Skip to main content
Log in

Generalized Sherman–Morrison–Woodbury formula based algorithm for the inverses of opposite-bordered tridiagonal matrices

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Matrix inverse computation is one of the fundamental mathematical problems of linear algebra and has been widely used in many fields of science and engineering. In this paper, we consider the inverse computation of an opposite-bordered tridiagonal matrix which has attracted much attention in recent years. By exploiting the low-rank structure of the matrix, first we show that an explicit formula for the inverse of the opposite-bordered tridiagonal matrix can be obtained based on the combination of a specific matrix splitting and the generalized Sherman–Morrison–Woodbury formula. Accordingly, a numerical algorithm is outlined. Second, we present a breakdown-free symbolic algorithm of \(O(n^2)\) for computing the inverse of an n-by-n opposite-bordered tridiagonal matrix, which is based on the use of GTINV algorithm and the generalized symbolic Thomas algorithm. Finally, we have provided the results of some numerical experiments for the sake of illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The low-rank structure of an opposite-bordered tridiagonal matrix means that all submatrices taken out of the lower and upper triangular part of the matrix have rank at most 3.

References

  1. G.D. Smith, Numerical Solution of Partial Differential Equations, Finite Difference Methods (Clarendon Press, Oxford, 1985)

    Google Scholar 

  2. U.M. Ascher, R.M.M. Mattheij, R.D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (SIAM, Philadelphia, 1995)

    Book  Google Scholar 

  3. F. Iachello, A.Del Sol Mesa, J. Math. Chem. 25, 345 (1999)

    Article  CAS  Google Scholar 

  4. M. Znojil, J. Math. Chem. 28, 140 (2000)

    Article  Google Scholar 

  5. L.K. Bieniasz, Comput. Chem. 26, 633 (2002)

    Article  CAS  Google Scholar 

  6. L.K. Bieniasz, Comput. Biol. Chem. 27, 315 (2003)

    Article  CAS  Google Scholar 

  7. T.Y. Gou, A. Sandu, Atmos. Environ. 45, 4868 (2011)

    Article  CAS  Google Scholar 

  8. A. Iserles, A First Course in the Numerical Analysis of Differential Equations (Cambridge University Press, New York, 1996)

    Google Scholar 

  9. D. Britz, J. Strutwolf, Digital Simulationin Electrochemistry (Springer, Berlin, 2016)

    Book  Google Scholar 

  10. R. Baronas, F. Ivanauskas, J. Kulys, Mathematical Modeling of Biosensors (Springer, Dordrecht, 2010)

    Book  Google Scholar 

  11. L.K. Bieniasz, Electrochim. Acta 52, 2203 (2007)

    Article  CAS  Google Scholar 

  12. A. Martin, M. Reggio, J.Y. Trepanier, X. Guo, Plasma Sci. Technol. 9, 653 (2007)

    Article  Google Scholar 

  13. A.J. Amar, B.F. Blackwell, J.R. Edwards, J. Thermophys. Heat Tr. 22, 71 (2008)

    Article  CAS  Google Scholar 

  14. A. Martin, I.D. Boyd, Int. J. Numer. Methods Biomed. Eng. 26, 752 (2010)

    Article  Google Scholar 

  15. T. Sogabe, Appl. Math. Comput. 187, 785 (2007)

    Google Scholar 

  16. J.T. Jia, T. Sogabe, S.M. Li, J. Comput. Appl. Math. 290, 423 (2015)

    Article  Google Scholar 

  17. J.Abderramán Marrero, Comput. Math. Appl. 72, 2731 (2016)

    Article  Google Scholar 

  18. L.K. Bieniasz, J. Math. Chem. 55, 1793 (2017)

    Article  CAS  Google Scholar 

  19. N. Shehab, M.E.A. El-Mikkawy, M. El-Shehawy, J. Appl. Math. Phys. 72, 1199 (2015)

    Article  Google Scholar 

  20. J.Abderramán Marrero, V. Tomeo, J. Comput. Appl. Math. 318, 211 (2017)

    Article  Google Scholar 

  21. J.Abderramán Marrero, Comput. Math. Appl. 76, 2409 (2018)

    Article  Google Scholar 

  22. L.N. Trefethen, D. Bau, Numerical Linear Algebra (SIAM, Philadelphia, 1997)

    Book  Google Scholar 

  23. R. Vandebril, M. Van Barel, N. Mastronardi, Matrix Computation and Semiseparable Matrices (The Johns Hopkins University Press, Baltimore, 2008)

    Google Scholar 

  24. Y. Huang, W.F. McColl, J. Phys. A 30, 7919 (1997)

    Article  Google Scholar 

  25. M.E.A. El-Mikkawy, A.A. Karawia, Appl. Math. Lett. 19, 712 (2006)

    Article  Google Scholar 

  26. J.T. Jia, S.M. Li, Comput. Math. Appl. 70, 3032 (2015)

    Article  Google Scholar 

  27. M.A. El-Shehawey, GhA El-Shreef, ASh Al-Henawy, J. Math. Anal. Appl. 234, 123 (2008)

    Article  Google Scholar 

  28. J.T. Jia, T. Sogabe, M.E.A. El-Mikkawy, Comput. Math. Appl. 65, 116 (2013)

    Article  Google Scholar 

  29. J.T. Jia, S.M. Li, Comput. Math. Appl. 69, 503 (2015)

    Article  Google Scholar 

  30. C.M. da Fonseca, J. Comput. Appl. Math. 200, 283 (2007)

    Article  Google Scholar 

  31. J.T. Jia, T. Sogabe, J. Math. Chem. 51, 881 (2013)

    Article  CAS  Google Scholar 

  32. M. Batista, A.A. Karawia, Appl. Math. Comput. 210, 558 (2009)

    Google Scholar 

  33. M.E.A. El-Mikkawy, Appl. Math. 3, 342 (2012)

    Article  Google Scholar 

  34. M.E.A. El-Mikkawy, Appl. Math. Comput. 166, 581 (2004)

    Article  Google Scholar 

  35. A.A. Karawia, Q.M. Rizvi, Int. J. Math. Sci. 33, 1160 (2013)

    Google Scholar 

Download references

Acknowledgements

The author wishes to thank anonymous referees for useful comments that enhanced the quality of this paper.

Funding

This work was supported by the Natural Science Foundation of China (NSFC) under Grant 11601408, and the Fundamental Research Funds for the Central Universities under Grant JB180706.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Teng Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, JT., Sogabe, T. Generalized Sherman–Morrison–Woodbury formula based algorithm for the inverses of opposite-bordered tridiagonal matrices. J Math Chem 58, 1466–1480 (2020). https://doi.org/10.1007/s10910-020-01138-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01138-x

Keywords

Mathematics Subject Classification

Navigation