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Abstract
We deal with the existence of positive solutions for the following class of nonlinear 
equation u��(t) + Au�(t) + g(t, u(t), v(t)) = 0 a.e. in (0, 1), with boundary conditions 
u�(0) = 0 , u�(1) + Au(1) = 0 , where v is a functional parameter. The form of the 
problem is associated with the classical model described by Markus and Amund-
son. We show the existence of at least one positive solution of this problem and 
discuss its properties. Moreover we describe conditions that guarantee the continu-
ous dependence of solution on parameter v also in the case of the lack of the unique-
ness of a solution. The results are based on the clasical fixed point methods. Our 
approach allows us to consider both sub and superlinear nonlinearities which may be 
singular with respect to the first variable.

Keywords  Positive solutions · Reactor model · Fix point methods · Dependence on 
functional parametres

1  Introduction

The research on multipoint boundary value problems containing nonlinear ODEs 
has been enjoying of increasing interests for many years (see [12, 28, 29, 31, 34, 35, 
41, 42, 44, 49] and references therein). Many real-life problems modeled by such 
BVPs arise in various areas of applied mathematics: in chemical or physical phe-
nomena, in the electrohydrodynamics and astrophysics (see, among others, [1, 4, 5, 
30]). We would like to join the discussion and investigate the following equation

with boundary conditions

(1)u��(t) + Au�(t) + g(t, u(t), v(t)) = 0, for a.a. t ∈ (0, 1)
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where v ∈ V ⊂ L2(0, 1) and A > 0 . We consider (1)–(2) in the case when some mild 
assumptions are satisfied. Precisely, in the paper we assume the below conditions. 

	(H1)	 T h e r e  ex i s t  n u m b e r s  b > 0  ,  �, � ∈ ℝ  ,  𝛼 < 𝛽  ,  s u ch  t h a t 
g ∶ (0, 1) × [0, b] ×ℝ → [0,+∞) is a Caratheodory function and for all 
t ∈ (𝛼, 𝛽) ⊂ [0, 1] , v ∈ V ⊂ L2(0, 1) , g(t, u, v(t)) > 0 for u ∈ [0, b].

	(H2)	 There exists � ∈ L2(0, 1) such that for all t ∈ (𝛼, 𝛽) ⊂ [0, 1] , v ∈ V  , the follow-
ing inequalities hold max

u∈[0,b]
g(t, u, v(t)) ≤ �(t) and 

Remark 1  Let us note that (H1)–(H2) are satisfied by many functions g(t, u, v) which 
are polynomials and exponential, logarithmic or fractional functions with respect to 
the second variable. Moreover g is not necessarily smooth in u and v in whole plane 
ℝ

2 and it can be singular with respect to t. We discuss an example of such nonlin-
earities at the end of the paper.

2 � Motivations

The form of this equation is associated with the classical model arising in the theory 
of chemical reactors described by Markus and Amundson in [1] which is our main 
motivation. Precisely, their model concerns a single exothermic homogeneous reac-
tion involving a few chemical species which occurs in a tubular reactor of length 1. 
Let u denote the dimensionless temperature in this reactor. Then u is modeled as 
follows

where A and B are given constants and f describes the rates of chemical production 
of the species. Finally, the solution u and the stoichiometric coefficients of the spe-
cies involved in the reaction allow us to describe their concentration (see also e.g. 
[7, 8]). The classical paper [8] presents results concerning the existence and unique-
ness of positive solutions also in the case when f depends on t. However, the authors 
consider the nonlinearity f  which has to be sufficiently smooth and satisfy some con-
ditions concerning monotonicity with respect to u. Moreover, the monotonicity of 
the function u ↦ f (t, u)∕u in a certain interval is also assumed there.

Let us note that according to assumptions (H1) and (H2) the nonlinearity f can 
be a polynomial thus our approach works also for Lane-Emden type equations 
which have attracted the interests of many authors lately. It is associated with 

(2)u�(0) = 0 and u�(1) + Au(1) = 0,

(3)�
1

0

�(t)dt ≤ A

A + 1
b.

u��(t) + Au�(t) + Bf (u(t)) =0, for all t ∈ (0, 1)

u�(0) =0

u�(1) + Au(1) =0,
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the fact that such equations model a reaction-diffusion process (see e.g. [13, 23, 
37] and references therein). It appears that analytical solitons of such problems 
are useful in the optimization of this process (see e.g. [48]). Therefore, it is very 
important to find exact or at least approximate solutions when nonlinearities are 
given in an explicit form. To this effect the approach based on Taylor series is 
often applied. In a very recent paper [23], such method allows the authors to find 
the exact solution for the following Lane-Emden system of nonlinear equations 
with singularity

Similar approach is applied also in [27] devoted to the Bratu’s equation with Dir-
ichlet boundary conditions, namely

which models the instability of the moving jet in the electrospining (see e.g. [9, 
26, 33]). Let us note that this is the special case of our equation for g(x, u, v) = e−u , 
A = 0 and B = � . In the recent paper [20], this simple and effective method based on 
Taylor series is also applied for (1) with the coefficient A replaced by x2 and g ≡ 0 . 
In this case we obtain the following convection-diffusion equation

Precisely, (4), together with boundary conditions u(0) = 0 and u�(l) = 0 , arise when 
we consider a rotating disc electrode which is rotated to make the diffusion layer as 
small as possible (see e.g. [3, 10, 20, 40]).

It is worth emphasizing that the special case of our equation with A = 0 gives 
also the cubic-quintic Duffing oscillator equation

with certain initial conditions, widely discussed by Chowdhury et al. [6, 21]. In the 
latter paper the estimation of the frequency of a nonlinear conservative oscillator is 
given. In [6], the following generalization of the above equation

is discussed in the case when the nonlinearity f is odd (i.e. f (−x) = −f (x)) , with � 
being a certain constant and � denoting the angular frequency. The authors obtain 
higher-order approximate solutions applying the approach based on Harmonic Bal-
ance Method (HBM). Similar initial problem for the general non-linear oscilla-
tor equation is investigated in [2], where the Laplace transform together with the 
variational iteration method allow the authors to obtain the first order approximate 
solution.

⎧
⎪⎨⎪⎩

u��(x) +
1

x
u�(x) − v3(x)(u2(x) + 1) = 0, x ∈ (0, 1)

v��(x) +
3

x
v�(x) + v5(x)(u2(x) + 3) = 0, x ∈ (0, 1)

u(0) = 1, u�(0) = 0 and v(0) = 1, v�(0) = 0.

u��(x) + �e−u(x) = 0, x ∈ (0, 1)

(4)u��(x) + x2u�(x) = 0 in (0, l).

u��(x) + u(x) + u3(x) + u5(x) = 0

u��(x) + �2u(x) = �f (u(x)),
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As far as the mathematical point of view is concerned, existence results for two-
point BVPs are widely discussed, for example, in [29], where the following equation 
is investigated

with the boundary conditions u(0) = 0 and u�(1) = �u�(0) or u(1) = 0 and 
u�(1) = �u�(0) . Papers [31] and [41] are devoted to the three-point problem with the 
following conditions

where 𝛿 > 0 and � ∈ (0, 1) , in the case when the nonlinearity is independent of the 
derivative u′ of solution u. These papers are based mostly on the monotone iterative 
methods. The problem with the general nonlinearity g and the boundary conditions 
(5) is investigated, among others, in [42]. The authors combine the upper and lower 
solution methods with the monotone iterative technique. They consider both well 
ordered and reverse ordered upper and lower solutions. Their approach works in the 
case when there exist lower and upper solutions � and � ∈ C2[0, 1] of the problem

where f ∶ D → ℝ is continuous on D ∶= {(t, u, v) ∈ [0, 1] ×ℝ
2 ∶ �(t) ≤ u ≤ �(t)} . 

Moreover there exist M ≥ 0 and N ≥ 0 such that for all ( t, u1, v), (t, u2, v) ∈ D,

and

The authors also assume the estimate for the nonlinearity f of the form 
|f (t, u, v)| ≤ �(|v|) for all (t, u, v) ∈ D , where � ∶ ℝ+ → ℝ is continuous and satisfies 
max
t∈[0,1]

�(t) − min
t∈[0,1]

�(t) ≤ ∫ ∞

l0

s

�(s)
ds.

In [35], R. Ma presents the extension of the Erbe and Wang’s results ([12]) for 
two-point and his own results for three-point BVPs ([34]). Precisely, that paper is 
devoted to the existence of positive solutions for the m-point boundary value prob-
lem and the results are based on the Krasnosielskii fixed point theorem in cones. In 
[36] the Leray-Schauder continuation theorem is applied to obtain the existence of 
solutions for m-point BVPs for the second order differential equation when nonlin-
earity f is either superlinear or sublinear.

Although the nonlinearities, discussed in the papers mentioned above, have 
more general form we cannot apply these results to our problem because we do not 
assume conditions like (6) and consider nonlinearity which can be singular with 
respect to the first variable. We focus on the BVP (1)–(2) with nonlinearities satisfy-
ing quite general conditions. Here we want to emphasize that our approach allows us 
to consider nonlinearities which are not necessarily smooth in whole domain and do 
not satisfy any conditions concerning the monotonicity. We also omit growth condi-
tions on g(x, ⋅, ⋅) either at zero or at plus infinity. Therefore our approach covers both 

u�� + sign(1 − �)q(t)f (u, u�)u� = 0

(5)u�(0) = 0 and u�(1) = �u(�),

u�� + f (t, u, u�) = 0,

(6)u1 ≤ u2 ⇒ f (t, u2, v) − f (t, u1, v) ≤ M(u2 − u1)

|f (t, u, v2) − f (t, u, v1)| ≤ N|v2 − v1|.
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sublinear and superlinear cases. Moreover, g can be also singular with respect to 
the first variable. The goal of this paper is to prove the existence of bounded nonin-
creasing and positive solutions with the bounded derivative. We also try to describe 
how the solution depends on the functional parameter v. Precisely, we show that the 
sequence of positive solutions 

{
un
}
n∈ℕ

 , corresponding to the sequence of parameters {
vn
}
n∈ℕ

⊂ V  , tends uniformly (up to a subsequence) in [0, 1] to u0 , provided that 
the sequence of parameters is convergent almost everywhere in (0,  T) to v0 ∈ V  . 
Moreover, we prove that u0 is a solutions of our problem (1)–(2) with v = v0 . Usu-
ally such results are based on the uniqueness of a solution (see [11, 45] and refer-
ences therein). We consider the problem in the case of the lack of such condition 
which is more challenging than in the previous case when the solution is unique (see 
also [38] and [39]).

3 � Existence results

In the first step we consider our problem with parameter v ∈ V  fixed. Then (1) takes 
the following form

with f (t, u) ∶= g(t, u, v(t)), t ∈ (0, 1), u ∈ [0, b].

Remark 2  Let us note that for g satisfying (H1) and (H2), we can state that f satisfies 
the below conditions. 

(H1’)	� There exist numbers b > 0 , �, � ∈ ℝ , 𝛼 < 𝛽 , such that 
f ∶ (0, 1) × [0, b] → [0,+∞) is a Caratheodory function and for all 
t ∈ (𝛼, 𝛽) ⊂ [0, 1] , f (t, u) > 0 for u ∈ [0, b].

(H2’)	� There exists � ∈ L2(0, 1) such that for all t ∈ (𝛼, 𝛽) ⊂ [0, 1] , the following 
conditions hold max

u∈[0,b]
f (t, u) ≤ �(t) and 

Theorem  3  If (H1’) and (H2’) hold then there exists a solution 
u ∈ C1([0, 1]) ∩W2,2(0, 1) of (7) such that for all t ∈ [0, 1] , 0 ≤ u(t) ≤ b and 
−b ≤ u

�
(t) ≤ 0 . Moreover for all � ≤ t ≤ 1 , u�(t) < 0 , which means that u is decreas-

ing in (�, 1).

Proof  Let us consider the set

(7)
u��(t) + Au�(t) + f (t, u(t)) =0, for a.a. t ∈ (0, 1)

u�(0) =0

u�(1) + Au(1) =0

�
1

0

�(t)dt ≤ A

A + 1
b.

X ∶= {u ∈ C1([0, 1]), 0 ≤ u(t) ≤ b,−b ≤ u� ≤ 0, u�(0) = 0, u�(1) + Au(1) = 0}.
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We can treat our problem as a fixed point problem for the following integral operator

where

Taking into account (H1’) and (H2’) we infer that operator T is well defined and 
maps C([0, 1]) into itself. We show that TX ⊂ X and T is completely continuous. Let 
us take an arbitrary u ∈ X . Then for u ∶= Tu we have u�(t) = −e−At ∫ t

0
eAsf (s, u(s))ds 

and further we see immediately that u�(0) = 0 , u�(1) + Au(1) = 0 , u′ ≤ 0 in [0,  1] 
and u′ < 0 in (�, 1] . Moreover for all t ∈ (0, 1) , we have

We can also obtain the following estimates

and

Both assertions and the fact that u is nonincreasing in [0,  1] lead to the chain of 
inequalities for all t ∈ [0, 1],

Finally, we have derived that TX ⊂ X . Our task is now to show that operator T is 
completely continuous in C([0, 1]). We prove this fact using the standard reasoning 
(see e.g. [43]) and start with the proof of the continuity of T. To this effect we take 
arbitrary u0 ∈ C([0, 1]) and a sequence (un)n∈ℕ ⊂ C([0, 1]) , such that un → u0 in 
C([0, 1]) with the sup-norm ||u||C = sup

t∈[0,1]

|u(t)| . Then we obtain

Tu(t) ∶= − ∫
t

0

e−Ar ∫
r

0

eAsf (s, u(s))dsdr +
e−A

A ∫
1

0

eAsf (s, u(s))ds

+ ∫
1

0

e−Ar ∫
r

0

eAsf (s, u(s))dsdr,

f (s, z) =

⎧
⎪⎨⎪⎩

f (s, 0) for z < 0, s ∈ (0, 1)

f (s, z) for 0 ≤ z ≤ b, s ∈ (0, 1)

f (s, b) for z > b, s ∈ (0, 1).

u
�
(t) = −e−At �

t

0

eAsf (s, u(s))ds ≥ −�
1

0

max
u∈[0,b]

f (s, u)ds ≥ −b.

u(1) =
e−A

A ∫
1

0

eAsf (s, u(s))ds > 0

u(0) ≤ A + 1

A �
1

0

max
u∈[0,b]

f (s, u)ds ≤ b.

0 < u(1) ≤ u(t) ≤ u(0) ≤ b.
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Bearing in mind (H1’), we note that for all s ∈ [0, 1],

and, according to the definition of f  and (H2’), we get

Moreover, we have

Therefore, the Lebesgue dominated convergence theorem leads to the conclusion 
that

and consequently

Finally, we can state that T is continuous at arbitrary z0 ∈ C([0, 1]), namely T is 
continuous as an operator from C([0, 1]) into itself. Now we prove that T is com-
pact applying the Ascoli-Arzelá Lemma. To this end we prove that T maps bounded 
subsets of C([0, 1]) into relatively compact subsets of C([0, 1]). Therefore, we take 
any R > 0 and consider the closed ball B ∶= {u ∈ C([0, 1]), ||u||C ≤ R} . Our task is 
now to prove that the image of B, i.e. T(B) ∶= {Tu ∈ C([0, 1]), ||u||C ≤ R} is rela-
tively compact in C([0, 1]). We start with the proof of equicontinuity of functions 
from T(B). To this effect we take any t0 and tn → t+

0
 . Now, by the definition of f  , we 

have for all u0 ∈ B,

||Tu0 − Tun||C
≤ �

1

0

|f (s, un(s)) − f (s, u0(s))|ds + 1

A �
1

0

|f (s, u0(s)) − f (s, un(s))|ds

+ �
1

0

|f (s, u0(s)) − f (s, un(s))|ds

=

(
2 +

1

A

)
�

1

0

|f (s, un(s)) − f (s, u0(s))|ds.

�n(s) ∶= |f (s, z0(s)) − f (s, zn(s))| → 0 when n → ∞,

�n(s) ≤ 2 max
u∈[0,b]

f (s, u).

�
1

0

𝜓n(s)ds ≤ 2�
1

0

𝜑(s)ds < +∞.

∫
1

0

�n(s)ds → 0 for n → ∞

||Tu0 − Tun||C → 0 for n → ∞.
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which implies

uniformly with respect to u0 ∈ B . We obtain the same conclusion for tn → t−
0
 simi-

larly. Finally, we can derive that the family of functions from T(B) is equicontinu-
ous. To check the equiboundedness of this family it suffices to note the following 
estimate

for all u ∈ T(B) . Owing to the Ascoli-Arzela Lemma, we conclude that T(B) is rela-
tively compact in C([0, 1]).

To sum up, we have proved that T is a completely continuous operator which 
maps the nonempty, closed and convex subset X of C([0,  1]) into X. With the 
Schauder’s fixed point theorem in mind, we derive that there exists at least one fixed 
point u0 ∈ X of operator T. By the definition of T and condition (H1’) and (H2’) we 
state that u0 ∈ C1([0, 1]) ∩W2,2(0, 1) and u0 is positive. Finally, u0 is a positive solu-
tion (7). 	� ◻

4 � Dependence on functional parameters

Now we consider problem (1)–(2) and formulate our main result.

Theorem 4  Assume hypotheses (H1) and (H2). Let {vn}n∈ℕ ⊂ V  be a sequence of 
parameters convergent pointwisely to a certain v0 ∈ V  . Additionally, let us suppose 
that for each n ∈ ℕ , un ∈ X and denotes a solution of (1)–(2) with v = vn . Then the 
sequence {un}n∈ℕ ⊂ X possesses a subsequence which converges uniformly to a 
certain element u0 ⊂ X which is a solution of (1)–(2) corresponding to parameter 
v = v0.

Proof  We start with the observation that, by Theorem 3, for each parameter vn there 
exists at least one positive solution un ∈ X of (1)–(2). Since un ∈ X , we have that 
{un}n∈ℕ and {u�

n
}n∈ℕ are bounded in [0,  1] and, consequently, in W1,2(0, 1) . Thus, 

going if necessary to a subsequence, we state that {un}n∈ℕ tends weakly to a certain 

|Tu0(tn) − Tu0(t0)|
≤ �

tn

t0
�

r

0

f (s, u0(s))dsdr ≤ �
tn

t0
�

1

0

f (s, u0(s))dsdr

≤ �
tn

t0
�

1

0

max
u∈[0,b]

f (s, u)dsdr ≤ A

A + 1
b
(
tn − t0

)
,

lim
n→∞

|Tu0(tn) − Tu0(t0)| = 0,

sup
t∈[0,1]

|Tu(t)| ≤ 2(A + 1)

A �
1

0

max
u∈[0,b]

f (s, u)ds < +∞,
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u0 ∈ W1,2(0, 1) . Applying the Rellich-Kondrashov theorem we get the uniform con-
vergence of {un}n∈ℕ to u0 in [0, 1]. Now we consider an auxiliary sequence

which is also bounded, since for all t ∈ [0, 1] the following estimate holds

Moreover, by the construction of un in the proof of Theorem  3 , we get for all 
t ∈ (0, 1),

Taking into account the fact that � ∈ L2(0, 1) , we obtain the boundedness of 
{p�

n
}n∈ℕ in L2(0, 1) and finally, we get the boundedness in the norm of W1,2(0, 1). 

This fact yields that {pn}n∈ℕ , up to a subsequence, is weakly convergent to a certain 
p0 ∈ W1,2(0, 1) . We use again the Rellich-Kondrashov theorem which leads to the 
uniform convergence (up to a subsequence) of {pn}n∈ℕ to p0 in [0, 1]. Since for all 
t ∈ [0, 1] , u�

n
(t) = e−Atpn(t) , we derive that {u�

n
}n∈ℕ tends to u′

0
 pointwisely in [0, 1], 

u�
0
(t) = e−Atp0(t) and

Therefore u0 ∈ X . Moreover we have for all h ∈ W
1,2

0
(0, 1),

where the last equality follows from the continuity of g(t, ⋅, ⋅) , the estimates given 
in (H2) and the Lebesgue dominated theorem. By the du Bois-Reymond lemma we 
infer that

pn(t) = u�
n
(t)eAt, t ∈ [0, 1]

|pn(t)| ≤ |u�
n
(t)|eAt ≤ beA.

|p�
n
(t)| =|||

(
u�
n
(t)eAt

)�||| =
|||||

(
�

t

0

eAsg(s, un(s), vn(s))ds

)�|||||
=|eAtg(t, un(t), vn(t))| ≤ eA�(t).

u�
0
(0) =p0(0) = lim

n→∞
pn(0) = 0,

u�
0
(1) + Au0(1) = lim

n→∞
e−Apn(1) + A lim

n→∞
un(1)

= lim
n→∞

(
u�
n
(1) + Aun(1)

)
= 0.

∫
1

0

p0(t)h
�(t)dt

= lim
n→∞∫

1

0

pn(t)h
�(t)dt = lim

n→∞∫
1

0

(−p�
n
(t))h(t)dt

= lim
n→∞∫

1

0

eAtg(t, un(y), vn(t))h(t)dt

= lim
n→∞∫

1

0

eAtg(t, u0(y), v0(t))h(t)dt,

−
(
p0(t)

)�
= eAtg(t, u0(y), v0(t))
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what can be rewritten as follows

Since p0 is absolutely continuous and u�
0
(t) = e−Atp0(t) , we derive that u′

0
 possesses 

the derivative almost everywhere in (0, 1) which belongs to L2(0, 1) . Thus we get 
a.e. in (0, 1)

This means that u0 ∈ X and u0 is a solution of (1)–(2) with the limit parameter 
v = v0 . 	�  ◻

Now we apply our results to the explicit problem with g such that g(t, ⋅, v) has an 
exponential growth. Moreover g(⋅, u, v) is singular at 0 and g(x, ⋅, v) does not satisfy any 
conditions associated with the monotonicity in [0, 2] (see e.g. assumptions in [8]). 

Example 1	 Let us consider problem (1)–(2) with g given as follows 

 where � , �, � ∈ L∞(0, 1) are nonnegative, �(t) ≠ 0 a.e. in (0, 1) and 

 Consider the set V ∶= {w ∈ L2(0, 1);ess sup |w| ≤ 1} and the sequence of 
parameters given as follows vn(t) = tn , t ∈ [0, 1] . It is clear that vn tends point-
wisely to v0(t) = 0 for t ∈ [0, 1) and v0(t) = 1 for t = 1 . Then, for b = 2 , we have 
the following estimate for a.a. t ∈ (0, 1) , u ∈ [0, b] and v ∈ V  , 

 and 

−
(
u�
0
(t)eAt

)�
= eAtg(t, u0(y), v0(t)).

u
��

0
(t) + Au�

0
(t) + g(t, u0(y), v0(t)) = 0.

(8)

g(y, u, v)

=

�
�(t)eu−1ev + �(t)

u2

(u + 4)(5 − u)
v +

�(t)

5
√
t
(u − 1)2(2 − u)v2

�

2
(
ess sup �

)
e2 +

(
ess sup �

)
+ 5

(
ess sup �

) ≤ 4A

A + 1
.

g(t, u, v(t))

=

�
�(t)eu−1ev(t) + �(t)

u2

(u + 4)(5 − u)
v(t) +

�(t)

5
√
t
(u − 1)2(2 − u)v2(t)

�
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1
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 where the last inequality follows from the estimates made on � , � and �  . More-
over, g(t, u, 0) > 0 for all t ∈ (0, 1) , u ∈ [0, 2] and max

u∈[0,b]
g(t, u, v(t)) belongs to 

L2(0, 1) . Finally, we can state that g satisfies (H1) and (H2). Applying Theo-
rem 3 we derive that for each parameter vn , where n ∈ ℕ , there exists at least one 
positive, nonincreasing solution un such that un(t) ∈ (0, 2] and u�

n
(t) ∈ [−2, 0) for 

all t ∈ (0, 1) . Moreover, by Theorem 4, we obtain (up to a subsequence) the uni-
form convergence of {un}n∈ℕ to a certain u0 in [0, 1], where u0 is a solution of 
(1)–(2) with g given by (8) and v = v0.

5 � Additional remarks

5.1 � Variational principle

Let us note that for each parameter v fixed, (1) can be treated as the Euler-
Lagrange equation for the following functional

where G(t, u, v(t)) = ∫ u

0
g(t, z, v(t))dz . Taking into account the boundary condi-

tions (2), we have to consider J in the space consisted of all C1([0, 1]) satisfying the 
conditions u�(0) = 0 and u(1) + Au�(1) = 0 . The necessary condition of optimality, 
namely �J = 0 , where �J denotes the first variation of J, gives the Euler-Lagrange 
equation

and the transversality conditions

Finally, we obtain our problem (1)–(2).

�
1

0

max
u∈[0,b]

g(t, u, v(t))dt

≤ �
ess sup �

�
e2 +

1

2

�
ess sup �

�
+ 2

�
ess sup �

�
�

1

0

dt

5
√
t

≤ 2
A

A + 1
,

(9)J(u) = ∫
1

0

eAt
(
1

2
||u�(t)||2 − G(y, u(t), v(t))

)
dt +

A

2
eAu2(1)

d

dt
(eAtu�(t)) = eAtg(y, u(t), v(t))dt

{
u�(0) = 0

eAu�(1) = −AeAu(1).
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5.2 � Variational iteration methods (VIM)

Variational iteration method has been attracting attention of many researchers for years. 
It was developed by He in his papers (see, among others, [16–22, 24, 25, 26]). It is 
worth emphasizing that this approach is successfully applied to many linear and non-
linear problems without any restrictive assumptions. The VIM gives the solution as a 
limit of sequence which is obtained during rapidly convergent successive approxima-
tion procedure that can lead to the exact solution if such a solution exists. If exact solu-
tion cannot be obtained (e.g. for the Airy equation), the procedure allows us to find a 
few number of approximations, see [47] and references therein. In Sect. 3 we showed 
the existence of positive and nonincreasing solution for our problem. Now, we consider 
VIM as a tool which can help us to obtain the approximate solution. We start with a 
correction functional for equation (1) with a given parameter v, in the form

where � is a general Lagrange multiplier, which can be calculated optimally with 
help of variation theory, and ũn is identified as a restricted variation, namely 
�g(s, ũn(s), v(s)) = 0.

In our case the multiplier can be described in the general form � = �(s − t) (see [2] 
and also [46] or [47]). This method can be divided into two main steps. The first one is 
to find the multiplier applying the restricted variation and the integration by parts. In 
the other step, having un , we consider the iteration schema, without restricted variation, 
which allows us to calculate successive element un+1. As a starting approximation u0 we 
can take any selective function. Finally, the possible solution is obtained as the follow-
ing limit lim

n→∞
un(t) = u(t) . Thus, the iteration schema is given as follows

The number of iterations, which is necessary to obtain the reasonable level of accu-
racy, depends on the form of nonlinearity g. As an example we can consider the 
problem discussed in [47], where the author investigates, among others, the problem 
(1)–(2) without derivative term Au′ for nonlinearity g(t, u, v) = −

nu

u+k
 , where n, k > 0 

and n and k are positive constants associated with the reaction rate and the Michaelis 
constant, namely n = 0.76129 and k = 0.03119 (see e.g. [32]). There the multiplier 
is (s − t) and the correction functional takes the form

In that paper, the author choses the constant function as a starting point u0 and pre-
sents the the second approximation of the form

un+1(t) = un(t) + ∫
t

0

�
[
u��
n
(s) + g(s, ũn(s), v(s))

]
ds,

un+1(t) = un(t) + ∫
t

0

�(s − t)
[
u��
n
(s) + g(s, un(s), v(s))

]
ds.

un+1(t) = un(t) + ∫
t

0

(s − t)

[
u��
n
(s) −

0.76129un(s)

un(s) + 0.03119

]
ds.
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Here, we emphasize that in [47] the general problem

is considered for constants � , � , � , � , where � ≥ 0 , 𝛾 > 0 and the nonlinearity f is 
continuos and continuously differentiable with respect to the second variable. Let us 
note that, in general, our assumptions do not guarantee such conditions.

Applying the same multiplier and the starting approximation u0 = const as in 
[47], we can describe the iteration schema for the nonlinearity presented in the 
Example 1 with v ≡ 1 , A = 1 , � ≡ e−2

16
 , � ≡ 1

8
, � ≡ 1

5
 . Then we have

Let us recall that our approach guarantees the existence of solution with values in 
[0, b] (see Example 1, where b = 2) . Thus we consider the starting point also in this 
interval, so we get

It is clear that u�
1
(0) = 0 . Now, taking into account the boundary conditions, we get 

u�
1
(1) + u1(1) = 0 which gives

and further a = 0.320 26 . Finally, for all t ∈ [0, 1],

is a positive and decreasing function with values less than 2. It means that u1 has the 
same properties as the solution that existence is guaranteed in Sect. 3.

u2(t) =0, 4952605157 + 0, 3580933694 ⋅ x2 + 0, 002556615536 ⋅ x4

+ 0, 0006956073111 ⋅ x6 + O(x7).

{
u��(t) +

�

x
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5 5
√
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�
ds.

u0(t) =a ∈ (0, 2),

u1(t) =a + ∫
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0
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ea−2
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+

a2

8(a + 4)(5 − a)
+
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5 5
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ds

=a +

�
ea−2
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+
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8(a + 4)(5 − a)

��
−
1
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− (a − 1)2(2 − a)
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36
t
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5

540ea−2 − 16 736a + 27aea−2 − 27a2ea−2 + 7942a2 − 944a3 − 560a4 + 112a5 + 4480

288a2 − 288a − 5760
= 0

u1(t) = 0.320 26 − 0.107 79t
9

5 − 6. 142 8 × 10−3t2
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5.3 � Other methods

Let us note that our nonlinearity is not, in general, differentiable. Therefore, we can-
not apply the useful and powerful approach based on the Taylor series like in e.g. 
[20, 23, 27], since we do not know if we can present solution in this form. We can-
not apply the method like in ([6]) either. It is associated with the fact that our nonlin-
earity is not, in general odd.

Another approach often applied in such problems is the homotopy perturbation 
method which is described in the classical paper [15], where the nonlinerity is an 
analytic function with respect to the first variable. In our case we are able to apply 
such technique if we assume that g is sufficiently smooth in t. Then, we could con-
sider the approach presented in e.g. [15] or [24], with the homotopy given, for exam-
ple, as follows

for p ∈ [0, 1] , t ∈ (0, 1) , where g1 is a linear part of g (if exists), to obtain an approx-
imate solution.

6 � Conclusion

In this paper, the boundary value nonlinear problem is discussed in the case, when 
the singularity is associated with the nonlinearity g. We propose the methods based 
on two classical tools. The first one is the Schauder fixed point theorem which allows 
us to obtain the existence of at least one positive nonincreasing solution. The other 
one is the du Bois-Reymods lemma, which together with the Rellich-Kondrashov 
theorem, gives the continuous dependence of solutions on functional parameters. 
This result can be treated as a starting step in the methods which give the approxi-
mate solutions, because it guarantees the existence of such solution.

The natural question arises wether it is possible to consider the fractal modifica-
tion of our equation as its done in [27] for Bratu’s equation. It is important, espe-
cially in the light of the paper [22] where the authors emphasize that physical laws 
depends on the scale. Generally, the approaches to the phenomenon associated, for 
example, with thermodynamics are based on conventional continuum mechanics. 
When the continuum assumptions are neglected, we obtain quite different theory in 
which fractal calculus can give new information ([22] and references therein). The 
approach enriched with the fractal derivatives is also necessary in the model of E 
reaction when electron transfer is to be improved. In this case the porous electrodes 
are applied and (4) cannot be applied (see [20] and references therein). For the time 
being, the question is open in the general case of nonlinearity.

Acknowledgements  The author is grateful to anonymous referees for their careful reading of the first ver-
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H(v, p) = (1 − p)
[
v��(t) + g1(v(t)) − u��

0
(t) − g1(u0(t))

]
+ p

[
g(v(t)) − g(u0(t))

]
,
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