systems of linear equations to solve, one for {qs} and 
the other for {pr} in Eqs. (2.6) and (2.7), respectively. This is not the case, however, 
as actually only one system needs to be solved. Namely, after computing the coeffi-
cients {qs} of QK by solving the single system in Eq. (2.6), the coefficients {pr} of PK 
become automatically available since Eq. (2.7) is then an analytical expression, the 
convolution of {cn} and {qs}.

The Padé rational polynomial PK∕QK is a complex total shape spectrum as a 
function of the sweep linear frequency � . This FPT is only a shape estimator. It is a 
nonparametric processor since it does not parametrize the spectrum, i.e. it does not 
autonomously generate the peak positions, widths, heights and phases.

To reconstruct the peak parameters, the FPT can alternatively be introduced as a 
parameter estimator. The starter of the procedure is the same envelope PK∕QK . This 
time, however, both PK and QK polynomials are rooted. The roots of PK and QK are 
the zeros and poles of the spectrum PK∕QK , respectively. This is true because the 
spectrum PK∕QK is a meromorphic function. Meromorphic functions have poles as 
the only singularities. Polynomials PK and QK have exactly K roots each.

The parametric FPT first reconstructs the fundamental parameters {�k, dk} of the 
time signal (2.1). Then, the K component spectra are generated as the constituents of 
the envelope PK∕QK . The component shape spectrum FPTComp of the k th resonance 
is the following complex Lorentzian (the k th partial fraction):

The total shape spectrum FPTTot is the sum of the K component shape spectra, sup-
plemented by a constant baseline. This is called the Heaviside partial fraction repre-
sentation of PK∕QK ∶

The factored term p0∕q0 is the baseline constant, which describes a flat background 
contribution to the spectrum PK∕QK . In Eqs. (2.8) and (2.9), quantity z−1

k
 is the k th 

nondegenerate root of the characteristic or secular equation QK(z
−1) = 0 . This is the 

same fundamental harmonic from the time signal in Eq. (2.1).

(2.6)
K∑

s=1

qscK+s�+s = −cK+s� (1 ≤ s� ≤ N − K − 1),

(2.7)pr� =

K∑

r=0

crqr�−r (0 ≤ r� ≤ K).

(2.8)Parametric ∶ FPTComp =
dkz

−1

z−1 − z−1
k

.

(2.9)Parametric ∶ FPTTot =
PK(z

−1)

QK(z
−1)

=
p0

q0
+

K∑

k=1

dkz
−1

z−1 − z−1
k

.
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Neither the FPTComp nor the FPTTot from Eqs. (2.8) and (2.9), respectively, 
is singular, i.e. they do not become infinite due to the inequality z−1 ≠ z−1

k
 . The 

sweep frequency � in z−1 = exp (−2�i��) is real, whereas the nodal frequency �k 
in z−1

k
= exp (−2�i�k�) is complex, implying that indeed z−1 ≠ z−1

k
.

Once the k th root z−1
k

 of QK(z
−1) becomes available, the fundamental frequency 

�k is deduced from the relation:

Then the corresponding amplitude dk is obtained by using the Cauchy residue 
theorem. This gives dk as an analytical expression for the residue of the spectrum 
PK(z

−1)∕QK(z
−1) taken at the eigenfrequency z−1

k
 , so that:

Both fundamental parameters �k and dk are complex, so that there are four real 
parameters per resonance, {Re(�k), Im(�k), |dk|,�k} , where �k is the amplitude phase, 
dk = |dk| exp (i�k) . The k th peak position and width are determined from Re(�k) and 
Im(�k) , respectively. The k th Lorentzian peak height is proportional to the ratio of 
the magnitude |dk| of the FID amplitude dk and the imaginary nodal or characteristic 
frequency, |dk|∕Im(�k) . The k th peak phase is given by the FID amplitude phase, �k . 
The peak area is the product of the peak height with the peak width. This implies 
that the peak area of a Lorentzian absorptive resonance is equal to |dk|∕2.

In MRS, metabolite concentrations are of key importance for diagnostics in 
radiology. Each such concentration is proportional to the given peak area, multi-
plied by a reference concentration (of an internal or external substance) for cali-
bration purposes. Because the Lorentzian peak area is determined solely in terms 
of the FID magnitude |dk| , it is tempting to think that the quantification HI prob-
lem, associated with the time signal (2.1), is linear (and, hence, much easier to 
solve) provided that the fundamental frequencies {�k} (1 ≤ k ≤ K) are all known. 
This is, however, misleading and the HI problem remains nonlinear.

The reason is that while the chemical shifts, Re(�k) , might be known for 
many metabolites, the resonance widths, Im(�k) , are unknown. These widths are 
inversely proportional to the spin-spin relaxation times, T⋆

2k
 . It is the resonance 

width (or, more precisely, T⋆
2k

 ), which must be known to properly correct the 
Lorentzian bare peak area (|dk|∕2) for the fact that, in practice, neither the total 
acquisition time (T) nor the so-called echo time (TE) is infinitely long [24].

A pole-zero coincidence can occur and it is called a Froissart doublet (the 
common roots to PK and QK ) [35, 36]. The Froissart doublets describe noise or 
noise-like content (i.e. spuriousness) of the extracted information. Such coinci-
dences lead to cancellations of PK by QK in PK∕QK . This is known as pole-zero 
cancellation and it amounts to self-annihilation of Froissart doublets, in the origi-
nal representation PK∕QK of the Padé approximant. Such a cancellation becomes 
evident if PK∕QK is written using the well-known canonical form for polynomials 
PK and QK [35]:

(2.10)�k =
i

2��
ln(z−1

k
).

(2.11)dk =
PK(z

−1
k
)

Q�
K
(z−1

k
)
, Q�

K
(z−1) =

d

dz−1
QK(z

−1) , Q�
K
(z−1) ≠ 0.
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Here, z−1
k,P

 and z−1
k,Q

 are the roots of polynomials PK(z
−1) and QK(z

−1) , respectively. 
Note that the root z−1

k
 of QK(z

−1) from Eqs. (2.1), (2.10) and (2.12), is relabeled as 
z−1
k,Q

 in (2.12).
The canonical representation (2.12) of the FPT permits yet another analytical 

expression for the amplitude dk as the residue of PK∕QK from Eq. (2.12) taken at 
z−1 = z−1

k,Q
∶

Froissart doublets are also washed out from the partial fraction representation (2.9) 
on account of the relations dk = 0 (noise-free FIDs) or dk ≈ 0 (noise-corrupted 
FIDs). This is evident from Eq. (2.11), where dk = 0 because PK(z

−1
k,Q

) = 0 for a 
Froissart doublet. Likewise, in Eq. (2.13), we have dk = 0 since, by definition, 
z−1
k,Q

= z−1
k,P

 (pole-zero coincidence) for a Froissart doublet.
The weakness of Froissart doublets (through negligible small amplitudes dk ) is 

due to the fact that these resonances are associated with noise which is random. 
Any change significantly disturbs Froissart doublets and, as a result, they wob-
ble in the complex frequency plane (e.g. with even the slightest truncation of the 
signal length N). This is how the noisy part of the reconstructed information is 
first reliably identified and then suppressed in the FPT. The underlying procedure 
is called the denoising Froissart filter (DFF) within the concept known as signal-
noise separation (SNS) [35, 36].

Parameter K, as the common degree of polynomials PK and QK , is called 
the model order. Physically, it represents the total number of resonances in the 
spectrum PK∕QK . This number is unknown prior to signal processing. Numeri-
cal computations start with an initial value Kin , which is systematically increased 
until convergence has been reached as a function of K. In the parametric FPT, the 
signature of convergence is stabilization of the fundamental parameters {�k, dk} 
with increasing K.

In the nonparametric FPT, stabilization of the entire spectrum PK∕QK (within 
the chosen frequency interval) is the main criterion for selecting the physical 
(genuine) value KG of the running model order, starting with Kin , using a fixed 
step or increment ΔK ( Kin + ΔK,Kin + 2ΔK,… ,KG,KG + ΔK,KG + 2ΔK, ...). 
Here, the DFF stabilizes the Padé spectrum PK∕QK through pole-zero cancella-
tions that filter out all the additional model orders beyond KG ∶

(2.12)
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=
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Thus far, we discussed the nonderivative FPT. The expressions for spectra in the 
derivative fast Padé transform, dFPT, are obtained in their analytical forms by apply-
ing the general m th order derivative operator Dm = (d∕d�)m (m = 1, 2, 3, ...) to Eq. 
(2.5) and (2.9).

On the other hand, being limited always to shape estimations alone, Fourier 
signal processing begins by first defining the finite Fourier integral for the input 
continuous time function c(t) as:

Subsequently, by discretizing the analogue time signal c(t) via c(t) = c(tn) ≡ cn , 
where tn = n� (0 ≤ n ≤ N − 1) , the Fourier integral (2.15) is mapped into the dis-
crete Fourier transform (DFT):

Finally, the DFT is expediently computed using the Cooley-Tukey Nlog2N algo-
rithm (for N = 2� , � = 1, 2, 3, ...) which is the nonderivative fast Fourier transform, 
FFT [32]. Here, resolution on the angular and linear frequency scale is given by the 
Fourier grid points, 2�∕T  and 1/T, respectively. In other words, the resolving power 
in the FFT is the same for all time signals with the same duration T. Thus, the Fou-
rier processing does not take into account the specific structure of a particular time 
signal under study. Moreover, the FFT considers all time signals as periodic, which 
is untrue in most cases of practical interest.

The derivative Fourier integral is introduced by subjecting Eq. (2.15) to the 
operator Dm leading to:

In the derivative DFT, i.e. dDFT, the term (−2�it)mc(t) is discretized as (−2�in�)mcn . 
Thus, the dDFT is defined by:

The dFFT is obtained by computing the dDFT by means of the Cooley-Tukey 
fast computational algorithm. In other words, the dFFT is generated by subject-
ing the modified time signal {(−2�in�)mcn} to the nonderivative FFT. However, 
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the time-dependent power function (−2�in�)m , as a weighting factor, emphasizes 
strongly the tail of the time signal. This is a huge disadvantage when applying the 
dFFT to encoded time signals because their tails contain mainly noise. Thus, the 
higher-order dFFT is basically processing noise alone and this leads to loss of all 
physical information [27]. This never happens in the dFPT due to the entirely differ-
ent mathematical structure of the nonparametric and parametric derivative fast Padé 
transforms.

3 � Results and discussion

First, subsection  3.1 addresses the phantom specifications and time-domain data 
acquisition. This is followed by subsection 3.2, which gives the salient features of 
the J-splitting pattern of resonances relevant to the phantom under study. Finally, 
subsection 3.3 is on reconstructions of spectra in the two modes, the real part of a 
complex spectrum and its magnitude.

3.1 � Phantom content and time signal acquisition

We use the polyethylene Phantom A or Proton Phantom [22, 23]. It is a plas-
tic sphere (10 cm diameter) filled with a mixture of ethanol (ethyl alcohol, EtOH, 
CH3CH2OH , 80%, 10 ml), acetate (acetic acid, Ace, CH3COOH , 98%, 5 ml), metha-
nol (methyl alcohol, MeOH, CH3OH ) and demineralized (demi) water ( H2O ). For 
technical purposes, this phantom contains also phosphoric acid ( H3PO4 , 98%, 8 ml), 
1 ml 1% arquad solution and copper sulfate ( CuSO4 , 98%, 8 ml). The volumes of 
methanol and water are not stated in the Philips Manuals [22, 23].

In Refs. [22] (1989) and [23] (2014), two different chemical formulae for acetate 
are given, CH3OOH and CH3COOH , respectively. The latter formula CH3COOH 
[23], will hereafter be used when referring to acetate (acetic acid), Ace.

Encoding by means of MRS used in the present work has been made with 
the described phantom using a 1.5T GE clinical scanner (Larmor frequency 
�L = 63.87MHz ). It proceeded by employing single-voxel proton spectroscopy with 
the point-resolved spectroscopy sequence (PRESS) [24].

The encoding specifics of time signals or FIDs are: total signal length 
N = 512 , echo time TE = 272ms , repetition time TR = 2000ms , bandwidth 
BW = 1000Hz , sampling time � = 1∕BW = 1ms , total duration of each time sig-
nal T = N� = 512ms and number of excitations (i.e. number of individual FIDs) 
NEX = 128 . The acquired 128 FIDs are averaged. The averaged FID is subjected to 
Padé and Fourier estimations of total shape spectra by employing the nonderivative 
and derivative processings.

3.2 � The pattern of J‑splitting (spin‑spin interaction)

Given the content of the polyethylene Phantom A, its absorption spectrum should 
display, according to the NMR theory, ten peaks: one for water, seven for ethanol (a 
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triplet plus a quartet), one for methanol and one for acetate. As discussed, a low-res-
olution spectrum of ethanol itself should have only three peaks as singlets associated 
with methyl, methylene and hydroxyl groups CH3 , CH2 and OH , respectively. The 
OH peak is located near the water peak, which we presently place at 4.87 ppm (parts 
per million), corresponding to 20oC [24]. For a large water concentration in the 
phantom, the hydroxyl OH peak (the smallest in the ethanol molecule) is swamped 
by the intense H2O resonance and, thus, invisible in a spectral envelope. This is why 
we do not count the OH peak and the displayed graphs will mainly focus on the fre-
quency window containing ethanol and acetate.

In the case of a higher resolution, the other two groups of ethanol, CH3 (methyl) 
and CH2 (methylene) should undergo the so-called J-splitting due to nuclear spin-
spin interaction, as prescribed by the spin Hamiltonian of the system. As usual, the 
J-splitting is manifested in a spectrum through the emergence of various multiplets 
at different chemical shifts. In particular, methyl CH3 and methylene CH2 groups 
of ethanol CH3CH2OH should exhibit triplet (t) and quartet (q) peaks, respectively. 
This follows the so-called “ n + 1 ” rule.

To illustrate this rule, we give an example of a molecule having 2 groups A and 
B with the corresponding number of nonequivalent protons nA and nB , respectively. 
Then the interaction of spins of protons from these two groups will cause splittings 
of the spectral profiles from A and B into the multiplets of nB + 1 lines in A and 
nA + 1 lines in B. In the case of ethanol’s groups CH3(A) and CH2(B), there are 
nA = 3 and nB = 2 protons, respectively.

Therefore, the spin-spin interaction of 3 methyl protons in CH3 and 2 methylene 
protons in CH2 will lead to multiplets in both CH3 and CH2 . Specifically, since the 
neighbor B ( CH2 ) of A ( CH3 ) has 2 protons ( nB = 2) , the spectrum of CH3 ≡ A 
will have a triplet (three resonances, nB + 1 = 3) . Likewise, because the neighbor 
A ( CH3 ) of B ( CH2 ) has 3 protons ( nA = 3) , the spectrum of CH2 ≡ B shall have a 
quartet (four resonances, nA + 1 = 4) . Moreover, the intensities of the underlying 
component peaks in the CH3 and CH2 group of ethanol are read off from the Pascal 
triangle with the proportion values 1:2:1 and 1:3:3:1, respectively.

These latter relations can be explained as follows. The proportions 1:2:1 and 
1:3:3:1 correspond to the binomial coefficients of 2 and 3, respectively. These 
binomial coefficients are the numbers in which each of the eigenvalues ms of the 
spin operator of the given group of ethanol can be found from the possible com-
binations of proton’s spin quantum numbers s = ±1∕2 . For example, the eigenval-
ues {ms = 0,±1} of the spin operator associated with the methyl group CH3 can 
be found in 2 ways by combining the two spins ±1∕2 of the protons. Similarly, 
{ms = ±1∕2,±3∕2} of the spin operator corresponding to the methylene group CH2 
can be obtained in 3 ways by combining the two spins ±1∕2 of the protons [37].

Thus, using higher resolution NMR spectroscopy, the spectrum of the poly-
ethylene Phantom A should possess ten peaks (not counting the ethanol OH peak 
obscured by water) that are numbered in the Philips Manual [22] (p. 51) as:

•	 1 (singlet, s): water ( H2O),
•	 2-5 (quartet, q): methylene protons from the CH2 group of ethanol (EtOH, 

CH3CH2OH),
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•	 6 (singlet, s): methanol (MeOH, CH3OH),
•	 7 (singlet, s): acetate or acetic acid (Ace, CH3COOH ) and
•	 8-10 (triplet, t): methyl protons from the CH3 group of ethanol (EtOH, 

CH3CH2OH).

3.3 � Reconstruction of spectral envelopes

Both Padé and Fourier reconstructions can give spectral envelopes. As always, Fou-
rier spectra appear only as total shape spectra. The same holds true for the non-
parametric nonderivative FPT. However, the parametric FPT can provide the com-
ponents and envelopes. The present spectral reconstructions are shown in 6 figures 
through a judicious combination of the Padé and Fourier output data:

•	 Figure 1: Padé, nonderivative FPT (nonparametric, no zero filling), real parts of 
complex spectra,

•	 Figure  2: Fourier, nonderivative FFT (no zero filling), real parts of complex 
spectra,

•	 Figure 3: Padé, nonderivative FPT and derivative dFPT (nonparametric, no zero 
filling) vs. Fourier, nonderivative FFT and derivative dFFT (no zero filling),

•	 Figure 4: Padé, nonderivative FPT and derivative dFPT (nonparametric, no zero 
filling) vs. Fourier, nonderivative FFT and derivative dFFT (FID zero filled 
once),

•	 Figure 5: Padé, nonderivative FPT and derivative dFPT (no zero filling); non-
parametric (envelopes) vs. parametric (envelopes),

•	 Figure 6: Padé, nonderivative FPT and derivative dFPT (no zero filling); non-
parametric (envelopes) vs. parametric (components).

We emphasize that, throughout the present work, all the Padé spectra are obtained 
using directly the encoded raw time signals with no zero filling and no preprocess-
ing (e.g. no apodization, no filtering, ...). In testing convergence for Padé processing 
(parametric, nonparametric), the model order K is varied until full convergence has 
been reached. All the present illustrations are made for the converged model order 
K = 180.

3.3.1 � Spectral envelopes by nonderivative shape estimators

Figure  1 shows the encoded average time signal and the nonparamet-
ric Padé reconstructions. The real (Re) and imaginary (Im) parts of the FID, 
{cn} (0 ≤ n ≤ N − 1 ,N = 512) are displayed on panels (a) and (d), respectively. The 
encoding specifics from subsection 3.1 are written on both panels, (a) and (d). No 
phase correction is made in the displayed Re(cn) nor Im(cn) . The abscissae are either 
time (in units of the sampling time � ) or the signal number n. The ordinates are in 
arbitrary units (au). Note that Re(cn) and Im(cn) are of comparable intensities on the 
ordinates from panels (a) and (d), respectively.
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Fig. 1   MRS for the standard Philips Phantom A [22, 23] with the main content: ethanol, methanol, ace-
tate and water. Time signals or FIDs (a, d) of short length N = 512 encoded with water suppression at a 
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figure online)
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The real and imaginary parts of the FID are observed to take both positive and 
negative values. Water residual distorts the shape of the FID. We have not sup-
pressed the remaining water content by processing nor in any other way. Because of 
its short length (only 0.5 kilobytes, KB)4, this FID has not fully decayed in either its 
real nor imaginary parts on panels (a) and (d), respectively.

Panels (b), (c), (e) and (f) depict the real part {Re(FPT) ≡ Re(PK∕QK)} of the 
complex Padé total shape spectrum ( PK∕QK ) as intensities (ordinates in au) versus 
sweep linear frequencies (abscissae). The abscissae differ in two ways. One con-
cerns the lengths of the frequency intervals (windows). The other relates to the units 
of frequency � . The left and right columns (b,c) and (e,f) show wider and narrower 
frequency windows, respectively. The second and the third rows (b,e) and (c,f) dis-
play the abscissae in hertz (Hz) and ppm, respectively. The former and the latter are 
dependent on and independent of B0 , respectively.

After encoding FIDs, clinical scanners show the real part (Re(FFT)) of the recon-
structed complex Fourier spectrum as the computed intensities versus frequencies in 
Hz. This is the reason for showing panels (b) and (e) in Fig. 1. Otherwise, our entire 
analysis will be focused on the abscissae in ppm. The dimensionless units ppm for 
frequency are convenient as the locations of all the resonances remain unaltered by 
comparing the spectra computed from FIDs encoded or theoretically generated for 
different static magnetic field strengths B0 . Following a customary convention, all 
the numbers on the abscissae for frequency (both in Hz and ppm) are in the inverted 
order: from lower to higher values (upfield) when going from the right to the left 
(downfield is from left to right).

On panels (b) and (c) for a wider frequency interval, the residual (negative) 
water peak (#1) is dominant in the Padé envelope. It is pointed downward and lies 
mostly in the part of the plot associated with the negative values on the ordinate 
axis. The remaining resonances (##2 − 10) are oriented in the opposite direction and 
their lineshapes are mostly positive-definite. These resonances are seen to lie on a 
flat background baseline because the residual water does not have an elevated tail. 
This is a consequence of partially suppressing water in the course of encoding. The 
chemical names and formulae of the displayed resonances are written on panels (b) 
and (c) to facilitate the presentation.

The resonances ##2 − 10 of the main interest become more visible on a narrower 
frequency interval (avoiding water, #1) which is also shown in Hz (panel e) and ppm 
(panel f). Some of the expected resonances are clearly delineated, whereas the oth-
ers are obscured to a varying degree. For example, both acetate, Ace, CH3COOH 
(#7) near 2.1 ppm and methanol, MeOH, CH3OH (#6) around 3.4 ppm are identifi-
able with certainty as the two isolated single resonances.

Moreover, the two groups of ethanol, EtOH, CH3CH2OH , that are methyl CH3 
near 1.3 ppm and methylene CH2 close to 3.5 ppm, also exhibit their substructures in 
the Padé total shape spectrum on panels (e) and (f) in Fig. 1 pointing to the sought 
triplet and quartet resonances, respectively. Thus, from the expected triplet in the 

4  In information technology and particularly in the field of signal processing, including the present study, 
1 kilobyte (KB) represents 1024 bytes.
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CH3 group, there is an evidently emerged middle peak (#9). The tops of the remain-
ing two side peaks (##8,10) are clearly visible, as well. However, the remainders of 
these edge peaks (##8,10) are entirely glued to the tall resonance #9 from the CH3 
group of ethanol. The height of the middle peak #9 is about a factor of two taller that 
the tops of the shouldered peaks (##8,10). This may hint at an approximation to the 
exact ratios 1:2:1 only if the widths of all the peaks (##8,9,10) were the same, which 
is not known at this stage of the analysis. As discussed, a more appropriate estimate 
of the proportions 1:2:1 would be provided by the peak areas that, however, cannot 
be extracted even approximately from the overlapping resonances ##8–10.

As to the anticipated quartet from the methylene CH2 group, the upper portions 
of the two middle peaks (##3,4) of the nearly same heights are clearly delineated 
on panel (f) for the Padé envelope. This is opposed to their immediate neighbors 
(the expected resonances ##2,5) in the CH2 group that show up merely as two rough 
shoulders riding on the steep sides of the peaks #3 and #4, respectively. The heights 
of the middle peaks #3 and #4 are about 3 times larger than the tops of the shoulders 
#2 and #5, respectively. Recall that the corresponding exact ratios for the quartet in 
the CH2 group is 1:3:3:1. Here, as mentioned, we do not address the hydroxyl OH 
group of ethanol (near the residual water placed at 4.87 ppm) because the location of 
the associated single peak is outside of the maximal frequency (4 ppm) considered 
in panel (f).

This discussion on the reconstruction results from Fig. 1 should be viewed in the 
light of the severe restrictions in the input data (short FID of 0.5 KB, no zero filling, 
encoding at a relatively weak B0 = 1.5T ). Given these limitations of the employed 
FID, the analyzed data in the output from the nonparametrically generated Padé total 
shape spectral profiles or envelopes from Fig.  1 can only be taken as qualitative. 
This particularly refers to the mentioned qualitative insights into the exact quantita-
tive ratios 1:2:1 and 1:3:3:1 of the peak heights in the triplet and quartet resonances 
for the methyl CH3 and methylene CH2 groups of ethanol, respectively. Here, the 
adjective ’qualitative’ refers to the circumstance that we provisionally relied solely 
upon the appearance of the peak heights in the plotted envelopes with no informa-
tion about the peak widths. For unequal peak widths, it is inappropriate to use the 
peak heights for checking the proportions 1:2:1 and 1:3:3:1.

The ratio of the heights of e.g. the two given peaks could correspond to the ratio 
of the underlying resonating protons. This would be true only if the two peaks are of 
the identical widths. In the contrary case of the two unequal widths, instead of the 
peak height quotients, the correct number (abundance, concentration) of the resonat-
ing nuclei that generated the peaks should be obtained from the ratios of the cor-
responding peak areas. As discussed, this latter peak area procedure has been used 
in the first NMR spectrum of ethanol [21] to arrive at an approximate ratio 3:2:1 of 
the number of the resonating nuclei present under the three separate peaks due to 
methyl CH3 , methylene CH2 and hydroxyl OH groups of CH3CH2OH (no J-coupled 
resonances appeared in this low-resolution envelope).

Figure 2 is of the same type as Fig. 1, except that the Fourier envelopes are plot-
ted this time. Also, the employed short FID (N = 512) is the same as in Fig. 1. For 
a wider frequency range in Hz on Fig. 2b, it is instructive to compare the present 
Fourier spectrum given by the real part Re(FFT)) with its counterpart from Fig. 4.13 
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in Philips Manual [22] (p. 82). In both cases, B0 = 1.5T and the sweep frequencies 
cover the same interval [−350, 50]Hz . However, in Ref. [22], the signal length is 
eight times longer, including zero fillings ( N = 4096 : 1024 encoded FID data points 
plus 3072 zeros).

Still, this latter long FID gave the real part of the Fourier spectrum in Fig. 4.13 
from Ref. [22] much of the same form as in our Fig.  2b. In other words, for the 
phantom under study, the use of merely 512 data points in the present FID does 
not impact adversely on the overall performance of the FFT. This is important to 
emphasize to avoid blaming the short signal length for any potential inadequacy that 
Fourier processing may face when the FFT complex spectrum is subjected to the 
derivative operator.

Given that Figs.  1 and 2 share the same theme, there is no need to repeat the 
whole discussion made about Fig. 1. Nevertheless, a few salient features of Fourier 
spectra should be singled out. This is worthwhile whenever there are some nota-
ble differences between the Fourier and Padé envelopes. First of all, comparing the 
spectra in Figs. 1 and 2, it is obvious that, as usual, the Fourier resolution is inferior 
to that of Padé.

Further, a few more particular features, can be summarized. For example, the 
negative water peak (# 1) in Fig. 2 appears not to descend as deeply as is the case 
in Fig.  1. The two ethanol groups, the methyl CH3 ( ∼ 1.25 ppm ) and the methyl-
ene CH2 ( ∼ 3.5 ppm ) protons, are seen on panel (f) of Fig. 2 as two amalgamated 
structures with no clearer hint on all the constituent individual peaks in the triplet 
and quartet resonances, respectively. Moreover, unlike the sharp appearance of the 
tops of the peaks #8 and #10 in the Padé spectrum in Fig. 1f for the methyl CH3 
( ∼ 1.25 ppm ) protons of ethanol, these two resonances are practically invisible in 
Fig. 2f. Therein, only 2 slight shoulders (##8,10) can barely be noticed on each side 
of the middle peak (#9), which is dominant in the CH3 group.

Likewise, the hoped-for quartet (##2–5) in the methylene CH2 group of ethanol is 
obscured in Fig. 2f. Here, the two middle resonances (##3,4) are of unequal inten-
sity. This is opposed to the corresponding doublet of sharp resonances with nearly 
the same peak heights in the Padé envelope from Fig. 1f. Further, the peak heights of 
acetate (#7) and the CH3 group of ethanol are significantly lower in the FFT (Fig. 2) 
relative to those in the FPT (Fig. 1).

Overall, some noticeable differences exist between the Padé (Fig. 1) and Fourier 
(Fig. 2) envelopes. Nevertheless, and this is most important, since they both stem 
from lineshape estimations alone, the farthest they can go on their own is to pro-
vide descriptions restricted to qualitative estimations at best. However, the ultimate 
goal of MRS is reconstruction of quantitative data. In the case under consideration, 
such quantitative data are the numbers of resonating protons that yield the given 
resonance.

The main question is: how can this goal be attained without fitting the spectral 
envelopes? One way is to go beyond shape estimation (nonparametric signal pro-
cessing) as provided by parameter estimation from the onset. The latter estimation 
would give the peak parameters, four of them per peak (position, height, width, 
phase). The parametric FPT ranks high by its uniqueness, noise suppression (by way 
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of Froissart doublets, or equivalently, pole-zero cancellations) and exactness in solv-
ing the spectral analysis problem (the quantification problem) [32].

Nevertheless, we ask yet another essential question: would it be possible to per-
form full quantification of envelopes by using exclusively nonparametric process-
ing for estimating spectral lineshape (with no fitting, of course)? Answering this 
question in the affirmative would erase the dividing line between the shape and 
parameter estimators. Guided by the questions of this fundamental type, the non-
parametric derivative fast Padé transform, dFPT, has recently been introduced and 
implemented [27–31] to furnish a paradigm shift leading to derivative NMR spec-
troscopy (dNMRS) or derivative MRS (dMRS).

3.3.2 � Derivative shape estimators: Padé versus Fourier

Derivative signal processing is the subject of Figs. 3–6. Among these, Figs. 3 and 4 
compare the dFPT with dFFT. On the other hand, Figs. 5 and 6 deal with the dFPT 
alone. Figure 5 juxtaposes the two variants (nonparametric versus parametric) of the 
dFPT for total shape spectra. Finally, Fig.  6 provides the ultimately key informa-
tion through comparisons of the envelopes from the nonparametric dFPT with the 
components from the parametric dFPT. The presently used derivative estimations 
of envelopes and components are concerned exclusively with the magnitude mode.

The real and imaginary parts, as two modes of an NMR complex spectrum, are 
inconvenient for the main theme of the present study, derivative signal processing. 
From our earlier investigation on derivative estimation of envelopes [27–29], it was 
seen that each resonance, in both the real and imaginary parts of the given complex 
derivative total shape spectrum, possesses its symmetric or nearly symmetric side 
lobes of wider widths than the breadth of the main, central peak. These side lobes 
(especially for higher derivatives) complicate extraction of the sought peak param-
eters from the real parts of complex derivative lineshapes. Such an obstacle is absent 
from the magnitude mode.

Generally, with an increase of derivative order, the peak width systematically 
diminishes and the peak height concomitantly augments [27–29]. Therefore, for 
derivative estimation in the magnitude mode, the side lobes (being wider than their 
parent central peak) become progressively smaller for higher derivatives and even-
tually are buried in the background baseline. In addition, side lobes are mitigated 
in the magnitude mode through combining the absorptive and dispersive parts of 
the given complex spectrum. Given these and other (e.g. phase-insensitiveness) sig-
nificant advantages of magnitude envelopes, we opt to display derivative total shape 
spectra in the magnitude mode.

Usually, the magnitude spectral mode is not used in standard, nonderivative sig-
nal processing. The reason is in the fact that each peak in the magnitude envelope is 
wider by a factor of 

√
3 relative to the width of the absorptive real part of the same 

complex Lorentzian spectrum. Moreover, the baseline is more elevated in a magni-
tude envelope than in the real part of the spectrum. However, the situation is com-
pletely different for derivative estimations using magnitude envelopes, particularly 
when the dFPT is utilized.
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Most interestingly, e.g. the width of the given magnitude mode peak from the first 
derivative envelope is identical to that of the absorptive real part of the pertinent 
complex Lorentzian spectrum [29]. Even better, by taking further derivatives, the 
width of a magnitude derivative envelope becomes systematically further reduced.

In Figs.  3 and 4, comparisons are made between the FPT and FFT as well as 
between the dFPT and dFFT. For both figures, nonparametric Padé is used with no 
zero filling of the FID. In the case of Fourier processing, there is no zero filling 
either of the FID in Fig. 3. However, one zero padding of the time signal for Fou-
rier estimations is made in Fig. 4. The left columns of Figs. 3 and 4 are for Fourier, 
whereas Padé refers to the right columns of these plots.

In Fig. 3, the nonderivative FFT on panel (a) appears to be of a notably lower 
resolution than the nonderivative FPT on panel (d). Returning to Fig. 1f, we recall 
that the real part of the Padé complex nonderivative spectral envelope shows several 
clearly delineated resonances. Such a situation is even more evident in the magni-
tude mode of the same Padé complex total shape spectrum in Fig. 3d. Interestingly, 
this occurs despite the fact that the peaks in the magnitude mode (Fig. 3d) are wider 
by a factor of 

√
3 than their counterparts in the real part of the complex spectrum 

(Fig. 1f).
The reconstructions from the derivative estimations of spectra in the magnitude 

mode are shown on panels (b,c,e-j). Throughout, the derivative orders are relatively 
low: 1 (panel b: Fourier, e: Padé), 2 (c: Fourier, f: Padé), 3 (g: Fourier, h: Padé) 
and 4 (i: Fourier, j: Padé). The nomenclature for Padé and Fourier derivative enve-
lopes in the magnitude mode are |DmFPT| and |DmFFT| , respectively, where Dm is 
the m th order derivative operator with respect to the sweep linear frequency � , i.e. 
Dm = (d∕d�)m (m = 1, 2, 3, ...).

Relative to the FFT (panel a), it is seen that the Fourier first derivative ( |D1FFT| , 
panel b) represents a considerable improvement. In contrast, the second derivative 
( |D2FFT| , panel c) is visibly inferior to its predecessor |D1FFT| from panel (b). This 
deteriorating trend is exacerbated with the increased derivative order m. The tail 
of the water residual peak seen above 4 ppm on the Fourier panels (a), (b) and (c) 
eventually prevails at higher derivatives, thus making all the other resonances practi-
cally invisible. This amounts to a total breakdown of the dFFT for higher derivative 
orders.

The reason for this is the mathematical structure of the dFFT which processes the 
encoded time signal {cn} multiplied by the power function (n�)m . The latter term, as 
per Eq. (2.18), puts emphasis on larger time signal numbers n at which noise domi-
nates the physical FID data points. Even for the derivative orders m as low as 2 on 
panel (c), it is observed that the said mathematical feature of the dFFT is detrimental 
in any attempt to perform meaningful estimations by the derivative Fourier trans-
form. Possibly, this could be mitigated somewhat by using an exponential apodizing 
function, i.e. multiplying {(n�)mcn} by a decaying exponential. We have not made 
such an attempt as it is always better to process the originally encoded raw FIDs 
instead of their modifications via e.g. apodization and the like artificial devices. In 
any case, any exponential apodization would broaden the peaks, contradicting the 
main goal of derivative estimations: significant narrowing of the reconstructed spec-
tral lines.
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Fig. 3   MRS and dMRS for the standard Philips Phantom A [22, 23] with the main content: ethanol, 
methanol, acetate and water. Processing of time signals of short length N = 512 encoded with water 
suppression at a 1.5T GE clinical scanner. No residual water suppression. Nonderivative and deriva-
tive envelopes with no zero filling for two processors: Fourier (a,  b,  c,  g,  i) and nonparametric Padé 
(d, e,  f, h,  j). Abscissae in ppm, ordinates in arbitrary units (au). For details, see the main text (Color 
figure online)
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To proceed further, we turn our attention to the derivative Padé transform, 
dFPT, through |DmFPT| obtained with the intact encoded FID and shown on pan-
els (e), (f), (h) and (j) for m = 1, 2, 3 and 4, respectively. Regarding all the peaks 
##2–10, the first Padé derivative |D1FPT| (panel e) exhibits an astounding reso-
lution improvement over |FPT| (panel d). In |D1FPT| from panel (e), these reso-
nances are sharply pulled out from their irregular, low-lying lineshapes hidden in 
the baseline of |FPT| on panel (d). The prerequisite for the overall improvement 
of |D1FPT| (panel e) over |FPT| (panel d) is in having a tremendously flattened 
baseline, which is practically immersed into the abscissa. Moreover, the expected 
J-splittings in ethanol yielding the quartet and triplet in the CH2 and CH3 groups, 
respectively, are achieved already in |D1FPT| on panel (e).

Panel (f) shows the Padé second derivative, |D2FPT| . Herein, several key 
advances are patently clear. Thus, regarding the quartet and triplet of ethanol, 
there is a significant resolution improvement when passing from |D1FPT| (panel 
e) to |D2FPT| (panel f). Here, the net gain by using |D2FPT| is in straightening 
up and symmetrizing the triplet and quartet of ethanol by suppressing the side-
bands that are present in |D1FPT| . All the nine peaks (##2–10) in the Padé sec-
ond derivative magnitude spectrum on panel (f) are seen to be of the bell-shaped 
Lorentzian profiles. For acetate (#7), the low-lying shoulders in |D1FPT| (panel 
e) are suppressed in |D2FPT| (panel f). Herein, |D2FPT| exhibits two very small 
satellite peaks, symmetrically positioned on each side of the acetate peak (#7). 
However, they are not present in |D3FPT| nor in |D4FPT| shown on panels (h) and 
(j), respectively.

The abscissae in panels (g–j) are restricted to a small band around the acetate 
peak alone for a better visualization of the satellites under higher derivatives, 
|DmFPT| (m = 3, 4) , on the scales of the displayed ordinates. This check was optional 
since, in fact, the entire estimation by the dFPT is finalized extremely fast, already 
through the second derivative |D2FPT| for all the nine resonances ( ##2 − 10 ). For 
this reason, it is fully sufficient to complete the presentation of the dFPT with at 
most the second derivative for all the nine resonances (##2–10).

This offers an answer to the following working question: where do we stop in 
Padé derivative estimation (i.e. at which derivative order m)? As a rule of thumb, 
among a sequence of the employed m values, the lowest derivative order m = mmin 
to be retained as the final result in the dFPT can safely be the one for which all the 
physical (genuine) resonances are fully resolved preferably to the level of a minimal 
background baseline. In the present study, this stopping criterion is optimally ful-
filled for mmin = 2 , as per Fig. 3f.

The present short FID with only 512 encoded points, subjected to Fourier pro-
cessing without zero filling of the time signal, yields merely 512 Fourier grid points 
in the frequency domain. That this is insufficient is obvious in Fig. 3 from panels 
(g) and (i) for |D3FFT| and |D4FFT| , respectively. Therein, the heights of the acetate 
peaks from these two Fourier derivative envelopes are shortened because of having 
too sparse Fourier grid frequencies. To check whether zero filling would somewhat 
improve Fourier processing, we refer to Fig. 4. Also in this figure, no zero filling 
of the FID is made for Padé processing as this is unnecessary. Therefore, the Padé 
results for |DmFPT| (m = 0 − 4) on panels (d–f,h,j) of Figs. 3 and 4 are identical.
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Fig. 4   MRS and dMRS for the standard Philips Phantom A [22, 23] with the main content: ethanol, 
methanol, acetate and water. Processing of time signals of short length N = 512 encoded with water 
suppression at a 1.5T GE clinical scanner. No residual water suppression. Nonderivative and deriva-
tive envelopes: Fourier with one zero filling (a, b, c, g,  i) and nonparametric Padé with no zero filling 
(d, e,  f, h,  j). Abscissae in ppm, ordinates in arbitrary units (au). For details, see the main text (Color 
figure online)
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Zero filling in the time domain corresponds to a trigonometric interpolation in 
the frequency domain when using Fourier estimations. This yields more Fourier 
grid frequencies. However, the disadvantage is the appearance of spectral wiggles 
in Fourier envelopes as seen on panel (a) in Fig. 4 for the nonderivative processing. 
Such wiggles, stemming from an artificially elongated FID, evidently lead to distor-
tions of Fourier envelopes.

Artifacts appearing as wiggles due to zero filling of the FID are seen to persist 
also in the first Fourier derivative, |D1FFT| (Fig. 4b). On the other hand, these wig-
gles are significantly diminished in |D2FFT| , which has a slightly better appearance 
on Fig. 4c (one zero filling) than on Fig. 3c (no zero filling). There are no wiggles on 
panel (g) nor on panel (i) in Fig. 4 for |D3FFT| and |D4FFT| , respectively. These two 
latter spectra (one zero filling) have slightly taller acetate peaks than their counter-
parts in |D3FFT| and |D4FFT| in Figs. 3g and 3i (no zero filling).

All told, the results of the nonderivative Fourier processing yielding |FFT| (one 
zero filling) in Fig. 4a is deteriorated (through the emergence of dense wiggle arti-
facts) relative to |FFT| from Fig. 3a (no zero filling). Moreover, according to Figs. 3b 
and 4b, the first Fourier derivative, |D1FFT| , is not helped either by zero filling. Fur-
ther, panels (c), (g) and (i) in Figs. 3 and 4 show that only the lineshapes of acetate 
in |DmFFT| (m = 2, 3, 4) are somewhat improved for the zero-filled FID relative to 
the case with no zero filling in the dFFT.

However, nothing of substance is gained for ethanol and methanol by zero filling 
of the encoded time signal in the Fourier estimation, supplemented by the deriva-
tive transform of orders 1 ≤ m ≤ 4 . Thus, it appears from Figs. 3 and 4 that, gen-
erally, zero filling is of no notable use in the dFFT, on top of impacting adversely 
on the corresponding nonderivative Fourier estimation, FFT. For m > 4 it is imma-
terial whether zero-filling is used or not since the dFFT fails flagrantly for higher 
derivatives.

We have not discussed Padé processing in Fig. 4 since this is already done when 
analyzing Fig.  3. Namely, as stated, these two figures use the same FID with no 
zero filling and thus show the same results for |DmFPT| (m = 0 − 4) . The latter Padé 
results are replotted in Fig. 4 merely as the reference data that help the presentation 
of the Fourier reconstructions.

Overall, it is seen from Figs. 3 and 4 that the dFFT (without and with zero fill-
ing, respectively) is inappropriate for derivative estimations of total shape spectra. 
This is due to processing not the encoded input FID, {cn} , but rather the product 
of the time signal with the power function (n�)m . In other words, as per section 2, 
it is a weighted FID, namely {(n�)mcn} , which is subjected to the dFFT. The mul-
tiplier (n�)m stems from the application of the derivative operator Dm = (d∕d�)m to 
the expression for the complex Fourier transform. The extra term (n�)m weighs much 
more the noisy part of the FID at its larger signal number n than the earlier encoded 
data points. Worsening of processing by the dFFT relative to FFT, is reflected in 
lower resolution and SNR. This, in turn, broadens the spectral widths of reso-
nances. Such deteriorating features of the dFFT are diametrically opposite to what is 
expected from properly designed derivative estimations.

In sharp contrast, however, the dFPT (which uses the intact encoded FID, {cn} , 
with no zero filling) steadily keeps on providing the unprecedentedly improved 
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derivative estimations. This is achieved by the mechanism of a systematic narrowing 
of the widths of resonances and a concomitant increasing of the peak heights with 
augmented derivative order m. As a result of this synergistic roadmap, Padé deriva-
tive resonances are very sharp. Consequently, the overlapped peaks are split apart. 
This lowers the baseline levels, as per panels (d–f,h,j) in Figs. 3 or 4.

Viewed together, the almost fully suppressed background baselines and the larger 
peak heights lead to simultaneously improved resolution and SNR in the dFPT rela-
tive the dFFT. Further, while focusing on Padé-based shape estimations in Figs. 3 or 
4, it is clear that such a twofold improvement is also achieved by the dFPT (deriva-
tive Padé, panel f) relative to the FPT (nonderivative Padé, panel d). This lends firm 
support to the nonparametric dFPT.

3.3.3 � Derivative Padé processing of envelopes: nonparametric versus parametric 
estimations

Thus far, the focus was on shape estimations by means of Padé and Fourier non-
parametric signal processings. The remaining analysis is devoted only to Padé sig-
nal processing using both nonparametric and parametric estimations. Regarding the 
derivative analysis, the reason for employing the parametric Padé estimation is to 
cross-validate the findings from the nonparametric Padé processing. This validation 
is done on two levels. First, Fig. 5 shows total shape spectra (nonderivative, deriva-
tive) in the nonparametric and parametric Padé versions. Second, Fig.  6 displays 
component spectra (FPT and dFPT, both parametric) as well as the nonparametric 
FPT and dFPT. All these spectra are in the magnitude mode alone. The deriva-
tive order m runs from 1 to 4 as in Figs. 3 and 4. The same Padé order or model 
order K = 180 is used in Figs. 5 and 6 for the nonparametric and parametric Padé 
estimations.

The importance of complex nonderivative spectra is in the fact that they are the 
starters for obtaining derivative complex spectra. Such starters can be either com-
plex envelopes (for nonparametric derivatives) or complex components (for para-
metric derivatives). Once complex spectra (nonderivative, derivative, parametric, 
nonparametric, components, envelopes) are computed, their magnitude modes are 
thereafter selected for plotting in Figs. 5 and 6.

Figure 5 compares the results for Padé parametric (panels a–c,g,i) and nonpara-
metric envelopes (panels d–f,h,j) with and without the derivative transforms. Thus, 
the nonderivative findings by the parametric and nonparametric FPT are on panels 
(a) and (d), respectively. On the other hand, panels (b,c,e,f,g–j) are all for the dFPT 
in the parametric (panels b,c,g,i) and nonparametric (panels e,f,h,j) estimations. It is 
gratifying to see in Fig. 5 that there is full agreement (down to the smallest spectral 
structure) between all the nonparametric and parametric estimations of Padé enve-
lopes. Most importantly, such a concordance of the two completely different algo-
rithms of Padé processing extends not only to the main resonances on panels (a) and 
(d) for the nonderivative FPT, but also to the shown four derivatives, |D1FPT| (b,e), 
|D2FPT| (c,f), |D3FPT| (g,h) and |D4FPT| (i,j).

This fully cross-validates the Padé nonparametric derivative total shape spectra 
for the studied subject. In fact, it is equally correct to state that the nonparametric 
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Fig. 5   MRS and dMRS for the standard Philips Phantom A [22, 23] with the main content: ethanol, 
methanol, acetate and water. Processing of time signals of short length N = 512 encoded with water sup-
pression at a 1.5T GE clinical scanner. No residual water suppression. Nonderivative and derivative Padé 
envelopes with no zero filling: parametric (a, b, c, g,  i) and nonparametric (d, e,  f, h,  j). Abscissae in 
ppm, ordinates in arbitrary units (au). For details, see the main text (Color figure online)
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and parametric estimations cross-validate each other. For both the nonderivative and 
derivative versions, the coincidences of total shape spectra between the parametric 
and nonparametric predictions have a deeper significance, which goes beyond verifi-
cations of two different Padé computational algorithms.

Namely, a total shape spectrum (2.9) in the parametric FPT (nonderivative) is 
generated by first reconstructing all the component spectra (2.8) for every reso-
nance and then performing their Heaviside summations. The parametric derivative 
envelopes follow from applying the derivative operator Dm to the Heaviside partial 
fraction sum (2.9). In contradistinction, a total shape spectrum (2.3) in the nonpara-
metric FPT (nonderivative) stems from a pure estimation process of the overall line-
shape, with no reference to any component spectrum. When such a source envelope 
(nonderivative) is subjected to Dm , the derivative envelopes would follow in the non-
parametric dFPT and these are not computed from any components either. That is 
why it is fascinating to have full agreement in Fig. 5 between the nonparametric and 
parametric Padé spectra on both the nonderivative (panels a, d) and derivative (b vs. 
e, c vs. f, g vs. i and h vs. j) levels.

Generally, parametric signal processors do not give the exact solution of the 
quantification problem, which consists of reconstructing all the peak positions, 
widths, heights and phases of each resonance. This implies nonuniqueness of the 
solutions meaning that, possibly, widely different sets of component spectra (built 
from the retrieved peak parameters) can still yield nearly the same envelopes (within 
the boundaries of the prescribed accuracy)5. This limits the practical usefulness of 
cross-validations merely on the envelope level for the given two methods against 
each other (or two or more variants of the same methodology).

However, such remarks do not apply to the fast Padé transform in any of its vari-
ants. The reason is in the most important feature of Padé signal processing: all its 
reconstructions are unique. This occurs after full convergence has been attained by 
systematically increasing the model order, as also discussed in a recent review [30]. 
In particular, the Padé solution of the standard, nonderivative quantification prob-
lem is exact, signifying that there is only one set of the component spectra (hence 
uniqueness). This gives the solid basis to all the comparisons in Fig. 5 between the 
Padé envelopes computed nonparametrically and parametrically for both nonderiva-
tive and derivative predictions.

It is interesting to note that in e.g. Fig. 5f, the average resonance frequency 𝜈̄R 
of methyl CH3 protons is smaller than that of methylene CH2 protons in ethanol. 
This is understood in terms of the meaning of chemical shift. A resonance frequency 
is determined by an effective magnetic field B(eff)

0
= B0 − � , experienced by a pro-

ton in 1HMRS . Here, the displacement 𝜎 > 0 is due to shielding of the external 
static magnetic field B0 by electrons in the given group of ethanol. The greater the 
shielding of B0 , the smaller the screened field B(eff)

0
 , the lower the resonance fre-

quency 𝜈̄R . Shielding is larger in CH3 than in CH2 , i.e. 𝜎(CH3) > 𝜎(CH2) , imply-
ing B(eff)

0
(CH3) < B

(eff)

0
(CH2) , so that 𝜈̄R(CH3) < 𝜈̄R(CH2) and this is what is seen in 

Fig. 5f.

5  The nonuniqueness of the solutions translates into the nonexistence of the solutions.
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It should be born in mind that, in general, shielding of B0 at the location of a 
spin-active nucleus is not obtained by simply counting the number of electrons in a 
given molecule. The procedure is much more involved because of several interven-
ing factors (charge distribution of electronic clouds associated with various orbit-
als that determine the given state of a molecule, nonspherical interaction potentials, 
multicenter character of molecules preventing a simple diamagnetic circulation of 
electrons about a single nucleus, etc) [38].

It is pertinent here to refer to Arnold’s memorable return to the ethanol prob-
lem in 1956 [37] with much more accurate measurements than in the earlier epic 
experiments from 1951 by Arnold, Dharmatti and Packard [21]. He constructed a 
larger permanent magnet with a significant reduction of field inhomogeneities and 
recorded a fine splitting in ethanol. This time, the acquired spectrum6 of ethanol 
contained novel features via eight resonances, a triplet (1:2:1) for CH3 , a quartet 
(1:3:3:1) for CH2 and a singlet for OH, where the proportions in the parentheses are 
the peak area ratios estimated from the experimental data [37]. These latter ratios 
were in agreement with the calculations by Arnold [37] who used the quantum-
mechanical perturbation theory.

Regarding the most intriguing resonances, the CH3 triplet and the CH2 quartet, 
the measured spectrum of ethanol (the top panel of Fig. 6b in Ref. [37]) is extremely 
similar, even to the finest details, to the present Fig.  5f for the dFPT in the sec-
ond derivative |D2FPT|Tot . This agreement is highly significant as it indicates that 
in the mixture of molecules from the presently studied Proton Phantom [22, 23], the 
presence of methanol (#6) and acetate (#7) does not alter the intrinsic spectrum of 
ethanol (##2–5,8–10). This may imply that the spin-spin interactions of ethanol pro-
tons with protons from methanol and acetate are sufficiently weak (with a negligible 
small coupling constant) to obscure any further J-splitting.

Comparison on the level of the Padé envelopes alone from Fig. 5 is necessary, but 
not sufficient to complete the analysis. It still lacks a key finding, which is informa-
tion about the component spectra. These are inherently present, yet invisible in the 
parametrically generated Padé envelopes. In order to fulfill also the sufficient con-
dition for full validation of Padé derivative nonparametric estimations, we provide 
Fig. 6. This figure explicitly discloses the component spectra (nonderivative, deriva-
tive) from the Padé parametric estimations. These components are placed side by 
side with the associated nonparametrically computed total shape spectra.

In Fig. 6, panels (a-c,g,i) are for the component spectra from the parametric Padé 
reconstructions, whereas panels (d-f,h,j) are allocated to the nonparametric Padé 
envelopes. Prior to plotting Fig. 6, we verified in the parametric Padé (nonderiva-
tive, derivative) that all the component spectra give the corresponding parametric 
Padé envelopes from panels (a-c,g,i) in Fig. 5. This is true only provided that all the 

6  In the early years of NMR, spectra were indeed measured. However, for a long time now, this is not 
the case since FIDs are measured in the time domain and from such experimental data spectra are recon-
structed by computations in the frequency domain. Surprisingly, however, still the term “acquired spec-
tra” is abundantly in use in the MRS literature, at variance with what is actually encoded.
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Fig. 6   MRS and dMRS for the standard Philips Phantom A [22, 23] with the main content: ethanol, 
methanol, acetate and water. Processing of time signals of short length N = 512 encoded with water sup-
pression at a 1.5T GE clinical scanner. No residual water suppression. Nonderivative and derivative fast 
Padé transform with no zero filling: parametric components (a, b, c, g, i) and nonparametric envelopes 
(d, e,  f, h,  j). Abscissae in ppm, ordinates in arbitrary units (au). For details, see the main text (Color 
figure online)
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components are summed up to deduce the considered total shape spectrum. How-
ever, to avoid clutter on panel (a) of Fig. 6 and, most importantly, to focus primarily 
on ethanol, methanol and acetate, we have not plotted the unessential elevated tails 
of the derivative components from the residual water resonance. As a result, only for 
the small part near 4.25 ppm, the sum of all the components shown in panel (a) is 
slightly lower than the corresponding nonparametrically generated envelope (panel 
d). However, elsewhere on the chemical shift axis, the sum of all the displayed com-
ponents from panel (a) equals the associated parametric envelope from panel (d). 
This occurs because the tails of the derivative components from the residual water 
resonance are of short range (i.e. they do not extend far from the central water peak 
at 4.87 ppm).

Panel (a) in Fig. 6 is pivotal. It shows the component spectra from applying the 
nonderivative parametric Padé to the encoded time signal. These components are 
the gold standard because they stem from the reconstructed exact and, hence, unique 
peak parameters (positions, widths, heights, phases) of every physical resonance, the 
concluding goal of quantification.

For a clearer visual distinction, all the components (parametric Padé) in Fig.  6 
are drawn as red curves, whereas the blue curves are for the envelopes (nonpara-
metric Padé). Exceptionally, on panel (a), for highlighting, the same red spectra for 
the (main) nine resonance components ##2 − 10 (ethanol, methanol, acetate) are 
redrawn as brown curves. Besides the principal, sharp resonances ( ##2 − 10 ) within 
the frequency band � ∈ [0.5, 4.25] ppm, panel (a) of Fig. 6 also contains a number of 
other resonances (some of them are quite broad).

On panel (a) in Fig.  6, the largest broad peaks are concentrated near ethanol, 
methanol and acetate. This pattern is similar to those from in vivo 1HMRS spectra 
of e.g. human brain, where resonances of a few among many diagnostically rele-
vant metabolites (e.g. Lac, NAA, Glu, Cr and Cho)7 are heavily surrounded by wide 
peaks usually assigned to various macromolecules (proteins, lipids,...). Although the 
broad resonances are prominently present on panel (a) in Fig. 6, they are neverthe-
less left unassigned. This is because in building the envelope, these wide resonances 
play the role of a background alongside the tails of the components of the water 
peak.

The spin-spin relaxation time (T⋆
2
) of a resonance is inversely proportional to the 

spectral breadth (width). This means that a broader/narrower peak corresponds to a 
shorter/longer T⋆

2
 , associated with a faster/slower decaying resonance, respectively.

Because of these diametrically opposite patterns, broad and narrow resonances 
undergo different changes for the same derivative order m. This occurs despite the 
fact that in the dFPT, all resonances (wide and sharp alike) in a spectrum become 
progressively thinner and simultaneously taller with increasing m. However, the 
rates of the peak growth are smaller/larger for broader/narrower resonances, respec-
tively. This leads to an increased dynamic range of the peak heights (ordinate) 

7  Lac: 1.33 ppm (a doublet separated by J = 7Hz: the methyl CH
3
 group of Lac), NAA: [2.02 ppm (the 

methyl CH
3
 group of NAA), 2.47-2.66 ppm (the methylene CH

2
 group of NAA)], Glu: [2.04, 2.11 ppm 

(the methylene CH
2
 group of Glu), 2.35 ppm (the methyl CH

3
 group of Glu)], Cr: [3.04 ppm (the methyl-

ene CH
2
 group of Cr), 3.93 ppm (the methyl CH

3
 group of Cr)], Cho: [3.22 ppm (the methyl CH

3
 group 

of Cho), 4.05 ppm (the methylene CH
2
 group of Cho)].
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versus chemical shifts (abscissa) when attempting to plot (on the same graph) all the 
resonances with different widths. In such figures, broader resonances will be on their 
way of disappearing for increasing m, leaving behind as visible the sharper peaks 
alone.

This is precisely what is seen in Fig. 6 on panels (b) and (c) for the component 
spectra due to the Padé parametric first and second derivatives, |D1FPT|Comp and 
|D2FPT|Comp , respectively. Already |D1FPT|Comp (panel b) is able to massively 
diminish all the broad tall peaks. Regarding the wide resonances, the leftovers from 
their first huge suppression on panel (b), are practically annulled by |D2FPT|Comp 
(panel c) everywhere in the band [0.5,  4.25] ppm, excepting the three minuscule 
bumps on the bottom of the acetate peak. However, these minor remainders are 
completely washed out by the third and fourth component derivatives |D3FPT|Comp 
and |D4FPT|Comp on panels (g) and (i), respectively.

To summarize the left top column in Fig. 6, it is seen that the component non-
derivative spectra |FPT|Comp (panel a), initially congested with broad resonances, 
became much sparser in |D1FPT|Comp (panel b) and basically void of broad peaks in 
|D2FPT|Comp (panel c). This implies that the so-named “spectral crowding” [39–41] 
can largely be mitigated by derivative estimations in the dFPT. It also means that 
the parametric dFPT achieves visual separations of sharp and broad resonances in a 
sequential manner. First fully visualized are sharp resonances because their smaller 
widths determine the size of the ordinates in the graphs of spectral intensities as a 
function of chemical shifts. Subsequently visualized are broad resonances. This is 
achieved by e.g. significantly reducing the maximal values at the ordinates to allow 
wider resonances to pop out on the adjusted plot.

The fact that broad resonances are perceivably absent from the second derivative 
|D2FPT|Comp (panel c) does not mean that they disappeared altogether. Just the oppo-
site is true as, in fact, they persist, but are hidden underneath the sharp and much 
taller resonances. In addition to the mentioned ordinate size reduction, the broader 
resonance components can become visible in an alternative manner by subtracting 
the sharper resonance components from all the resonance components (sharp+broad) 
from panel (c), i.e. |D2FPT|Broad Comp = |D2FPT|All Comp − |D2FPT|Sharp Comp . 
By design, the lineshapes |D2FPT|Broad Comp can alternatively be referred to as 
’the annulled sharp resonance spectra’. In MRS, these difference spectra could be 
referred to as ’spectra void of the recognized diagnostically relevant metabolites’.

In comparing the parametric with nonparametric dFPT in Fig. 6, using the first 
derivatives |D1FPT|Comp (panel b) and |D1FPT|Tot (panel e), a large extent of con-
cordance is obvious. Nevertheless, it can be seen that the resonance intensities of 
peaks ##2–10 in the first derivative |D1FPT|Comp (panel b) and |D1FPT|Tot (panel e) 
do not coincide. They are higher for |D1FPT|Tot than for |D1FPT|Comp . The reason is 
in the presence of the smaller leftovers of broad resonances around peaks ##2–10 in 
|D1FPT|Comp (panel b).

These spectral leftovers are added to the lineshapes of the component peaks 
##2–10 to generate the parametric envelope |D1FPT|Tot . The latter parametric enve-
lope, in turn, matches the nonparametric envelope |D1FPT|Tot as per Fig. 5 (panels 
b,e). This latter nonparametric envelope |D1FPT|Tot is also present in Fig. 6e. Thus, 
the peak heights of resonances ##2–10 in the nonparametric envelope |D1FPT|Tot 
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(Fig.  6e) are higher than their counterparts in |D1FPT|Comp (Fig.  6b) because the 
former (being the total shape spectrum), implicitly includes the remainders of the 
hidden broader resonances.

Next in line to analyze in Fig. 6 are the component spectra |D2FPT|Comp (panel c) 
from the parametric dFPT and the envelope |D2FPT|Tot (panel f) due to the nonpara-
metric dFPT. Here, remarkably, around methanol (#6) and both groups ( CH2 , CH3 ) 
of ethanol, all the component spectra |D2FPT|Comp from parametric Padé processing 
in panel (c) are seen to collapse into the single nonparametric envelope |D2FPT|Tot 
from panel (f). In particular, the peak heights in the triplet CH3 group of ethanol 
(##8–10), the singlet of methanol (# 6) and the quartet CH2 group of ethanol (##2–5) 
in the components (panel c, parametric dFPT) coincide with their counterparts in 
the envelope (panel f, nonparametric dFPT).

Only the peak height of acetate on panel (f) is slightly higher in the envelope 
|D2FPT|Tot than in the acetate component from |D2FPT|Comp on panel (c). This is 
caused by the contribution from a small peak lying within the lineshape of acetate. 
Finally, this minimal difference vanishes by resorting to the third derivative of the 
parametric (components) and nonparametric (envelopes) in the dFPT. This is shown 
by |D3FPT|Comp (panel g) and |D3FPT|Tot (panel h). The identical peak heights of 
acetate are also obtained in the fourth derivatives |D4FPT|Comp (parametric dFPT, 
panel i) and |D4FPT|Tot (nonparametric dFPT, panel j). This double check on panels 
(i) and (j) for the fourth derivatives was optional since the third derivatives on panels 
(g) and (h) completed the verification for the peak height of acetate.

Quantification in NMR spectroscopy is aimed at finding the peak parameters 
from nonderivative rather than from derivative spectra. Nevertheless, this poses no 
problem due to the existence of the conversions (by simple scaling factors) from 
the found derivative peak parameters to the sought nonderivative peak parameters 
[29]. Thus, we can extract the peak parameters from the nonparametric dFPT (e.g. 
|D2FPT|Tot , Fig. 6f) and scale them to arrive at the peak parameters associated with 
|FPT|Comp (Fig. 6a) in the nonderivative parametric FPT, as will be reported shortly. 
If instead of the magnitude mode, absorption is desired, another straightforward 
scaling of the peak width by a factor of 

√
3 would suffice.

Overall, with respect to the peaks ##2–6 and ##8–10 in Fig.  6, the extent of 
agreement between the parametrically produced components |D2FPT|Comp (panel c) 
and the nonparametric total shape spectrum |D2FPT|Tot (panel f) is indeed impres-
sive. The same holds true for the peak #7 (acetate) from |D3FPT|Comp (panel g, 
components) and |D3FPT|Tot (panel h, envelope) as well as from |D4FPT|Comp 
(panel i, components) and |D4FPT|Tot (panel j, envelope). No resonances ##2–6 or 
##8–10 are shown in |D3,4FPT|Comp nor |D3,4FPT|Comp . The reason is in the fact that 
|D2FPT|Comp (panel c) and |D2FPT|Tot (panel f) furnish the final lineshapes (with no 
bumps underneath) for these resonances (methanol and the two groups of ethanol).

The moral of this story is far reaching given that we started with the nonparamet-
ric dFPT which, in principle, can reconstruct only derivative total shape spectra. In 
other words, computations by the nonparametric dFPT never deal explicitly with any 
component spectrum underlying the reconstructed envelope. Yet, this nonparametric 
envelope (panel f) is found to smoothly merge into its own components from which 
it finally becomes indistinguishable and identical to the parametric components from 
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panel (c). In other words, the envelope in panel (f), born out from the nonparametric 
dFPT, turns out to be identical to the components due to the parametric dFPT. This 
is where the parametric dFPT steps in as the ultimate judge of the veracity of the 
nonparametric dFPT.

In hindsight, by reference to our earlier studies [27–29], one would expect that 
high-order derivative estimations in the dFPT would meet with success in observing 
full agreement between nonparametric envelopes and parametric components. The 
big surprise, however, of the present study is that such agreement has been recorded 
already with the second-order derivatives, as per panels (c) and (f) in Fig. 6.

3.4 � Separation of macromolecules from the main metabolites

For in vivo MRS, the discussed derivative sequential reconstructions (first sharp and 
then broad peaks) can be used as an optimal and objective way to extract and ana-
lyze macromolecules separately from the main metabolites. Human tissue and liv-
ing cells abundantly contain water to within 60-70%. To mimic this situation, spec-
troscopic phantoms (GE brain phantom, Philips Phantom A, etc) include chemical 
compounds dissolved in water whose volume largely surpasses the volumes of other 
substances. As a result, in applications of 1HMRS to biomedical samples, the water 
resonance line dominates (by a factor of ∼ 500-1000 for spectroscopic phantoms) 
over all the other spectral lines, as is also clear from the present Figs. 1 and 2. This 
is even more true for in vivo 1HMRS where the water peak overwhelms (by a factor 
of ∼ 10000 ) all resonance proton lines stemming from proteins, lipids, nucleotides, 
hydrocarbons and other chemical compounds.

In most cases, resonance lines from various metabolites exhibit rather involved 
structures that, in turn, suggest the presence of partially overlapping resonance lines. 
Moreover, resonances assigned to some of the recognized diagnostically informa-
tive metabolites (Lac, NAA, Glu, m-Ins, Cre, Cho, ...) overlap with those from mac-
romolecules. For example, the lactate doublet is barely visible around 1.33 pm in 
spectra from normal, healthy tissue because of a heavy overlap with considerably 
broader lipid resonances (reminiscent of what is seen in Fig.  6a around ethanol, 
methanol and acetate).

In practice, to separate the overlapping lactate and lipids, FIDs are encoded usu-
ally with two echo times, TE, e.g. 24 and 136 ms. The latter TE would give the Lac 
doublet inverted (negative peaks, pointed downward), while the resonances from 
lipids will not change their phases. This requires extra measurements, which can 
be avoided altogether by exploiting the sequential resolutions (very convenient for 
visual monitoring) achievable with the dFPT. This derivative signal processor, just 
like in Fig.  6, would pull out the sharp lactate doublet because the broader lipid 
resonances would temporarily disappear. The lipid resonances can subsequently 
reappear for visualization (and, most importantly, for quantification) by reducing the 
scale of the ordinate to match their peak heights (or by the described procedure of 
’annulling the main resonances’).

This particular subject is of great importance for tumor diagnostics of various 
human organs by in vivo 1HMRS and we shall deal with it in a separate report 
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using the dFPT. Ordinarily, macromolecules are not viewed to be of primary diag-
nostic relevance. For this reason, their presence in spectra is usually viewed as a 
burden, which blocks visual resolution of the diagnostically important metabolites. 
For in vivo 1HMRS , the main metabolite resonances (Lac, NAA, Glu, Cre, Cho, 
...) are superimposed on some rolling backgrounds, that are partially created by 
macromolecules.

The customary practice is to treat such a rolling baseline as a nuisance and fit it 
by a 3- or 4-degree spline polynomial. The outcome is subsequently subtracted from 
the complete spectrum for a presumably easier fitting. One of the obvious disadvan-
tages of this recipe is that the fitting polynomial can capture (and, thus, throw out 
by the said subtraction) some of the weak resonances of diagnostic relevance, e.g. 
phosphocholine (PCho).

By contrast, when appropriately processed by the dFPT, macromolecular reso-
nances (as well as whatever else hides in rolling baselines), are reliably separated 
from the main metabolites without losing any information. Moreover, every reso-
nance from this background baseline, including those due to macromolecules, after 
a proper identification by the dFPT, can be quantified similarly to the main metabo-
lites. In other words, the dFPT would give a proper status to macromolecules treat-
ing them on the same footing as metabolites of presumed top diagnostic priority. 
Moreover, this could considerably enlarge the existing metabolite database [42] by 
adding the dFPT-estimated macromolecular spectral characteristics8. Thus, we see 
that the sequential convergence of resonances translates into a reliable procedure for 
differentiating between the two groups of spectral structures, the main metabolites 
and macromolecules. This could be clinically useful.

The expounded correct approach to macromolecules using the dFPT would leave 
no room to their often stated misinterpretations yielding potentially ambiguous diag-
nostic evaluations in the clinic. For example, differentiating acute and chronic mul-
tiple sclerosis by MRS may well depend on the way in which macromolecules (pro-
teins, peptides, lipids) are interpreted when they reside near the main metabolites. 
In the past, there were several medical studies [44–51] that interpreted the detected 
elevated levels of metabolites in the spectral range of lipids as indications of acute 
lesions.

However, lipids could well be among the significant (if not leading) contributors 
to the metabolites’ elevated levels. Had macromolecules been properly taken into 
account, to assess their impact on the enhanced intensities of main metabolite reso-
nances, the diagnosis could have been different (possibly chronic multiple sclero-
sis). In Refs. [44–51], contamination of metabolite resonances by lipids has not been 
estimated by measurements either. For example, these studies performed no outer 
volume saturation to rule out lipid contamination possibly due to the fat-containing 
structures in the skull.

When properly isolated and quantified by the dFPT, macromolecules could actu-
ally be diagnostically invaluable in several spectral regions around e.g. 0.93, 1.24, 

8  Spectral parameters of several macromolecules have been estimated in e.g. Ref. [43] by fitting.
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1.30, 1.43, 2.05, 3.05 ppm. For instance, in the discussed multiple sclerosis exam-
ple, by reference to the data from persons in a control group, one could differentiate 
between acute and chronic lesions using the estimated levels of macromolecules if 
they are significantly higher in one than in the other group of patients. Such a dif-
ferential diagnosis in multiple sclerosis has been addressed e.g. in Refs. [52–54]. 
A study along the lines of Ref. [54], dealing with detection of macromolecules in 
1HMRS spectra from the human brain, has been reported in Ref. [55].

4 � Conclusion

This study is on the problem of J-coupled resonances in magnetic resonance spec-
troscopy, MRS. Signal processing methods are used to resolve the encountered 
multiplets under restrictive conditions. These involve short time signals (512 data 
points), encoded with water suppression (by inversion recovery) at a clinical scanner 
of a low magnetic field strength (1.5T). The encoded time signals and the recon-
structed spectra are presented and thoroughly analyzed.

Data analysis is carried out by using the standard, nonderivative fast Padé trans-
form, FPT, as well as its derivative version, dFPT. Both the shape and parameter 
estimations are performed with the FPT and dFPT. To place the reported Padé-based 
reconstructions into perspective, as well as to allow the necessary comparisons, the 
nonderivative and derivative fast Fourier transforms, FFT and dFFT, respectively, 
are also employed in the present computations and analysis. However, the main 
emphasis in this work is placed onto the dFPT.

The object of encoding (in the time domain) and spectral reconstructions (in the 
frequency domain) is a spectroscopic phantom. We chose the Philips Phantom A 
for proton MRS. It is a polyethylene plastic sphere filled with a number of known 
chemical compounds dissolved in demineralized water. The most important mol-
ecules in this phantom are ethanol (ethyl alcohol), methanol (methyl alcohol) and 
acetate (acetic acid). The sought spectral structure is comprised of the main nine 
resonances: the two singlets (methanol, acetate) and the seven J-coupled resonances 
from ethanol. The latter multiplets are the methyl CH3 triplet and the methylene CH2 
quartet, with the intensity ratios of the individual lines 1:2:1 and 1:3:3:1, respec-
tively, as per the Pascal triangle. The hydroxyl OH group of ethanol is swamped by 
the dominant water peak and, as such, was not in our focus.

The overall goal is to fully resolve these nine peaks, including the multiplets, the 
seven J-coupled resonances (all the way to nearly zero-valued background baseline) 
by means of the dFPT as a shape estimator applied to the encoded raw time signals 
(no zero filling) from which water has been suppressed during measurements. More-
over, the water residual has not been suppressed by signal processing.

Regarding the standard, nonderivative shape estimations, no method could 
resolve all the nine resonances. This is caused by an elevated background baseline 
which generated tight overlaps among most resonances. Such a situation gives a 
chance to try some other kinds of envelope estimations. With this goal, derivative 
nonparametric estimators have been tried here by employing the dFPT and dFFT.
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One of the outcomes is that the dFFT is highly unsatisfactory due to the lack 
any of systematics. Initially, within the dFFT, the first derivative is better than the 
corresponding nonderivative Fourier, i.e. the FFT. However, the second derivative 
is deteriorated relative to its first counterpart in the dFFT. Yet worse, with higher 
derivatives, most of the nine resonances are smashed into the background baseline 
and, as such, wiped out from the spectrum.

Such failures are ascribed to the way in which the m th order derivative operator 
(d∕d�)m , with respect to the sweep linear frequency � , acts on the source of the FFT, 
the Fourier integral over the time variable, t. In the integrand of the Fourier inte-
gral, the general derivative operator (d∕d�)m produces a time power function ( ∼ tm ), 
which therein multiplies the encoded time signal, c(t). The digitized version of the 
ensuing product function ∼ tmc(t) is Fourier-processed to yield the envelopes in the 
dFFT.

This procedure in the FFT decreases SNR because the power m of the multi-
plying term tm is augmented with the increased derivative order m. The modulated 
function tmc(t) weighs heavily larger values of t dominated by the noisy part of the 
encoded time signal, c(t). Eventually, noise prevails in the envelopes from the dFFT. 
This, in turn, annuls all the physical resonances and, in the end, the dFFT is left with 
noise alone.

In sharp contrast, shape estimations by the nonparametric dFPT fully met the 
challenge by completely resolving all the sought nine resonances. Especially enlight-
ening was to record (already in the second derivative from the dFPT) a perfect split-
ting apart of the J-coupled resonances of ethanol with the correct peak area ratios. 
The success of the dFPT is in processing directly the encoded time signals c(t), free 
from any weight function, to yield a flattened background baseline as well as nar-
rower and taller resonances with increased derivative order m. This automatically 
translates into simultaneously improved resolution and SNR.

Moreover, for total shape spectra, the derivative Padé, dFPT, hugely outperforms 
its nonderivative counterpart, FPT. This is a very important boost to the dFPT, not 
only for problems involving spectroscopic phantoms with the known contents (that 
represent an optimal testing ground for any estimator), but also to other problem 
areas. Examples are time signals encoded either from samples whose constituents 
are yet to be determined or from patients in applications of MRS to diagnostics in 
radiology.

Expectedly, component shape spectra from the nonderivative parametric FPT 
reached the stated goal in full. Herein, the ensuing unique reconstructions can serve 
as the gold standard for cross-validations of any other estimations. In the validations 
of the dFPT, the most fascinating is our finding that there is a full coincidence of 
the second derivatives of the nonparametrically computed envelope with the cor-
responding components from the exact solutions of the quantification problem in 
parametric estimations.

This coincidence implies that the nonparametric dFPT, as a shape estimator, actu-
ally solves the quantification problem exactly. The resonances found by the nonpara-
metric dFPT offer an easy way to the sought peak parameters. For instance, as an 
initial insight, one can rely on visual resolutions of isolated Lorentzian resonances 
from envelopes due to shape estimations by the dFPT. This is achieved by reading 
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off directly the peak positions, widths and heights on the screen which shows the 
derivative envelopes in the magnitude mode. The peak height and the peak width 
automatically yield the peak area, which is the key to determining the number of the 
equivalent protons that contributed to the given resonance. Independently and more 
accurately, the same computer program for these Lorentzian lineshapes can also pro-
vide the output linelist of derivative peak parameters. Finally, the concluding step is 
to pass from the derivative to the nonderivative absorptive peak parameters. For this 
all that is needed is to use the conversion factors available from Ref. [29].

Information on peak areas of resonances is the prerequisite for extraction of 
metabolite concentrations, the ultimate goal of signal processing as it applies to 
medicine, particularly to tumor diagnostics using MRS [32–34]. This is precisely 
where we are heading in the future with the Padé derivative methodology for which 
the present benchmarking is of utmost importance. It directly addresses most of the 
troubles that hamper the entry of proton MRS into the standard diagnostic arma-
mentarium in the clinic, e.g. relatively low SNR, insufficient resolution, overlap-
ping resonances, macromolecular interference, abundant unresolved multiplets due 
to nuclear spin-spin interactions (J-coupling), etc. These long-lasting obstacles to 
clinical nuclear magnetic resonance spectroscopy can all simultaneously be circum-
vented by the derivative magnetic resonance spectroscopy, dMRS, when signal pro-
cessing is carried out with the dFPT.
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