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Abstract
This work is on quantum-mechanical four-body distorted wave theories for double
electron capture in collisions between fast heavy multiply charged ions and helium-
like atomic systems. The five widely used distorted wave methods of the first- and
second-order in the perturbation series expansions are compared with the available
experimental data on α–He collisions. These are the four-body boundary-corrected
first Born (CB1-4B), the boundary-corrected continuum intermediate state (BCIS-
4B), the Born distorted wave (BDW-4B), the continuum distorted wave (CDW-4B)
and the continuum distorted wave-eikonal initial state (CDW-EIS-4B) methods. We
address the complete breakdown of the CDW-EIS-4B method at all impact energies
within its expected validity domain (100–10000 keV). Further, the relative perfor-
mance is evaluated of the second-order theories with and without the eikonalization of
the two-electron Coulomb wavefunctions for double continuum intermediate states.
Finally, at all the considered intermediate and high energies, the practical aspects of
the studied five methods are investigated by protracted evaluations of the convergence
rates of total cross sections as a function of the number of quadrature points per axis
in numerical computations of multi-dimensional (3D-5D) integrals.
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1 Introduction

Over the years, an emphasis has been given to the electronic eikonal initial states
(EIS). These employ the well-known asymptotic phase factor of the single-electron
Coulomb wavefunction in the entrance channel. Here, the word “asymptotic” refers to
infinitely large distances between the active target electron and the projectile nucleus.

By contrast, the electronic full Coulomb wavefunctions are used in the continuum
distorted wave (CDW) method for high-energy ion-atom collisions [1, 2]. This is a
well-established method which has extensively been reviewed during the past several
decades [3–9]. Its simplified version is called the continuum distorted wave-eikonal
initial state (CDW-EIS) approximation [10]. The CDW-EIS method differs from the
CDWmethod only in the replacement of the electronic full Coulomb wavefunction in
the entrance channel by its asymptotic behavior (the logarithmic Coulomb phase).

The apparent success of this eikonalization cannot be explained on a sound theo-
retical basis. Normalization of the initial total scattering wavefunction was initially
invoked as an attempt to somehow justify this electronic eikonalization [10]. How-
ever, this is not convincing nor consistent, since the CDW-EIS method employs the
unnormalized final total scattering states of the CDWmethod. If indeed the normalized
scattering states were the main motivation for eikonalization, then the initial and final
electronic full Coulomb wavefunctions for the continuum intermediate states ought to
be treated symmetrically on the same footing and, hence, both should be eikonalized.

This has not been done since it would result in downgrading the CDW-EIS method
from its second-order status to afirst-order perturbation formalism.The latter treatment
is known as the symmetric eikonal (SE) method [11]. Moreover, if normalization of
total scattering stateswere to be blamed for the alleged inadequacy of theCDWmethod
with decreasing impact energies, then its surrogate, i.e. the CDW-EIS method, should
be successful also for double charge exchange, similarly to single electron capture.
Alas, such hopes proved to be in vain [6, 8]. Total cross sections in the CDW-EIS
method for double charge exchange have been found to be several orders of magnitude
smaller than the available experimental data!

This happened at intermediate-to-moderately-high impact energies where the
CDW-EISmethod is supposed to be fully applicable. Such a demise of the two-electron
eikonalization marks a sharp breakdown of the CDW-EIS method for double charge
exchange. The probability of event occurrence is much weaker for double- than for
single-electron capture. This implies an increased sensitivity (of double- compared
with single-electron transfer) to the theoretical assumptions of the same type. As
such, within the CDW-EIS method, what used to be a reasonable assumption for sin-
gle charge exchange (one electronic eikonalization), turned out to flagrantly fail for
double charge exchange (two electronic eikonalizations). Overall, the literature has
witnessed the rise (three-body) and the fall (four-body) of the CDW-EIS method for
one- and two-electron transfer, respectively.

For book-keeping, it is important to emphasize that the electronic eikonalization in
the CDW-EIS method deals with asymptotically large electron-nucleus separations.
Of course, a full Coulomb wavefunction of an electron in the electrostatic field of a
nucleus can be replaced by its logarithmic phase, but only at very large electron-nucleus
distances. However, such a replacement should not be made in the transition ampli-
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tude because the invoked integrals therein cover all distances. Moreover, due to the
exponentially decreasing initial and final bound-state wavefunctions, small electron-
nucleus distances, in fact, yield the major contributions to the integrals in the T-matrix
elements. It is precisely this latter spatial region which is chiefly responsible for the
sharply different contributions (to the transition amplitudes) from the full Coulomb
wave and its asymptotic phase.

The present comprehensive computations shed somenew light onto these intricacies
of the perturbative distorted wave formalism of ion-atom scattering theory with four
actively participating particles. In the illustrations, we focus on prototype symmetric
collisionswith two-electron capture by alphaparticles fromhelium targets. Particularly
for this resonant collision, it has previously been shown, in e.g. the CDW-4B method,
that the combined final singly- and doubly-excited states yield a small contribution.
Therefore, it suffices to consider only the transition from the initial to the final ground
states, as shall be done in this study. The literature on double charge exchange in ion-
atom collisions is abundant both with theories [4–8, 12–62] and experiments [63–94].

An obvious drawback of the CDW-EIS method is the loss of symmetry by treating
the incident and target nuclear charge on an unequal footing. When one is willing
to sacrifice this symmetry, then the possibility opens up for the introduction of some
other hybrid first- and second-order approximations with an alternative eikonalization
of Coulomb continuum intermediate states. This alternative deals with eikonalization
of the relative motion of heavy nuclei in lieu of the electronic eikonalization from the
CDW-EIS method.

From a theoretical viewpoint, it is by farmore justified to perform the eikonalization
ofCoulombwavefunctions for inter-nuclear than that for electron-nucleus interactions.
This is exclusively due to the large reduced mass μ of two heavy nuclei. It is well-
known that the replacement of the full Coulomb wavefunction for the inter-nuclear
potential by its eikonal logarithmic phase factor gives a negligible 1/μ2 contribution
to the total cross section. This has been shown for the full (exact) eikonal T-matrix
element [3]. Therefore, the same conclusion ought to hold true also for all the ensuing
specific approximations, extracted from the full eikonal transition amplitude either
perturbatively (to any given order) or non-perturbatively [20]. The said replacement
is amply justified even much below the Massey resonance peak (i.e. notably below
25keV/amu) and, most importantly, without the need to resort to any large, asymp-
totic distance between the two nuclei. This heavy particle eikonalization should be
contrasted to the CDW-EIS method where the electronic eikonalization is applicable
only to asymptotically large electron-nucleus separation.

Such a theoretical argument suffices to anticipate that the hybrid second-order
methods based upon the eikonalized Coulomb wavefunctions for the relative motion
of heavy nuclei should exhibit a reasonably successful performance for one- and
double-electron capture. These are the boundary-corrected continuum intermediate
state (BCIS) [8, 41] and the Born distorted wave (BDW) [49, 50] methods. Such a
stratification leads to yet another level of the present testings by confronting the four-
body versions of the CDW-EIS and BCIS or BDWmethods for which their three-body
variants are known to perform with a comparable adequacy relative to measurements.
Our choice of double capture is an excellent candidate for this type of testing aimed
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at determining which of the two mentioned eikonalizations for electronic or nuclear
motions is more successful with respect to the corresponding experimental data.

Additionally, for the total cross sections in the CB1-4B, BCIS-4B, BDW-4B and
CDW-4Bmethods, we carry out a detailed examination (tabular, graphical) of the con-
vergence rates of the numerically computed multiple-dimensional (3D-5D) integrals
as a function of the Gauss-Legendre points per each axis of the invoked quadratures.

Atomic units will be used throughout unless otherwise stated.

2 Theory

We begin by recapitulating the basic features of the kinematics and dynamics for
double charge exchange in the four-body distorted wave formalism. First, it should be
emphasized that one of the critically important problems for testing theories in four-
particle ion-atom collisions is double charge exchange (or double electron transfer or
double electron capture). Here, two electrons e1 and e2, that are initially bound to the
target nucleus (T), both end up finally in another bound state, but this time around the
projectile nucleus (P). This process is symbolized by:

ZP + (ZT; e1, e2)i −→ (ZP; e1, e2) f + ZT, (2.1)

or equivalently,

P + (T; e1, e2)i −→ (P; e1, e2) f + T, (2.2)

where the parentheses represent the bound states, whereas ZP and ZT are the nuclear
charges of P and T, respectively. The indices i and f denote the sets of the usual
quantum numbers of the initial and final bound states, respectively.

Let x j and s j be the position vectors of e j relative to T and P, respectively ( j �
1, 2). Further, let R be the internuclear axis with R being the position vector of P
relative to T. We denote by r i and r f the position vectors of P and T relative to the
center-of-mass of (ZT; e1, e2)i and (ZP; e1, e2) f , respectively. The elements of the
set {r i , r f , x1,2, s1,2 } can be connected to each other by introducing the position
vectors {rP, rT, re1,2} of {P,T, e1,2} relative to the origin O of an arbitrary Galilean
reference frame XOYZ.

Such a setting gives the defining expressions for the vectors {x1,2, s1,2, r i , r f } as
well as for the vector R of the inter-nuclear separation R and the vector r12 of the
inter-electronic distance r12:

x1,2 � re1,2 − rT, s1,2 � re1,2 − rP,

R � rP − rT, r12 � re1 − re2 ,

r i � rP − MTrT + re1 + re2
MT + 2

, r f � rT − MPrP + re1 + re2
MP + 2

, (2.3)
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whereMJ is themass of the Kth nucleus (J� P, T). Here, the electronmassme does not
explicitly appear since me � 1 in the adopted atomic units. The sought inter-relations
of the introduced vectors read as:

R � x1 − s1 � x2 − s2,

x12 � x1 − x2, s12 � s1 − s2, x12 � s12 ≡ r12,

r i � mi x1 − s1, r i � −m f r f +
m f

μ f
s1,

r f � m f s1 − x1, r f � −mi r i − mi

μi
x1, (2.4)

where mi or m f is the reduced mass of (T, e)i or (P, e) f , and μi or μ f is the reduced
mass of P + (T; e1, e2)i or (P; e1, e2) f + T, respectively:

mi � MT

MT + 1
, μi � MP(MT + 2)

MP + MT + 2
,

m f � MP

MP + 1
, μ f � MT(MP + 2)

MT + MP + 2
. (2.5)

TheHamiltonians in the entrance and exit channels are given by the following formulae
in the center-of-mass (c.m.) system:

Hi � Ki + hi , Ki � − 1

μi
∇2

r i

hi � − 1

mi
∇2

x1 − 1

mi
∇2

x2 − 1

MT
∇x1 · ∇x2 + VT,

H f � K f + h f , K f � − 1

μ f
∇2

r f

h f � − 1

m f
∇2

s1 − 1

m f
∇2

s2 − 1

MP
∇s1 · ∇s2 + VP, (2.6)

where VT and VP are the full interactions in the bound-state heliumlike systems
(T; e1, e2)i and (P; e1, e2) f :

VT � VTe1 + VTe2 + V12, VP � VPe1 + VPe2 + V12

VTe1,2 � − ZT

x1,2
, VPe1,2 � − ZP

s1,2
, Ve1e2 ≡ V12 � 1

x12
. (2.7)

In (2.6), ki and k f are the initial and final wave vectors defined by ki � μivi and
k f � μ f v f where vi and v f are the velocities of the impact and scattered projectile,
respectively. Following the standard convention, the initial wave vector ki represents
the momentum of P with respect to (T; e1, e2)i . However, precisely opposed to the
standard convention, the final wave vector k f is presently defined as the momentum
of (P; e1, e2) f with respect to T.
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This is done in order that k f satisfies the relation k f � μ f v f ,which is symmetrical
to ki � μivi . Such a kinematic similarity between ki and k f becomes particularly
useful for four-body problems with two heavy nuclei (MJ � 1; J � P,T) and two
electrons where the eikonal approximation is appropriate, in which case k̂ f ≈ k̂i ,
where k̂ j � k j/k j ( j � i, f ). In (2.6), K j and h j ( j � i, f ) are the kinetic energy
operator of the relativemotion of the two heavy scattering aggregates and the electronic
Hamiltonian for the electrons-nucleus states, respectively.

The dynamic inter-electron coupling terms due to gradient-gradient potential oper-
ators −(1/MT)∇x1 · ∇x2 and −(1/MP)∇s1 · ∇s2 from hi and h f are too weak to be
retained for the kinetics in process (2.1) because they are heavily damped by the small
factors 1/MT and 1/MP. Therefore, these electronic couplings, that are also known
as the mass-polarization terms, can safely be neglected in the case of heavy masses
of nuclei T and P, as typical for the eikonal approximation. Consequently, the total
Hamiltonian H of the whole system P + (T; e1, e2)i or (P; e1, e2) f + T in the c.m.
reference frame is given by:

H � Hi + Vi � H f + V f , (2.8)

where Vi and V f are the perturbations in the entrance and exit channel, respectively:

Vi � VP + VPT, V f � VT + VPT, VPT � ZPZT

R
. (2.9)

In the asymptotic region of large inter-aggregate separations, perturbations Vi and V f

reduce to pure Coulomb potentials:

V∞
i � ZP(ZT − 2)

R
, V∞

f � ZT(ZP − 2)

R
. (2.10)

The operators K j and h j possess their eigen-problems:

Kiφ
+
ki (r i ) � k2i

2μi
φ+
ki (r i ), hiϕ

T
i (x1, x2) � εTi ϕT

i (x1, x2),

K f φ
−
−k f

(r f ) � k2f
2μ f

φ−
−k f

(r f ), h f ϕ
P
f (s1, s2) � εPf ϕ

P
f (s1, s2), (2.11)

with the corresponding eigen-values and eigen-functions {k2i /(2μi ), φ+
ki
(r i )},

{k2f /(2μ f ), φ
−
−k f

(r f )}, {εTi , ϕT
i (x1, x2)} and {εPf , ϕP

f (s1, s2)}. Hereafter, the super-
scripts + and − denote the outgoing and incoming wave behaviors.

The unperturbed channel state (say�) describes the two non-interacting aggregates
(a nucleus and a heliumlike bound system). Therefore, the constituent component of
� must contain the discrete heliumlike state vector ϕ and the wavefunction φ of the
relative motion of the free nucleus with respect to the c.m. of the remaining two-
particle bound system. The explicit way by which ϕ and φ are combined to form
� is prescribed by the probabilistic interpretation of a typical quantum-mechanical
wavefunction. Therefore, since ϕ and φ describe two independent sub-systems, � is

123



Journal of Mathematical Chemistry (2020) 58:1133–1176 1139

given by the product of ϕ and φ, so that � � ϕφ. This reasoning is supported by the
quantitative analysis using the eigen-problems for the channel Hamiltonians Hi and
H f :

Hi�
+
i (x1, x2, r i ) � Ei�

+
i (x1, x2, r i ), (2.12)

H f �
−
f (s1, s2, r f ) � E f �

−
f (s1, s2, r f ), (2.13)

where Ei and E f are the initial and final total energy of the whole system:

Ei � k2i
μi

+ εTi , E f � k2f
μ f

+ εPf , E f � Ei . (2.14)

The complete Schrödinger equations for the initial and final total scattering states �+
i

and �−
f are defined in terms of the same full Hamiltonian H as:

H�+
i � Ei�

+
i , H�−

f � E f �
−
f . (2.15)

Returning to the earlier defined final velocity vector v f , we can now determine the
exact magnitude v f by using the energy conservation law E f � Ei from (2.14), which
then gives:

v f � vi

√
√
√
√

μi

μ f

(

1 +
εTi − εPf

Ei

)

. (2.16)

This expression can conveniently be simplified for heavy nuclei P and T for which
MP,T � 1. If further Ei � |εTi − εPf |, which is true especially at intermediate and
high energies, it follows from (2.16):

v f ≈ vi , MP,T � 1, Ei �
∣
∣
∣ε

T
i − εPf

∣
∣
∣. (2.17)

The scattering angle ϑ is defined by ϑ ≡ cos−1(v̂i · v̂ f ) where v̂ j � v j/v j ( j � i, f ).
Due to their largemass, heavy projectile nuclei deviate only slightly from their incident
direction. In practice, the largest values of ϑ are only a fraction of a milliradian (mrad)
and, therefore, v̂ f ≈ v̂i , so that:

v f ≈ vi , MP,T � 1, Ei �
∣
∣
∣ε

T
i − εPf

∣
∣
∣. (2.18)

Using the additive forms of Hi as well as H f and employing the eigen-problems from
(2.11), the mentioned factorizations of the channel wavefunctions are explicitly given
by:

�+
i (x1, x2, r i ) � φ+

ki (r i )ϕ
T
i (x1, x2), (2.19)
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�−
f (s1, s2, r f ) � φ−

−k f
(r f )ϕ

P
f (s1, s2). (2.20)

Specifically, in only one particular case with nuclear charges ZP � 2 � ZT, as in
double electron capture from helium by an alpha particle (He2+ − He), function φ

reduces to the associated plane wave. In this symmetric collision, we have in the
entrance and exit channels:

φ+
ki (r i ) � eiki ·r i , φ−

−k f
(r f ) � e−ik f ·r f . (2.21)

However, in an asymmetric collision (ZP �� ZT), it follows that φ must be a Coulomb
wave function for the relative motion of two heavy aggregates. In both channels, the
free nucleus is conceived as interactingwith a “reduced particle” of the effective charge
ZJ − 2 (J � P or J � T) and of the reduced mass μ j ( j � i or j � f ) located in the
c.m. of (T; e1, e2)i or (P; e1, e2) f .

These interactions in the entrance and exit channels are pure Coulomb potentials
Ṽi � ZP(ZT − 2)/ri and Ṽ f � ZT(ZP − 2)/r f . Since in the eikonal approximation
(the heavy mass limit), we have r f ≈ ri ≈ R, it follows, by reference to (2.10), that
Ṽ j ≈ V∞

j ( j � i, f ). Thus, in the general case of arbitrary nuclear charges ZP and

ZP, the functions φ+
ki
(r i ) and φ−

−k f
(r f ) represent the Coulomb waves:

φ+
ki (r i ) � N+(νi )e

iki ·r i
1F1(−iνi , 1, iki ri − iki · r i ),

N+(νi ) � e−πνi /2�(1 + iνi ), νi � ZP(ZT − 2)

vi
, (2.22)

φ−
−k f

(r f ) � N−(ν f )e
−ik f ·r f

1F1(iν f , 1,−ik f r f + ik f · r f ),

N−(ν f ) � e−πν f /2�(1 − iν f ), ν f � ZT(ZP − 2)

v f
, (2.23)

where the symbols � and 1F1 stand for the gamma and confluent (Kummer) hyper-
geometric function, respectively. The Sommerfeld parameter ν j ( j � i or j � f ) is
equal to zero only for ZJ � 2 (J � P or J � T) in which case the pertinent Coulomb
wavefunction becomes the corresponding plane wave so that Eqs. (2.21) and (2.23)
coincide which other.

As opposed to excitation from the category of direct processes, double charge
exchange belongs to more involved rearranging collisions. The specificity of process
(2.1) is in the occurrence that neither of the two electrons remain bound to its parent
nucleus in the final state. Rather, a rearrangement of particles takes place with both
electrons being transferred from the target to the projectile nucleus. Without any loss
of generality, it can be assumed that the target is initially at rest. In such a case, the
relative velocity vi becomes the incident velocity, which is denoted by v so that vi � v.

With this at hand, we can rewrite (2.18) as v f ≈ vi ≡ v.

For fast projectiles, two-electron transfer is expected to represent quite an unlikely
event. However, the chance for both electrons to simultaneously jump onto the fast
moving projectile nucleus, which passes by the target, will be significantly enhanced,
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if the electrons in the exit channel could escape from the field of their parent nucleus
by receiving the momenta κe1 ≈ κe2 of the nearly equal magnitude and direction as
v.

However, this would be highly unlikely if double-electron capture is to take place
in a direct one-step encounter of ZP with e1,2. This is the case because no momentum
distribution of bound electrons in a heliumlike atomic systems could possess very
large momenta, meκe1,2 ≈ mev. The problem can be mitigated if both electrons were
first ionized and then captured from the twofold continuum state. The electrons in the
Coulombfield of ZP canmovewith velocity v of the scattered projectile. Evidently, this
would fulfill the momentum matching condition (meκe1,2 ≈ mev) for simultaneous
capture of both electrons by ZP.

Physically, the relation κe1,2 ≈ v is recognized as a typical resonance effect which,
in turn, increases the probability for the event of double capture. Hence, the probability
for two-electron transferwould be considerably enhanced if, in an intermediate stage of
collision, both electrons are first ionized from the target with the emission momenta
κe1,2 equal to the velocity vector v f ≈ v of the scattered projectile nucleus. This
resonance mechanism greatly facilitates double capture, since the relative velocity
vector �v introduced as the difference between the velocity v f of the scattered ZP
and the velocities ve1,2 of the ejected electrons is nearly zero, �v ≡ v f − vek ≈
v − vek ≈ 0 (k � 1, 2).

In an experiment aimed at measuring cross sections for double charge exchange,
a beam or incident nuclei is considered and, consequently, a beam of electrons is
created prior to capture. Viewing these particle beams from the kinetic theory of
gases, the definite average temperatures could be attributed to scattered projectile and
intermediately ionized electrons. Then the mentioned resonance condition with the
velocity matching could be recast into the equivalent near equality of the average
temperatures of the stream of scattered projectiles and electrons ionized from the
target. On the other hand, the occurrence of the nearly equal temperatures signifies
the well-known adiabaticity conditions as the state of maximal coherence between the
two particle beams, and this leads to an increased chance for double capture.

By reference to the spatial relationships of particles at the resonance condition
ve ≈ v, the scattered projectile nucleus and the two electrons are conceived as being
located near each other, so that their attractive Coulomb interactions are sufficient to
bring them closer together into a bound heliumlike state. Another reason for including
these continuum intermediate states of both electrons is the fact that double ionization
dominates (by orders of magnitude) over double electron capture at high incident
energies.

This is obvious from total cross sectionsQ considered as a function of the increased
impact energy E, since already single ionization (SI) has an inverse quasi-linear
fall-off, QSI ∼ E−1ln(E), in sharp contrast to the corresponding single capture
(SC), where QSC ∼ E−6 (without resonance, one step: the Oppenheimer-Brinkman-
Kramers mechanism) or QSC ∼ E−11/2 (with resonance, two steps: the classical
billiard-type Thomas mechanism). Therefore, at sufficiently high energies, capture
probability could rise by including twofold electronic ionization continua as the
distorted wave quantum-mechanical counterpart of the classical Thomas double scat-
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tering. This has abundantly been shown to be necessary for single capture [3], and a
similar conclusion should also apply to double capture.

Consequently, the total scattering states �±
i, f for double capture should contain a

mixture of double continuum intermediate states of both electrons. Such a rationale is
further supported by the fact that each of the two electrons reside simultaneously in
the two Coulomb fields stemming from the target and projectile nucleus. This occurs
symmetrically in the entrance and exit channel. In the entrance channel of process
(2.1), the target nucleus T binds the two electrons, that are at the same time in their
continuum states in the field of the projectile nucleus P.

Likewise, after double capture, in the exit channel, the two electrons are bound to
the projectile P, but they are simultaneously in their continuum states in the field of
the target nucleus T. In the distorted wave formalism, this is described as follows. The
total scattering state � for the motion of three bound and one free particles in a given
channel is approximated by a distorted wave χ in a factorized form as the product
χ � �ζ where � is the unperturbed channel state and ζ is a distortion.

Under such circumstances, with the two active electrons (e1,2) and the two active
nuclei (ZP, ZT), function � should contain four states: ϕ (bound), ϕκe1

(e1−nucleus
continum) ϕκe2

(e2−nucleus continum) and ϕκPT (nucleus-nucleus continuum). Here,
the continuum states ϕκPT of the internuclear Coulomb potential VPT for the relative
motion of the two nuclei is also included, since one nucleus is always free in the field
of the other nucleus in both channels.

In the entrance channel, the bound state is on the target, as described by the
wavefunction ϕT

i (x1, x2), whereas the three continuum wavefunctions ϕ+−v(s1, s2) �
ϕ+−v(s1)ϕ

+−v(s2) and ϕ+−μiv
(R) of the two electrons and nucleus T are all centered on

the projectile nucleus P, according to:

�+
i ≈{

χ+
i

}

initial distorted wave total scattering state (2.24)

χ+
i � {�i }unperturbed entrance channel state

× {

ζ +
i

}

three Coulomb waves centered on P for electronic and nuclear motions (2.25)

ζ +
i � {

ϕ+−v(s1)
}

VPe1 : one Coulomb electronic continuum wave centered on P

× {

ϕ+−v(s2)
}

VPe2 : one Coulomb electronic continuum wave centered on P

× {

ϕ+−μiv
(−R )

}

VPT: one Coulombwave for themotion of T relative to P
. (2.26)

Symmetrically, in the exit channel, the bound state is on the scattered projectile,
as described by the wavefunction ϕP

f (s1, s2), whereas the three continuum states
ϕ−

v (x1, x2) � ϕ−
v (x1)ϕ−

v (x2) and ϕ−
μ f v

(R ) of the two electrons and nucleus P are
all centered on the target nucleus T:
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�−
f ≈

{

χ−
f

}

final distorted wave total scattering state
(2.27)

χ−
f � {

� f
}

unperturbed exit channel state

×
{

ζ−
f

}

three Coulombwaves centered on T for electronic and nuclear motions
(2.28)

ζ−
f � {

ϕ−
v (x1)

}

VTe1 : one Coulomb electronic continuumwave centered on T

× {

ϕ−
v (x2)

}

VTe2 : one Coulomb electronic continuumwave centered on T

×
{

ϕ−
μ f v

(R )
}

VPT: one Coulombwave for themotion of P relative to T
. (2.29)

Notice that χ−
f can be deduced from χ+

i by the following simultaneous changes:

χ−
f � {

χ+∗
i

}

i→ f ,P⇐⇒T,x1,2→s1,2
, (2.30)

and undoing the complex conjugation of the final heliumlikewavefunction by resetting
ϕ∗
f → ϕ f in the rhs of Eq. (2.30).

3 Illustrations

With the outlined succinct recapitulations of the basic features of the problem under
consideration, it is clear that one-electron transfer in a pure three-body formalism can
be extended to two-electron transfer in a pure four-body formalism without undue
difficulty. In the distorted wave formalism, the explicit derivations of the transition
amplitudes for double charge exchange in ion-atom collisions at intermediate and high
energies for sevenmethods have recently been reported in Ref. [8] and, therefore, need
not be repeated here. These include five theories of interest to the present applications:
the CB1-4B, BCIS-4B, BDW-4B, CDW-4B and CDW-EIS-4B methods.

The computations in this work are carried out for the following symmetric, resonant
ground-to-ground-state double charge exchange process:

4He2+ + 4He(1s2) −→ 4He(1s2) + 4He2+. (3.1)

The available measurements on total cross sections for double charge exchange in the
α − He(1s2) collisions have been performed for capture into all helium bound states
(ground and excited):

4He2+ + 4He(1s2) −→ 4He(�) + 4He2+. (3.2)

Nevertheless, the theoretical results for (3.1) can still be compared with experimental
data on (3.2) on account of a small contribution from singly and doubly excited final
states of helium, as has been shown in the CDW-4B method [55]. In the illustrations,
all the cross sections from the CB1-4B, BCIS-4B, BDW-4B, CDW-4B and CDW-
EIS method refer to the one-parameter Hylleraas’ [95] ground-state wavefunction of
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helium with the configuration (1s)2 in both the entrance and exit channels. It has been
shown in theCDW-4Bmethod [39] that the total cross sectionswith this one-parameter
wavefunction are similar to those with the 2–4 parameter (1s1s′) wave functions that
have the (1s1s′) configurations. Of course, such a conclusion cannot automatically
apply to the CB1-4B, BCIS-4B, BDW-4B and CDW-EIS-4B method without some
explicit computations (needless to say, these are desirable to be performed in the near
future).

The transition amplitudes in these methods are semi-analytical. Namely, the ini-
tial, defining nine-dimensional integrals are first reduced by analytical means to
lower-dimensional integrals that are computed numerically. Finally, for the total cross
sections (Q), the absolute squared values of these transition amplitudes is also inte-
grated numerically over the magnitude η of the transverse momentum transfer vector
η (the integration of ϕη is analytical with the result 2π ). Overall, for computations
of Q in the general case of process (3.1) with the arbitrary nuclear charges ZP and
ZT, the number of the remaining numerical integrations is 3 (CB1-4B), 4 (CDW-4B,
CDW-EIS-4B) and 5 (BCIS-4B, BDW-4B). The present computations employ the
CB1-4B, BCIS-4B, BDW-4B and CDW-4Bmethods. The results from the CDW-EIS-
4B method are taken from Ref. [55].

All the numerical integrations in the CB1-4B, BCIS-4B, BDW-4B and CDW-4B
methods are carried out by using the successive Gauss-Legendre quadrature rule with
the varying order N which is the number of pivots. These quadrature points or pivots
are the zeros of the Legendre polynomial of degree N . The order N has been varied
in step of 16 beginning from N � 16 all the way up to N � 192. The ensuing
results of the total cross sections are tabulated for N � 48, 64, . . . , 192 and also
shown graphically. The goal is to establish and visualize the convergence pattern of
the displayed total cross sections Q(cm2) as a function the impact energy E(keV) for
the systematically and gradually increased values of N in the increment of 16. This
numerical experiment with respect to the dependence of Q on N is performed for all
the considered impact energies E ∈ [100, 10000] keV.

The same order N is used per each integration axis, i.e. for all the innermost inte-
grals in the transition amplitudes as well as in the outermost integral over η for the
integration of the squared absolute values of the transition amplitudes. Integration
over η is appropriately scaled following Ref. [96] to acknowledge the fact that for
heavy projectiles the most important contribution to total cross sections comes from
the forward cone of scattering.

The numerical integrations in the CDW-4B method are straightforward as the tran-
sition amplitude (after the Fourier transform) is reduced to three-dimensional integrals
in the momentum space (with the momentom variable τ ). The integration of the mag-
nitude τ of vector τ is scaled to the interval [0,1] after an appropriate change of
the integration variable. The numerical integration in the transition amplitudes from
the BCIS-4B and BDW-4B methods are done using the integral representations of
the two Kummer confluent hypergeometric functions 1F1 defined in the intervals
t j ∈ [0, 1] ( j � 1, 2).

These Kummer functions contain the integrable singularities (branch points) at
t1,2 � 0 and t1,2 � 1 that are smoothed out after an appropriate Cauchy regular-
ization [40, 49, 50]. The Cauchy regularizations give the accurate results as verified
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by an alternative reduction of the 4-dimensional transition amplitudes in the BCIS-
4B and BDW-4B methods to the 3-dimensional integrals over the Gauss ordinary
(non-confluent) hypergeometric function 2F1. This Gauss hypergeometric function
2F1 comes by analytical calculation over the two Kummer confluent hyppergeomet-
ric functions 1F1 instead of using their integral representations for the mentioned
numerical quadratures.

At the impact energies E ∈ [100, 7000] keV, for the ten Gauss-Legendre orders
N � 48, . . . , 192 the detailed total cross sections QBCIS−4B and QBDW−4B are given
in Table 1, whereas Table 2 is for QCB1−4B and QCDW−4B in the same range of N . It
is seen from Table 1 that the values of QBCIS−4B and QBDW−4B stabilize for N ≥ 48
at E ≥ 150 keV. Table 2 shows that QCB1−4B and QCDW−4B are stable for N ≥ 48 at
E ≥ 100 keV. Table 3 summarizes QBCIS−4B, QBDW−4B, QCB1−4B and QCDW−4B
for N � 192 at an extended energy interval E ∈ [100, 10000] keV.

The total cross sections from Tables 1, 2 and 3 are also visualized in Figs. 1, 2 and 3
and this is followed by Fig. 4. To this end, Fig. 1 deals with QBCIS−4B and QBDW−4B
for N � 48, 64, 80, Fig. 2 for N � 96, 112, 128 and Fig. 3 for N � 144, 160, 176.
In these figures, the results for Q (N ≤ 176) are compared with the fully stabilized
cross sections Q (N � 192) that act as the reference data. The left and right columns
of Figs. 1, 2 and 3 are for QBCIS−4B and QBDW−4B, respectively. On each panel of
both columns of Figs. 1, 2 and 3, open circles represent QBCIS−4B and QBDW−4B for
N ∈ [48, 176].These are systematically comparedwith the full curves for the presently
used highest quadrature order N � 192, which itself secures full convergence at all
impact energies E ≥ 150 keV. It can be observed from Figs. 1, 2 and 3 that at E ≥ 150
keV, the total cross sections QBCIS−4B for 48 ≤ N ≤ 176 on the left columns are
indistinguishable from QBCIS−4B for N � 192. Moreover, in Figs. 1, 2 and 3, the
same goes for QBDW−4B on the right columns.

Overall, Figs. 1, 2 and 3 emphasize good convergence features of QBCIS−4B
and QBDW−4B that exhibit robust stability against the Gauss-Legendre orders N �
48, . . . , 192 at E ≥ 150 keV, as already noticed in Table 1. This testifies to the reli-
ability of the twofold Cauchy regularization of the mentioned double branch point
singularities in each of the two integral representations of the Kummer confluent con-
fluent hypergeometric functions.

The convergence characteristics of QCDW−4B are not illustrated graphically since
all the corresponding results for different N would collapse onto the same data points
on the scale of the figures, as implied by Table 2. The same remarkable convergence
properties also hold true when plotting QCB1−4B (not shown). In particular, note that
in the CDW-4B method, the Gauss-Legendre quadratures are used in three numeri-
cal integrations {η, τ , θτ }. Here, τ � {τ , θτ , φτ } is the momentum vector from the
momentum representation of the product of the given bound-state orbital and the con-
tinuum Coulomb wavefunction. The remaining fourth numerical integration over φτ

in the CDW-4B method is performed by the Gauss-Mehler quadrature rule of varying
order M. In this latter quadrature, our test computations at all the considered impact
energies determined that the results for QCDW−4B with M � 20 and M � 40 are the
same. Therefore, in Tables 2 and 3, the numerical integration over φτ was carried out
with the Gauss-Mehler order M � 20 at all impact energies.
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Table 1 Total cross sections Q(cm2) as a function of impact energy E(keV) for double charge exchange
4He2+ + 4He(1S) → 4He(1S) + 4He2+ using ten Gauss-Legendre quadrature sets with orders N �
48, 64, . . . , 192 per each of five numerical integrations in the BCIS-4B and BDW-4B methods. Notation
2.2822,-17 means 2.2822 × 10−17 cm2

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

100 100 110 110 117.5 117.5

48 2.2822,-17 1.6945,-17 2.1153,-17 1.6064,-17 2.0505,-17 1.6318,-17

64 2.9494,-17 1.9069,-17 2.6062,-17 1.8714,-17 2.4823,-17 1.8476,-17

80 3.0206,-17 1.9675,-17 2.8403,-17 1.9604,-17 2.7177,-17 1.9433,-17

96 2.7364,-17 1.9141,-17 2.8199,-17 1.9733,-17 2.7793,-17 1.9755,-17

112 2.4943,-17 1.8394,-17 2.7108,-17 1.9499,-17 2.7469,-17 1.9750,-17

128 2.3653,-17 1.7880,-17 2.6098,-17 1.9194,-17 2.6887,-17 1.9612,-17

144 2.3157,-17 1.7628,-17 2.5419,-17 1.8948,-17 2.6361,-17 1.9452,-17

160 2.3090,-17 1.7550,-17 2.5038,-17 1.8786,-17 2.5978,-17 1.9316,-17

176 2.3223,-17 1.7567,-17 2.4865,-17 1.8697,-17 2.5733,-17 1.9218,-17

192 2.3431,-17 1.7626,-17 2.4821,-17 1.8659,-17 2.5594,-17 1.9154,-17

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

125 125 137.5 137.5 150 150

48 2.0797,-17 1.7051,-17 2.2435,-17 1.8236,-17 2.3865,-17 1.8659,-17

64 2.4068,-17 1.8318,-17 2.3424,-17 1.8193,-17 2.3118,-17 1.8003,-17

80 2.6196,-17 1.9200,-17 2.4933,-17 1.8734,-17 2.3910,-17 1.8183,-17

96 2.7112,-17 1.9595,-17 2.5851,-17 1.9094,-17 2.4595,-17 1.8416,-17

112 2.7241,-17 1.9714,-17 2.6270,-17 1.9280,-17 2.5020,-17 1.8578,-17

128 2.7016,-17 1.9693,-17 2.6382,-17 1.9356,-17 2.5239,-17 1.8673,-17

144 2.6700,-17 1.9616,-17 2.6336,-17 1.9369,-17 2.5325,-17 1.8722,-17

160 2.6409,-17 1.9528,-17 2.6227,-17 1.9351,-17 2.5334,-17 1.8741,-17

176 2.6183,-17 1.9451,-17 2.6104,-17 1.9320,-17 2.5304,-17 1.8743,-17

192 2.6023,-17 1.9390,-17 2.5992,-17 1.9287,-17 2.5258,-17 1.8736,-17

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

162.5 162.5 175 175 187.5 187.5

48 2.4276,-17 1.8325,-17 2.3734,-17 1.7507,-17 2.2568,-17 1.6441,-17

64 2.2737,-17 1.7566,-17 2.2076,-17 1.6865,-17 2.1118,-17 1.5967,-17

80 2.2942,-17 1.7512,-17 2.1912,-17 1.6705,-17 2.0777,-17 1.5784,-17

96 2.3352,-17 1.7615,-17 2.2091,-17 1.6717,-17 2.0796,-17 1.5745,-17

112 2.3678,-17 1.7721,-17 2.2299,-17 1.6769,-17 2.0902,-17 1.5757,-17

128 2.3891,-17 1.7800,-17 2.2463,-17 1.6820,-17 2.1010,-17 1.5784,-17

144 2.4015,-17 1.7852,-17 2.2577,-17 1.6861,-17 2.1098,-17 1.5810,-17

160 2.4076,-17 1.7883,-17 2.2650,-17 1.6890,-17 2.1162,-17 1.5832,-17

176 2.4099,-17 1.7900,-17 2.2693,-17 1.6910,-17 2.1206,-17 1.5848,-17

192 2.4098,-17 1.7907,-17 2.2715,-17 1.6922,-17 2.1236,-17 1.5861,-17
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Table 1 continued

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

200 200 225 225 250 250

48 2.1076,-17 1.5275,-17 1.7846,-17 1.2951,-17 1.4836,-17 1.0846,-17

64 1.9934,-17 1.4953,-17 1.7252,-17 1.2833,-17 1.4578,-17 1.0826,-17

80 1.9545,-17 1.4788,-17 1.6937,-17 1.2732,-17 1.4381,-17 1.0778,-17

96 1.9471,-17 1.4728,-17 1.6808,-17 1.2677,-17 1.4272,-17 1.0742,-17

112 1.9504,-17 1.4717,-17 1.6768,-17 1.2651,-17 1.4220,-17 1.0720,-17

128 1.9563,-17 1.4725,-17 1.6767,-17 1.2641,-17 1.4197,-17 1.0708,-17

144 1.9621,-17 1.4738,-17 1.6782,-17 1.2639,-17 1.4191,-17 1.0702,-17

160 1.9670,-17 1.4752,-17 1.6800,-17 1.2641,-17 1.4192,-17 1.0699,-17

176 1.9707,-17 1.4764,-17 1.6819,-17 1.2644,-17 1.4197,-17 1.0698,-17

192 1.9735,-17 1.4774,-17 1.6835,-17 1.2648,-17 1.4204,-17 1.0698,-17

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

300 300 350 350 400 400

48 1.0098,-17 7.5068,-18 6.8761,-18 5.1852,-18 4.7205,-18 3.6001,-18

64 1.0099,-17 7.5400,-18 6.9239,-18 5.2137,-18 4.7628,-18 3.6172,-18

80 1.0048,-17 7.5393,-18 6.9224,-18 5.2219,-18 4.7728,-18 3.6242,-18

96 1.0004,-17 7.5315,-18 6.9108,-18 5.2231,-18 4.7728,-18 3.6269,-18

112 9.9732,-18 7.5237,-18 6.8993,-18 5.2220,-18 4.7700,-18 3.6278,-18

128 9.9534,-18 7.5175,-18 6.8900,-18 5.2204,-18 4.7668,-18 3.6279,-18

144 9.9412,-18 7.5130,-18 6.8831,-18 5.2188,-18 4.7639,-18 3.6276,-18

160 9.9339,-18 7.5099,-18 6.8781,-18 5.2174,-18 4.7615,-18 3.6273,-18

176 9.9299,-18 7.5077,-18 6.8745,-18 5.2163,-18 4.7595,-18 3.6269,-18

192 9.9278,-18 7.5062,-18 6.8720,-18 5.2154,-18 4.7580,-18 3.6265,-18

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

450 450 500 500 550 550

48 3.2737,-18 2.5194,-18 2.2946,-18 1.7792,-18 1.6253,-18 1.2685,-18

64 3.3028,-18 2.5283,-18 2.3129,-18 1.7834,-18 1.6364,-18 1.2704,-18

80 3.3129,-18 2.5328,-18 2.3206,-18 1.7860,-18 1.6416,-18 1.2717,-18

96 3.3159,-18 2.5350,-18 2.3237,-18 1.7875,-18 1.6441,-18 1.2726,-18

112 3.3163,-18 2.5361,-18 2.3248,-18 1.7883,-18 1.6452,-18 1.2731,-18

128 3.3156,-18 2.5366,-18 2.3251,-18 1.7887,-18 1.6457,-18 1.2734,-18

144 3.3147,-18 2.5367,-18 2.3250,-18 1.7890,-18 1.6459,-18 1.2736,-18

160 3.3138,-18 2.5368,-18 2.3248,-18 1.7891,-18 1.6460,-18 1.2738,-18

176 3.3129,-18 2.5367,-18 2.3245,-18 1.7892,-18 1.6459,-18 1.2739,-18

192 3.3122,-18 2.5367,-18 2.3242,-18 1.7892,-18 1.6458,-18 1.2739,-18
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Table 1 continued

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

600 600 625 625 650 650

48 1.1630,-18 9.1556,-19 9.8752,-19 7.7758,-19 8.4052,-19 6.6368,-19

64 1.1697,-18 9.1385,-19 9.9263,-19 7.7792,-19 8.4444,-19 6.6381,-19

80 1.1731,-18 9.1453,-19 9.9536,-19 7.7839,-19 8.4662,-19 6.6413,-19

96 1.1749,-18 9.1501,-19 9.9682,-19 7.7875,-19 8.4782,-19 6.6439,-19

112 1.1758,-18 9.1534,-19 9.9762,-19 7.7900,-19 8.4850,-19 6.6458,-19

128 1.1763,-18 9.1556,-19 9.9806,-19 7.7917,-19 8.4889,-19 6.6471,-19

144 1.1765,-18 9.1570,-19 9.9830,-19 7.7929,-19 8.4911,-19 6.6481,-19

160 1.1766,-18 9.1580,-19 9.9843,-19 7.7938,-19 8.4924,-19 6.6488,-19

176 1.1767,-18 9.1587,-19 9.9849,-19 7.7943,-19 8.4931,-19 6.6493,-19

192 1.1767,-18 9.1591,-19 9.9852,-19 7.7948,-19 8.4935,-19 6.6496,-19

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

700 700 750 750 800 800

48 6.1321,-19 4.8686,-19 4.5144,-19 3.6037,-19 3.3522,-19 2.6905,-19

64 6.1550,-19 4.8677,-19 4.5276,-19 3.6020,-19 3.3597,-19 2.6888,-19

80 6.1687,-19 4.8689,-19 4.5362,-19 3.6023,-19 3.3651,-19 2.6887,-19

96 6.1768,-19 4.8702,-19 4.5415,-19 3.6029,-19 3.3686,-19 2.6889,-19

112 6.1816,-19 4.8713,-19 4.5449,-19 3.6035,-19 3.3709,-19 2.6892,-19

128 6.1845,-19 4.8721,-19 4.5469,-19 3.6040,-19 3.3723,-19 2.6894,-19

144 6.1863,-19 4.8727,-19 4.5483,-19 3.6043,-19 3.3733,-19 2.6897,-19

160 6.1874,-19 4.8731,-19 4.5492,-19 3.6046,-19 3.3740,-19 2.6898,-19

176 6.1881,-19 4.8735,-19 4.5498,-19 3.6048,-19 3.3745,-19 2.6900,-19

192 6.1885,-19 4.8737,-19 4.5502,-19 3.6050,-19 3.3748,-19 2.6901,-19

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

850 850 900 900 950 950

48 2.5097,-19 2.0254,-19 1.8938,-19 1.5368,-19 1.4397,-19 1.1749,-19

64 2.5139,-19 2.0239,-19 1.8960,-19 1.5355,-19 1.4408,-19 1.1739,-19

80 2.5173,-19 2.0236,-19 1.8981,-19 1.5352,-19 1.4420,-19 1.1735,-19

96 2.5196,-19 2.0236,-19 1.8996,-19 1.5351,-19 1.4430,-19 1.1735,-19

112 2.5211,-19 2.0237,-19 1.9006,-19 1.5352,-19 1.4437,-19 1.1734,-19

128 2.5221,-19 2.0239,-19 1.9013,-19 1.5352,-19 1.4442,-19 1.1735,-19

144 2.5228,-19 2.0240,-19 1.9018,-19 1.5353,-19 1.4446,-19 1.1735,-19

160 2.5233,-19 2.0241,-19 1.9022,-19 1.5354,-19 1.4448,-19 1.1735,-19

176 2.5237,-19 2.0242,-19 1.9024,-19 1.5354,-19 1.4450,-19 1.1736,-19

192 2.5239,-19 2.0243,-19 1.9026,-19 1.5355,-19 1.4452,-19 1.1736,-19
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Table 1 continued

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

1000 1000 1250 1250 1500 1500

48 1.1022,-19 9.0469,-20 3.1898,-20 2.6968,-20 1.0561,-20 9.2104,-21

64 1.1027,-19 9.0385,-20 3.1877,-20 2.6946,-20 1.0549,-20 9.2044,-21

80 1.1035,-19 9.0358,-20 3.1879,-20 2.6937,-20 1.0546,-20 9.2016,-21

96 1.1041,-19 9.0348,-20 3.1885,-20 2.6932,-20 1.0546,-20 9.2002,-21

112 1.1046,-19 9.0346,-20 3.1891,-20 2.6930,-20 1.0546,-20 9.1993,-21

128 1.1049,-19 9.0347,-20 3.1896,-20 2.6929,-20 1.0547,-20 9.1989,-21

144 1.1052,-19 9.0348,-20 3.1901,-20 2.6928,-20 1.0548,-20 9.1986,-21

160 1.1054,-19 9.0350,-20 3.1904,-20 2.6928,-20 1.0548,-20 9.1984,-21

176 1.1055,-19 9.0351,-20 3.1907,-20 2.6928,-20 1.0549,-20 9.1982,-21

192 1.1056,-19 9.0353,-20 3.1909,-20 2.6928,-20 1.0549,-20 9.1982,-21

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

2500 2500 2750 2750 3000 3000

48 3.8974,-21 3.5092,-21 1.5728,-21 1.4624,-21 6.8400,-22 6.5664,-22

64 3.8923,-21 3.5075,-21 1.5707,-21 1.4618,-21 6.8311,-22 6.5646,-22

80 3.8907,-21 3.5066,-21 1.5699,-21 1.4616,-21 6.8276,-22 6.5636,-22

96 3.8902,-21 3.5062,-21 1.5696,-21 1.4614,-21 6.8261,-22 6.5630,-22

112 3.8901,-21 3.5059,-21 1.5695,-21 1.4613,-21 6.8254,-22 6.5626,-22

128 3.8901,-21 3.5057,-21 1.5694,-21 1.4612,-21 6.8250,-22 6.5624,-22

144 3.8902,-21 3.5056,-21 1.5694,-21 1.4612,-21 6.8248,-22 6.5622,-22

160 3.8903,-21 3.5055,-21 1.5694,-21 1.4612,-21 6.8248,-22 6.5621,-22

176 3.8904,-21 3.5055,-21 1.5694,-21 1.4611,-21 6.8248,-22 6.5620,-22

192 3.8905,-21 3.5054,-21 1.5695,-21 1.4611,-21 6.8248,-22 6.5619,-22

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

2500 2500 2750 2750 3000 3000

48 3.1701,-22 3.1405,-22 1.5521,-22 1.5854,-22 7.9723,-23 8.3861,-23

64 3.1662,-22 3.1398,-22 1.5504,-22 1.5851,-22 7.9639,-23 8.3851,-23

80 3.1646,-22 3.1395,-22 1.5496,-22 1.5850,-22 7.9604,-23 8.3845,-23

96 3.1639,-22 3.1392,-22 1.5493,-22 1.5849,-22 7.9586,-23 8.3841,-23

112 3.1635,-22 3.1391,-22 1.5491,-22 1.5848,-22 7.9577,-23 8.3838,-23

128 3.1633,-22 3.1390,-22 1.5490,-22 1.5848,-22 7.9571,-23 8.3836,-23

144 3.1632,-22 3.1389,-22 1.5489,-22 1.5847,-22 7.9568,-23 8.3835,-23

160 3.1632,-22 3.1389,-22 1.5489,-22 1.5847,-22 7.9566,-23 8.3834,-23

176 3.1631,-22 3.1388,-22 1.5489,-22 1.5847,-22 7.9565,-23 8.3833,-23

192 3.1631,-22 3.1388,-22 1.5488,-22 1.5847,-22 7.9564,-23 8.3832,-23
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Table 1 continued

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

3250 3250 3500 3500 3750 3750

48 4.2717,-23 4.6210,-23 2.3765,-23 2.6396,-23 1.3677,-23 1.5566,-23

64 4.2675,-23 4.6205,-23 2.3746,-23 2.6394,-23 1.3669,-23 1.5566,-23

80 4.2658,-23 4.6202,-23 2.3737,-23 2.6392,-23 1.3664,-23 1.5565,-23

96 4.2649,-23 4.6201,-23 2.3733,-23 2.6391,-23 1.3662,-23 1.5565,-23

112 4.2644,-23 4.6199,-23 2.3730,-23 2.6391,-23 1.3661,-23 1.5564,-23

128 4.2642,-23 4.6198,-23 2.3729,-23 2.6390,-23 1.3666,-23 1.5564,-23

144 4.2640,-23 4.6198,-23 2.3728,-23 2.6390,-23 1.3659,-23 1.5564,-23

160 4.2638,-23 4.6197,-23 2.3727,-23 2.6390,-23 1.3659,-23 1.5564,-23

176 4.2638,-23 4.6197,-23 2.3727,-23 2.6390,-23 1.3659,-23 1.5564,-23

192 4.2639,-23 4.6197,-23 2.3727,-23 2.6389,-23 1.3659,-23 1.5564,-23

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

4000 4000 4250 4250 4500 4500

48 8.1200,-24 9.4456,-24 4.9591,-24 5.8815,-24 3.1056,-24 3.7481,-24

64 8.1134,-24 9.4456,-24 4.9533,-24 5.8805,-24 3.1034,-24 3.7468,-24

80 8.1111,-24 9.4452,-24 4.9521,-24 5.8804,-24 3.1027,-24 3.7467,-24

96 8.1100,-24 9.4450,-24 4.9515,-24 5.8802,-24 3.1023,-24 3.7466,-24

112 8.1093,-24 9.4448,-24 4.9512,-24 5.8801,-24 3.1022,-24 3.7466,-24

128 8.1089,-24 9.4447,-24 4.9510,-24 5.8801,-24 3.1021,-24 3.7465,-24

144 8.1087,-24 9.4446,-24 4.9508,-24 5.8800,-24 3.1020,-24 3.7465,-24

160 8.1085,-24 9.4446,-24 4.9508,-24 5.8800,-24 3.1020,-24 3.7465,-24

176 8.1084,-24 9.4445,-24 4.9507,-24 5.8800,-24 3.1019,-24 3.7465,-24

192 8.1083,-24 9.4445,-24 4.9507,-24 5.8799,-24 3.1019,-24 3.7465,-24

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

4750 4750 5000 5000 5500 5500

48 1.9899,-24 2.4385,-24 1.3049,-24 1.6162,-24 6.0211,-25 7.4758,-25

64 1.9915,-24 2.4380,-24 1.3066,-24 1.6171,-24 5.9825,-25 7.4862,-25

80 1.9911,-24 2.4379,-24 1.3065,-24 1.6170,-24 5.9815,-25 7.4870,-25

96 1.9909,-24 2.4379,-24 1.3064,-24 1.6170,-24 5.9814,-25 7.4869,-25

112 1.9908,-24 2.4378,-24 1.3064,-24 1.6170,-24 5.9813,-25 7.4869,-25

128 1.9908,-24 2.4378,-24 1.3064,-24 1.6169,-24 5.9813,-25 7.4868,-25

144 1.9907,-24 2.4378,-24 1.3064,-24 1.6169,-24 5.9813,-25 7.4868,-25

160 1.9907,-24 2.4378,-24 1.3064,-24 1.6169,-24 5.9813,-25 7.4868,-25

176 1.9907,-24 2.4378,-24 1.3064,-24 1.6169,-24 5.9813,-25 7.4868,-25

192 1.9907,-24 2.4378,-24 1.3064,-24 1.6169,-24 5.9813,-25 7.4867,-25
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Table 1 continued

Method BCIS BDW BCIS BDW BCIS BDW
E(keV)
N/Q(cm2)

6000 6000 6500 6500 7000 7000

48 2.9523,-25 3.6886,-25 1.5059,-25 1.9145,-25 8.9475,-26 1.0260,-25

64 2.9497,-25 3.6794,-25 1.5463,-25 1.9038,-25 8.6907,-26 1.0278,-25

80 2.9485,-25 3.6792,-25 1.5514,-25 1.9028,-25 8.6666,-26 1.0283,-25

96 2.9483,-25 3.6792,-25 1.5519,-25 1.9027,-25 8.6624,-26 1.0284,-25

112 2.9483,-25 3.6792,-25 1.5519,-25 1.9027,-25 8.6621,-26 1.0284,-25

128 2.9483,-25 3.6792,-25 1.5520,-25 1.9027,-25 8.6623,-26 1.0284,-25

144 2.9484,-25 3.6792,-25 1.5520,-25 1.9027,-25 8.6625,-26 1.0284,-25

160 2.9484,-25 3.6792,-25 1.5520,-25 1.9027,-25 8.6626,-26 1.0284,-25

176 2.9484,-25 3.6792,-25 1.5520,-25 1.9027,-25 8.6627,-26 1.0284,-25

192 2.9484,-25 3.6792,-25 1.5520,-25 1.9027,-25 8.6628,-26 1.0284,-25

Next, we pass onto a possible relationship between the BCIS-4B and BDW-4B
methods. Prior to this, it would be useful to recall a link between the BCIS-3B and
BDW-3B methods for a pure three-body charge exchange:

ZP + (ZT; e)i −→ (ZP; e) f + ZT. (3.3)

For this process, the cross sections in the BCIS-3B and BDW-3Bmethods are identical
because the semi-analytical calculations of the transition amplitudes in these two
theories yield the same expressions. This occurs despite the fact that the perturbation
operators in the transition amplitudes are different in these twomethods. The difference
in the interaction operators is due to the applications of the defining perturbations
(the full Hamiltonian minus the channel Hamiltonian) to two different total scattering
wavefunctions (those for the initial and final states). Such a difference is only formal as
one is free to apply the said defining perturbation potentials in the transition amplitudes
to either the initial or the final total scattering states. The key for explaining the
coincidence of the transition amplitudes in the BCIS-3B and BDW-3B methods is
the availability of the exact initial and final bound states of the hydrogenlike atomic
systems (ZT; e)i and (ZP; e) f .

By contrast, no exact bound-state wavefunctions of heliumlike atomic systems
exists1. It is for this reason that the transition amplitudes in BCIS-4B and BDW-4B
methods for double charge exchange (2.1) do not give the same analytical expression
for any approximate bound-state heliumlike wavefunctions. This would occur for any
form of the available approximate two-electron bound-state wavefunctions no matter
how precise the corresponding variational binding energies can be.

1 Here, the clause ’exact’ refers to the finite number of operations. This term is conceptually different from
e.g. the numerically most accurate heliumlike binding energy, irrespective of the number of the obtained
decimal places. The reason is that all such results stem from some variational computations with iterations
that do not terminate after a finite number of cycles.
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Table 2 Total cross sections Q(cm2) as a function of impact energy E(keV) for double charge exchange
4He2+ + 4He(1S) → 4He(1S) + 4He2+ using ten Gauss-Legendre quadrature sets with orders N � 48, 64,
...,192 per each of five numerical integrations in the CB1-4B and CDW-4B methods. Notation 3.5898,-16
means 3.5898 × 10−16 cm2

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

100 100 110 110 117.5 117.5

48 3.5898,-16 5.3139,-16 3.0486,-16 3.8247,-16 2.7132,-16 3.0380,-16

64 3.5898,-16 5.3139,-16 3.0486,-16 3.8247,-16 2.7132,-16 3.0380,-16

80 3.5898,-16 5.3139,-16 3.0486,-16 3.8247,-16 2.7132,-16 3.0380,-16

96 3.5898,-16 5.3139,-16 3.0486,-16 3.8247,-16 2.7132,-16 3.0380,-16

112 3.5898,-16 5.3139,-16 3.0486,-16 3.8247,-16 2.7132,-16 3.0380,-16

128 3.5898,-16 5.3139,-16 3.0486,-16 3.8247,-16 2.7132,-16 3.0380,-16

144 3.5898,-16 5.3139,-16 3.0486,-16 3.8247,-16 2.7132,-16 3.0380,-16

160 3.5898,-16 5.3139,-16 3.0486,-16 3.8247,-16 2.7132,-16 3.0380,-16

176 3.5898,-16 5.3139,-16 3.0486,-16 3.8247,-16 2.7132,-16 3.0380,-16

192 3.5898,-16 5.3139,-16 3.0486,-16 3.8247,-16 2.7132,-16 3.0380,-16

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

125 125 137.5 137.5 150 150

48 2.4256,-16 2.4425,-16 2.0299,-16 1.7375,-16 1.7148,-16 1.2668,-16

64 2.4256,-16 2.4425,-16 2.0299,-16 1.7375,-16 1.7148,-16 1.2668,-16

80 2.4256,-16 2.4425,-16 2.0299,-16 1.7375,-16 1.7148,-16 1.2668,-16

96 2.4256,-16 2.4425,-16 2.0299,-16 1.7375,-16 1.7148,-16 1.2668,-16

112 2.4256,-16 2.4425,-16 2.0299,-16 1.7375,-16 1.7148,-16 1.2668,-16

128 2.4256,-16 2.4425,-16 2.0299,-16 1.7375,-16 1.7148,-16 1.2668,-16

144 2.4256,-16 2.4425,-16 2.0299,-16 1.7375,-16 1.7148,-16 1.2668,-16

160 2.4256,-16 2.4425,-16 2.0299,-16 1.7375,-16 1.7148,-16 1.2668,-16

176 2.4256,-16 2.4425,-16 2.0299,-16 1.7375,-16 1.7148,-16 1.2668,-16

192 2.4256,-16 2.4425,-16 2.0299,-16 1.7375,-16 1.7148,-16 1.2668,-16

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

162.5 162.5 175 175 187.5 187.5

48 1.4603,-16 9.4296,-17 1.2523,-16 7.1438,-17 1.0805,-16 5.4952,-17

64 1.4603,-16 9.4296,-17 1.2523,-16 7.1438,-17 1.0805,-16 5.4952,-17

80 1.4603,-16 9.4296,-17 1.2523,-16 7.1438,-17 1.0805,-16 5.4952,-17

96 1.4603,-16 9.4296,-17 1.2523,-16 7.1438,-17 1.0805,-16 5.4952,-17

112 1.4603,-16 9.4296,-17 1.2523,-16 7.1438,-17 1.0805,-16 5.4952,-17

128 1.4603,-16 9.4296,-17 1.2523,-16 7.1438,-17 1.0805,-16 5.4952,-17

144 1.4603,-16 9.4296,-17 1.2523,-16 7.1438,-17 1.0805,-16 5.4952,-17

160 1.4603,-16 9.4296,-17 1.2523,-16 7.1438,-17 1.0805,-16 5.4952,-17

176 1.4603,-16 9.4296,-17 1.2523,-16 7.1438,-17 1.0805,-16 5.4952,-17

192 1.4603,-16 9.4296,-17 1.2523,-16 7.1438,-17 1.0805,-16 5.4952,-17
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Table 2 continued

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

200 200 225 225 250 250

48 9.3737,-17 4.2838,-17 7.1556,-17 2.6932,-17 5.5513,-17 1.7582,-17

64 9.3737,-17 4.2838,-17 7.1556,-17 2.6932,-17 5.5513,-17 1.7582,-17

80 9.3737,-17 4.2838,-17 7.1556,-17 2.6932,-17 5.5513,-17 1.7582,-17

96 9.3737,-17 4.2838,-17 7.1556,-17 2.6932,-17 5.5513,-17 1.7582,-17

112 9.3737,-17 4.2838,-17 7.1556,-17 2.6932,-17 5.5513,-17 1.7582,-17

128 9.3737,-17 4.2838,-17 7.1556,-17 2.6932,-17 5.5513,-17 1.7582,-17

144 9.3737,-17 4.2838,-17 7.1556,-17 2.6932,-17 5.5513,-17 1.7582,-17

160 9.3737,-17 4.2838,-17 7.1556,-17 2.6932,-17 5.5513,-17 1.7582,-17

176 9.3737,-17 4.2838,-17 7.1556,-17 2.6932,-17 5.5513,-17 1.7582,-17

192 9.3737,-17 4.2838,-17 7.1556,-17 2.6932,-17 5.5513,-17 1.7582,-17

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

300 300 350 350 400 400

48 3.4738,-17 8.1755,-18 2.2653,-17 4.1526,-18 1.5263,-17 2.2542,-18

64 3.4738,-17 8.1755,-18 2.2653,-17 4.1526,-18 1.5263,-17 2.2542,-18

80 3.4738,-17 8.1755,-18 2.2653,-17 4.1526,-18 1.5263,-17 2.2542,-18

96 3.4738,-17 8.1755,-18 2.2653,-17 4.1526,-18 1.5263,-17 2.2542,-18

112 3.4738,-17 8.1755,-18 2.2653,-17 4.1526,-18 1.5263,-17 2.2542,-18

128 3.4738,-17 8.1755,-18 2.2653,-17 4.1526,-18 1.5263,-17 2.2542,-18

144 3.4738,-17 8.1755,-18 2.2653,-17 4.1526,-18 1.5263,-17 2.2542,-18

160 3.4738,-17 8.1755,-18 2.2653,-17 4.1526,-18 1.5263,-17 2.2542,-18

176 3.4738,-17 8.1755,-18 2.2653,-17 4.1526,-18 1.5263,-17 2.2542,-18

192 3.4738,-17 8.1755,-18 2.2653,-17 4.1526,-18 1.5263,-17 2.2542,-18

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

450 450 500 500 550 550

48 1.0563,-17 1.2894,-18 7.4774,-18 7.6957,-19 5.3971,-18 4.7593,-19

64 1.0563,-17 1.2894,-18 7.4774,-18 7.6957,-19 5.3971,-18 4.7593,-19

80 1.0563,-17 1.2894,-18 7.4774,-18 7.6957,-19 5.3971,-18 4.7593,-19

96 1.0563,-17 1.2894,-18 7.4774,-18 7.6957,-19 5.3971,-18 4.7593,-19

112 1.0563,-17 1.2894,-18 7.4774,-18 7.6957,-19 5.3971,-18 4.7593,-19

128 1.0563,-17 1.2894,-18 7.4774,-18 7.6957,-19 5.3971,-18 4.7593,-19

144 1.0563,-17 1.2894,-18 7.4774,-18 7.6957,-19 5.3971,-18 4.7593,-19

160 1.0563,-17 1.2894,-18 7.4774,-18 7.6957,-19 5.3971,-18 4.7593,-19

176 1.0563,-17 1.2894,-18 7.4774,-18 7.6957,-19 5.3971,-18 4.7593,-19

192 1.0563,-17 1.2894,-18 7.4774,-18 7.6957,-19 5.3971,-18 4.7593,-19
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Table 2 continued

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

600 600 625 625 650 650

48 3.9624,-18 3.0336,-19 3.4146,-18 2.4464,-19 2.9531,-18 1.9849,-19

64 3.9624,-18 3.0336,-19 3.4146,-18 2.4464,-19 2.9531,-18 1.9849,-19

80 3.9624,-18 3.0336,-19 3.4146,-18 2.4464,-19 2.9531,-18 1.9849,-19

96 3.9624,-18 3.0336,-19 3.4146,-18 2.4464,-19 2.9531,-18 1.9849,-19

112 3.9624,-18 3.0336,-19 3.4146,-18 2.4464,-19 2.9531,-18 1.9849,-19

128 3.9624,-18 3.0336,-19 3.4146,-18 2.4464,-19 2.9531,-18 1.9849,-19

144 3.9624,-18 3.0336,-19 3.4146,-18 2.4464,-19 2.9531,-18 1.9849,-19

160 3.9624,-18 3.0336,-19 3.4146,-18 2.4464,-19 2.9531,-18 1.9849,-19

176 3.9624,-18 3.0336,-19 3.4146,-18 2.4464,-19 2.9531,-18 1.9849,-19

192 3.9624,-18 3.0336,-19 3.4146,-18 2.4464,-19 2.9531,-18 1.9849,-19

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

700 700 750 750 800 800

48 2.2306,-18 1.3288,-19 1.7053,-18 9.0780,-20 1.3181,-18 6.3154,-20

64 2.2306,-18 1.3288,-19 1.7053,-18 9.0780,-20 1.3181,-18 6.3153,-20

80 2.2306,-18 1.3288,-19 1.7053,-18 9.0780,-20 1.3181,-18 6.3153,-20

96 2.2306,-18 1.3288,-19 1.7053,-18 9.0780,-20 1.3181,-18 6.3153,-20

112 2.2306,-18 1.3288,-19 1.7053,-18 9.0780,-20 1.3181,-18 6.3153,-20

128 2.2306,-18 1.3288,-19 1.7053,-18 9.0780,-20 1.3181,-18 6.3153,-20

144 2.2306,-18 1.3288,-19 1.7053,-18 9.0780,-20 1.3181,-18 6.3153,-20

160 2.2306,-18 1.3288,-19 1.7053,-18 9.0780,-20 1.3181,-18 6.3153,-20

176 2.2306,-18 1.3288,-19 1.7053,-18 9.0780,-20 1.3181,-18 6.3153,-20

192 2.2306,-18 1.3288,-19 1.7053,-18 9.0780,-20 1.3181,-18 6.3153,-20

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

850 850 900 900 950 950

48 1.0290,-18 4.4658,-20 8.1066,-19 3.2050,-20 6.4406,-19 2.3314,-20

64 1.0290,-18 4.4658,-20 8.1066,-19 3.2050,-20 6.4406,-19 2.3314,-20

80 1.0290,-18 4.4658,-20 8.1066,-19 3.2050,-20 6.4406,-19 2.3314,-20

96 1.0290,-18 4.4658,-20 8.1066,-19 3.2050,-20 6.4406,-19 2.3314,-20

112 1.0290,-18 4.4658,-20 8.1066,-19 3.2050,-20 6.4406,-19 2.3314,-20

128 1.0290,-18 4.4658,-20 8.1066,-19 3.2050,-20 6.4406,-19 2.3314,-20

144 1.0290,-18 4.4658,-20 8.1066,-19 3.2050,-20 6.4406,-19 2.3314,-20

160 1.0290,-18 4.4658,-20 8.1066,-19 3.2050,-20 6.4406,-19 2.3314,-20

176 1.0290,-18 4.4658,-20 8.1066,-19 3.2050,-20 6.4406,-19 2.3314,-20

192 1.0290,-18 4.4658,-20 8.1066,-19 3.2050,-20 6.4406,-19 2.3314,-20
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Table 2 continued

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

1000 1000 1250 1250 1500 1500

48 5.1568,-19 1.7171,-20 1.8732,-19 4.3434,-21 7.7542,-20 1.3425,-21

64 5.1568,-19 1.7170,-20 1.8732,-19 4.3433,-21 7.7542,-20 1.3425,-21

80 5.1568,-19 1.7170,-20 1.8732,-19 4.3433,-21 7.7542,-20 1.3425,-21

96 5.1568,-19 1.7170,-20 1.8732,-19 4.3433,-21 7.7542,-20 1.3425,-21

112 5.1568,-19 1.7170,-20 1.8732,-19 4.3433,-21 7.7542,-20 1.3425,-21

128 5.1568,-19 1.7170,-20 1.8732,-19 4.3433,-21 7.7542,-20 1.3425,-21

144 5.1568,-19 1.7170,-20 1.8732,-19 4.3433,-21 7.7542,-20 1.3425,-21

160 5.1568,-19 1.7170,-20 1.8732,-19 4.3433,-21 7.7542,-20 1.3425,-21

176 5.1568,-19 1.7170,-20 1.8732,-19 4.3433,-21 7.7542,-20 1.3425,-21

192 5.1568,-19 1.7170,-20 1.8732,-19 4.3433,-21 7.7542,-20 1.3425,-21

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

2500 2500 2750 2750 3000 3000

48 3.5428,-20 4.8094,-22 1.7495,-20 1.9296,-22 9.2007,-21 8.4772,-23

64 3.5428,-20 4.8097,-22 1.7495,-20 1.9301,-22 9.2007,-21 8.4761,-23

80 3.5428,-20 4.8096,-22 1.7495,-20 1.9301,-22 9.2007,-21 8.4761,-23

96 3.5428,-20 4.8096,-22 1.7495,-20 1.9301,-22 9.2007,-21 8.4761,-23

112 3.5428,-20 4.8096,-22 1.7495,-20 1.9301,-22 9.2007,-21 8.4761,-23

128 3.5428,-20 4.8096,-22 1.7495,-20 1.9301,-22 9.2007,-21 8.4761,-23

144 3.5428,-20 4.8096,-22 1.7495,-20 1.9301,-22 9.2007,-21 8.4761,-23

160 3.5428,-20 4.8096,-22 1.7495,-20 1.9301,-22 9.2007,-21 8.4761,-23

176 3.5428,-20 4.8096,-22 1.7495,-20 1.9301,-22 9.2007,-21 8.4761,-23

192 3.5428,-20 4.8096,-22 1.7495,-20 1.9301,-22 9.2007,-21 8.4761,-23

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

2500 2500 2750 2750 3000 3000

48 5.0986,-21 4.0105,-23 2.9532,-21 2.0142,-23 1.7766,-21 1.0626,-23

64 5.0986,-21 4.0056,-23 2.9532,-21 2.0117,-23 1.7766,-21 1.0638,-23

80 5.0986,-21 4.0055,-23 2.9532,-21 2.0118,-23 1.7766,-21 1.0638,-23

96 5.0986,-21 4.0055,-23 2.9532,-21 2.0118,-23 1.7766,-21 1.0638,-23

112 5.0986,-21 4.0055,-23 2.9532,-21 2.0118,-23 1.7766,-21 1.0638,-23

128 5.0986,-21 4.0055,-23 2.9532,-21 2.0118,-23 1.7766,-21 1.0638,-23

144 5.0986,-21 4.0055,-23 2.9532,-21 2.0118,-23 1.7766,-21 1.0638,-23

160 5.0986,-21 4.0055,-23 2.9532,-21 2.0118,-23 1.7766,-21 1.0638,-23

176 5.0986,-21 4.0055,-23 2.9532,-21 2.0118,-23 1.7766,-21 1.0638,-23

192 5.0986,-21 4.0055,-23 2.9532,-21 2.0118,-23 1.7766,-21 1.0638,-23
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Table 2 continued

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

3250 3250 3500 3500 3750 3750

48 1.1046,-21 5.8563,-24 7.0697,-22 3.3611,-24 4.6419,-22 2.0010,-24

64 1.1046,-21 5.8804,-24 7.0697,-22 3.3756,-24 4.6419,-22 2.0017,-24

80 1.1046,-21 5.8781,-24 7.0697,-22 3.3742,-24 4.6419,-22 2.0029,-24

96 1.1046,-21 5.8781,-24 7.0697,-22 3.3744,-24 4.6419,-22 2.0028,-24

112 1.1046,-21 5.8781,-24 7.0697,-22 3.3744,-24 4.6419,-22 2.0028,-24

128 1.1046,-21 5.8781,-24 7.0697,-22 3.3744,-24 4.6419,-22 2.0028,-24

144 1.1046,-21 5.8781,-24 7.0697,-22 3.3744,-24 4.6419,-22 2.0028,-24

160 1.1046,-21 5.8781,-24 7.0697,-22 3.3744,-24 4.6419,-22 2.0028,-24

176 1.1046,-21 5.8781,-24 7.0697,-22 3.3744,-24 4.6419,-22 2.0028,-24

192 1.1046,-21 5.8781,-24 7.0697,-22 3.3744,-24 4.6419,-22 2.0028,-24

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

4000 4000 4250 4250 4500 4500

48 3.1181,-22 1.2286,-24 2.1379,-22 7.7345,-25 1.4932,-22 4.9699,-25

64 3.1181,-22 1.2223,-24 2.1379,-22 7.6694,-25 1.4932,-22 4.9348,-25

80 3.1181,-22 1.2245,-24 2.1379,-22 7.6832,-25 1.4932,-22 4.9341,-25

96 3.1181,-22 1.2243,-24 2.1379,-22 7.6831,-25 1.4932,-22 4.9365,-25

112 3.1181,-22 1.2243,-24 2.1379,-22 7.6830,-25 1.4932,-22 4.9360,-25

128 3.1181,-22 1.2243,-24 2.1379,-22 7.6831,-25 1.4932,-22 4.9361,-25

144 3.1181,-22 1.2243,-24 2.1379,-22 7.6831,-25 1.4932,-22 4.9361,-25

160 3.1181,-22 1.2243,-24 2.1379,-22 7.6831,-25 1.4932,-22 4.9360,-25

176 3.1181,-22 1.2243,-24 2.1379,-22 7.6831,-25 1.4932,-22 4.9361,-25

192 3.1181,-22 1.2243,-24 2.1379,-22 7.6831,-25 1.4932,-22 4.9361,-25

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

4750 4750 5000 5000 5500 5500

48 1.0605,-22 3.2513,-25 7.6486,-23 2.1634,-25 4.1442,-23 1.0079,-25

64 1.0605,-22 3.2463,-25 7.6486,-23 2.1758,-25 4.1442,-23 1.0228,-25

80 1.0605,-22 3.2372,-25 7.6486,-23 2.1663,-25 4.1442,-23 1.0218,-25

96 1.0605,-22 3.2392,-25 7.6486,-23 2.1664,-25 4.1442,-23 1.0201,-25

112 1.0605,-22 3.2391,-25 7.6486,-23 2.1668,-25 4.1442,-23 1.0200,-25

128 1.0605,-22 3.2390,-25 7.6486,-23 2.1666,-25 4.1442,-23 1.0201,-25

144 1.0605,-22 3.2390,-25 7.6486,-23 2.1666,-25 4.1442,-23 1.0201,-25

160 1.0605,-22 3.2390,-25 7.6486,-23 2.1666,-25 4.1442,-23 1.0201,-25

176 1.0605,-22 3.2390,-25 7.6486,-23 2.1666,-25 4.1442,-23 1.0201,-25

192 1.0605,-22 3.2390,-25 7.6486,-23 2.1666,-25 4.1442,-23 1.0201,-25
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Table 2 continued

Method CB1 CDW CB1 CDW CB1 CDW
E(keV)
N/Q(cm2)

6000 6000 6500 6500 7000 7000

48 2.3548,-23 5.0312,-26 1.3938,-23 2.6724,-26 8.5467,-24 1.4889,-26

64 2.3548,-23 5.0708,-26 1.3938,-23 2.6529,-26 8.5467,-24 1.4618,-26

80 2.3548,-23 5.0971,-26 1.3938,-23 2.6665,-26 8.5467,-24 1.4610,-26

96 2.3548,-23 5.0969,-26 1.3938,-23 2.6740,-26 8.5467,-24 1.4644,-26

112 2.3548,-23 5.0943,-26 1.3938,-23 2.6753,-26 8.5467,-24 1.4661,-26

128 2.3548,-23 5.0939,-26 1.3938,-23 2.6750,-26 8.5467,-24 1.4666,-26

144 2.3548,-23 5.0941,-26 1.3938,-23 2.6748,-26 8.5467,-24 1.4666,-26

160 2.3548,-23 5.0942,-26 1.3938,-23 2.6747,-26 8.5467,-24 1.4666,-26

176 2.3548,-23 5.0942,-26 1.3938,-23 2.6747,-26 8.5467,-24 1.4666,-26

192 2.3548,-23 5.0942,-26 1.3938,-23 2.6748,-26 8.5467,-24 1.4665,-26

Therefore, due to the unequal transition amplitudes in the BCIS-4B and BDW-
4B methods for process (2.1), some differences are expected in the resulting cross
sections for these two theories. It would then be of interest to see to which extent the
difference betweenQBCIS−4B andQBDW−4B canbe for process (2.1). This is illustrated
in Fig. 4, which makes a direct comparison between QBCIS−4B and QBDW−4B on the
same panels for N � 48, 64, 80, 96, 128 and N � 192. The difference seen on the
six panels (a)-(f) from Fig. 4 is quite small at E ≥ 150 keV (with some oscillations or
undulations at 100 ≤ E < 150 keV for N � 48). This is an appealing feature of the
BCIS-4B and BDW-4B methods, especially given that QBCIS−4B and QBDW−4B are
computed with the simplest one-parameter Hyllerras’ [95] ground-state wavefunction
of helium. Based on this finding, it might be anticipated that even a better agreement
between QBCIS−4B and QBDW−4B could take place with more elaborated heliumlike
bound-state wavefunctions (e.g. those with some ∼ 60 variational parameters from
the so-called ’configuration-interaction’ formalism [97]).

The CB1-4B and CDW-4Bmethods are purely the first- and second-order methods,
respectively. These are the two extremes in the same formalism. The CB1-method is of
a first-order because it invokes no electronic continua whatsoever (centered on either
the projectile or target nucleus). By contrast, the CDW-4Bmethod is of a second-order
since it takes into account all the electronic continua of the two electrons (on both the
projectile and target nucleus in the in the entrance and exit channel, respectively).
On the other hand, the asymmetric second-order approximations are also of interest to
consider as theymake some bridges between the pure first- and second-order methods.
In particular, the BCIS-4B and BDW-4B methods are the two different hybridizations
of the CDW-4B and CB1-4B methods. They take the formalism of the CDW-4B
method in one channel and that of the CB1-4B method in the other channel. As such,
theBCIS-4B andBDW-4Bmethods include the one-center electronic continua on only
one nucleus (either of the projectile or target nucleus). In other words, as opposed to
the two-center electronic continua in the CDW-4B method, the one-center electronic
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Table 3 Total cross sections Q(cm2) as a function of impact energy E(keV) for double charge exchange
4He2++ 4He(1S) → 4He(1S) + 4He2+ using the Gauss-Legendre quadrature set with order N � 192 per
each of three-to-five-dimensional (3D-5D) numerical integrations in the BCIS-4B (5D), BDW-4B (5D),
CB1-4B (3D) and CDW-4B (4D) methods. Notation 2.3431,-17 means 2.3431 × 10−17 cm2

Method
E(keV)/Q(cm2)

BCIS BDW CB1 CDW

100 2.3431,-17 1.7626,-17 3.5898,-16 5.3139,-16

110 2.4821,-17 1.8659,-17 3.0486,-16 3.8247,-16

117.5 2.5594,-17 1.9154,-17 2.7132,-16 3.0380,-16

125 2.6023,-17 1.9390,-17 2.4256,-16 2.4425,-16

137.5 2.5992,-17 1.9287,-17 2.0299,-16 1.7375,-16

150 2.5258,-17 1.8736,-17 1.7148,-16 1.2668,-16

162.5 2.4098,-17 1.7907,-17 1.4603,-16 9.4296,-17

175 2.2715,-17 1.6922,-17 1.2523,-16 7.1438,-17

187.5 2.1236,-17 1.5861,-17 1.0805,-16 5.4952,-17

200 1.9735,-17 1.4774,-17 9.3737,-17 4.2838,-17

225 1.6835,-17 1.2648,-17 7.1556,-17 2.6932,-17

250 1.4204,-17 1.0698,-17 5.5513,-17 1.7582,-17

300 9.9278,-18 7.5062,-18 3.4738,-17 8.1755,-18

350 6.8720,-18 5.2154,-18 2.2653,-17 4.1526,-18

400 4.7580,-18 3.6265,-18 1.5263,-17 2.2542,-18

450 3.3122,-18 2.5367,-18 1.0563,-17 1.2894,-18

500 2.3242,-18 1.7892,-18 7.4774,-18 7.6957,-19

550 1.6458,-18 1.2739,-18 5.3971,-18 4.7593,-19

600 1.1767,-18 9.1591,-19 3.9624,-18 3.0336,-19

625 9.9852,-19 7.7948,-19 3.4146,-18 2.4464,-19

650 8.4935,-19 6.6496,-19 2.9531,-18 1.9849,-19

700 6.1885,-19 4.8737,-19 2.2306,-18 1.3288,-19

750 4.5502,-19 3.6050,-19 1.7053,-18 9.0780,-20

800 3.3748,-19 2.6901,-19 1.3181,-18 6.3153,-20

825 2.9156,-19 2.3312,-19 1.1632,-18 5.3003,-20

850 2.5239,-19 2.0243,-19 1.0290,-18 4.4658,-20

900 1.9026,-19 1.5355,-19 8.1066,-19 3.2050,-20

950 1.4452,-19 1.1736,-19 6.4406,-19 2.3314,-20

1000 1.1056,-19 9.0353,-20 5.1568,-19 1.7170,-20

1250 3.1909,-20 2.6928,-20 1.8732,-19 4.3433,-21

1500 1.0549,-20 9.1982,-21 7.7542,-20 1.3425,-21

1750 3.8905,-21 3.5054,-21 3.5428,-20 4.8096,-22

2000 1.5695,-21 1.4611,-21 1.7495,-20 1.9301,-22

2250 6.8248,-22 6.5619,-22 9.2007,-21 8.4761,-23

2500 3.1631,-22 3.1388,-22 5.0986,-21 4.0055,-23

2750 1.5488,-22 1.5847,-22 2.9532,-21 2.0118,-23
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Table 3 continued

Method
E(keV)/Q(cm2)

BCIS BDW CB1 CDW

3000 7.9564,-23 8.3832,-23 1.7766,-21 1.0638,-23

3250 4.2639,-23 4.6197,-23 1.1046,-21 5.8781,-24

3500 2.3727,-23 2.6389,-23 7.0697,-22 3.3744,-24

3750 1.3659,-23 1.5564,-23 4.6419,-22 2.0028,-24

4000 8.1083,-24 9.4445,-24 3.1181,-22 1.2243,-24

4250 4.9507,-24 5.8799,-24 2.1379,-22 7.6831,-25

4500 3.1019,-24 3.7465,-24 1.4932,-22 4.9361,-25

4750 1.9907,-24 2.4378,-24 1.0605,-22 3.2390,-25

5000 1.3064,-24 1.6169,-24 7.6486,-23 2.1666,-25

5500 5.9813,-25 7.4867,-25 4.1442,-23 1.0201,-25

6000 2.9484,-25 3.6792,-25 2.3548,-23 5.0942,-26

6500 1.5520,-25 1.9027,-25 1.3938,-23 2.6748,-26

7000 8.6628,-26 1.0284,-25 8.5467,-24 1.4665,-26

7500 5.0939,-26 5.7780,-26 5.4058,-24 8.3503,-27

8000 3.1367,-26 3.3589,-26 3.5139,-24 4.9151,-27

8500 2.0115,-26 2.0127,-26 2.3404,-24 2.9798,-27

9000 1.3366,-26 1.2391,-26 1.5930,-24 1.8546,-27

9500 9.1608,-27 7.8171,-27 1.1058,-24 1.1819,-27

10000 6.4497,-27 5.0414,-27 7.8126,-25 7.6964,-28

continua are encountered in theBCIS-4BandBDW-4Bmethods.As to the perturbation
potentials in the transition amplitudes, they are the same in the BDW-4B and CDW-
4B methods. Likewise, the perturbation potentials in the transition amplitudes of the
BCIS-4B and CB1-4B methods are identical.

There is also the CDW-EIS-4Bmethodwhich is an asymmetrically eikonalized ver-
sion of theCDW-4Bmethod. In theCDW-EIS-4Bmethod, the two electronicCoulomb
wavefunctions from the CDW-4Bmethod in the entrance channel are replaced by their
asymptotic forms. However, these latter forms are valid only at infinitely large sep-
arations of the projectile nucleus from the two target electrons. In the exit channel,
the CDW-EIS-4B method uses the full Coulomb wavefunctions of the two electrons
as in the CDW-4B method. Comparisons between the CDW-4B and CDW-EIS-4B
method would make in evidence the validity of additionally approximating the CDW-
4B method by eikonalizing the double electronic continua in the entrance channel.

Also important is to compare QCDW−EIS−4B with QBCIS−4B and QBDW−4B. The
key difference among these three cross sections is in using the logarithmic Coulomb
phase factors. In QCDW−EIS−4B, these asymptotic phases depend on distance of the
projectile nucleus from the target electrons. By contrast, in QBCIS−4B and QBDW−4B,

the Coulomb phases depend on the nucleus-nucleus separation. This difference is
immaterial at infinitely large distances when all the phases are considered outside
the integrals in the transition amplitudes. However, the integrals are over all dis-
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Orders N = 48, 64, 80 (vs 192) Per Axis in 5−Dimensional Gauss−Legendre Quadratures

Fig. 1 Total cross sections for double charge exchange (3.1) using a 4 Gauss-Legendre quadrature set with
ordersN per each of five numerical integrations in the BCIS-4B (left) andBDW-4B (right) methods. Circles:
N � 48 (a, d), 64 (b, e), 80 (c, f). The full curves on each panel are for the converged (or reference) cross
sections with N � 192 (color online)
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Orders N = 96, 112, 128 (vs 192) Per Axis in 5−Dimensional Gauss−Legendre Quadratures

Fig. 2 Total cross sections for double charge exchange (3.1) using a 4 Gauss-Legendre quadrature set with
ordersN per each of five numerical integrations in the BCIS-4B (left) andBDW-4B (right) methods. Circles:
N � 96 (a, d), 112 (b, e), 128 (c, f). The full curves on each panel are for the converged (or reference)
cross sections with N � 192 (color online)
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Fig. 3 Total cross sections for double charge exchange (3.1) using a 4 Gauss-Legendre quadrature set with
ordersN per each of five numerical integrations in the BCIS-4B (left) andBDW-4B (right) methods. Circles:
N � 144 (a, d), 160 (b, e), 176 (c, f). The full curves on each panel are for the converged (or reference)
cross sections with N � 192 (color online)
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tances (from zero to infinity) Moreover, the dominant contributions to these integrals
come from short electron-nucleus distances due to the invoked exponentially decaying
bound-state orbitals.

This juxtaposition makes it clear that the physics of these five methods is substan-
tially different. The number of the full (i.e. non-eikonalized) electronic continuum
intermediate states is four in the CDW-4B method compared to only two in the BCIS-
4B and BDW-4B methods. Therefore, comparisons of QCDW−4B with QBCIS−4B and
QBDW−4B would permit an assessment of the extent of the influence of the fourfold
relative to the twofold electronic continua. Likewise, comparisons of QCB1−4B with
QBCIS−4B and QBDW−4B would allow an estimation of the role of two-electron contin-
uum states in the BCIS-4B and BDW-4Bmethods with respect to the CB1-4Bmethod
where such states are omitted altogether from the onset. The insight from such com-
parisons can be gained by inspecting Figs. 5, 6, 7 and 8, especially by reference to the
available experimental data that are also shown.

Figure 5 plots QCB1−4B, QBCIS−4B, QCDW−4B and QCDW−EIS−4B alongside the
existing experimental data. The CB1-4B method is in a fair agreement with experi-
mental data, but only in a limited interval of the impact energy, E ∈ [150, 800] keV.
Above 800 keV, QCB1−4B begins to significantly overestimate the measured cross
sections. Such overestimations attain a factor of ∼50 at 3000 keV. This latter factor is
further augmented with the increased values of E. In sharp contrast, at e.g. E � 3000,
it is seen that QBCIS−4B is in a perfect accord with the experimental data. This proves
that double electronic continuum intermediate states are of great importance for two-
electron transfer processes, especially at high energies. The results for QBCIS−4B are
plotted in Fig. 5 at N � 48 and 192 with the highly concordant two curves. Some
slight oscillations/undulations are seen at the lowest impact energies E ∈ [100, 150]
keV. However, this is inessential as all the shown theoretical cross sections stem from
high-energy methods. It has empirically been established in Ref. [3] that the ground-
to-ground state cross section QCDW−3B for single charge exchange (3.3) should be
adequate at E ≥ 300 keV for the 4He

2+ − 4He
+
(1s) collisions involving three par-

ticles. Extending this estimate to double charge exchange (2.1), it might be assumed
that high-energy methods for these four-body collisions should be valid at E ≥ 600
keV. This empirical estimate is observed in Fig. 5 to be approximately satisfactory for
the BCIS-4B method. However, this is not the case at all with either the CDW-4B or
the CDW-EIS-4B methods.

The situation is actually worst with the CDW-EIS-4Bmethod which fails flagrantly
at all energies E ∈ [100, 7000] at which the experimental data are available. Well
within its applicability domain, as far as E is concerned, the total cross sections in
the CDW-EIS-4B methods underestimate those in the CDW-4B method by orders of
magnitude. This completely invalidates the eikonalization of the double electronic
continua from the CDW-EIS-4B method. As such, the CDW-EIS-4B method can be
totally discarded from any useful application to double charge exchange processes.
All the theories in Fig. 5 take into account only the final ground state of helium. An
inclusion of helium singly- and doubly-excited states in the exit channel [55] changes
only very slightly e.g. QCDW−4B from Fig. 5. The sole experimental data with which
QCDW−4B agrees in Fig. 5 are the two cross sections measured by Schuch et al. [87] at
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Fig. 5 Total cross sections Q(cm2) as a function of the incident energy E(keV) for two-electron capture from
helium by alpha particles. Theories for process (3.1). Measurements for process (3.2). All the theories use
the same one-parameter ground-state Hylleraas’ wave function [95]. The present computations in the CB1-
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Fig. 7 Total cross sections Q(cm2) as a function of the incident energy E(keV) for two-electron capture
fromheliumbyalphaparticles. Theories for process (3.1): ground-to-ground-state transition alone.Measure-
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E � 4000 and 7000 keV. However, even this is inconclusive, since at e.g. E � 4000
keV, Schuch et al.’s experimental data [87] are by a factor of ∼20 smaller than the
measured findings from Afrosimov et al. [88]. New measurements would be highly
desirable to help establish the high-energy behavior of total cross sections for double
charge exchange in ion-atom collisions.

It is clear from Fig. 5 that the BCIS-4Bmethod outperforms the CDW-4Bmethod at
E < 4000 keV.Aswas usualwith QCDW−3B for single charge exchange, QCDW−4B for
double charge exchange also keeps on risingwith the descendingE at which QBCIS−4B
becomes clearly peaked. A better agreement of QBCIS−4B with experimental data seen
in Fig. 5 than in the case of QCDW−4B points to a pronounced sensitivity of the cross
section to the number of included continuum intermediate states (4 in the CDW-4B
and 2 in the BCIS-4Bmethod, as stated). Also the results for QCDW−EIS−4B are peaked
around 100-200 keV, but these cross sections are orders of magnitudes smaller than
QBCIS−4B.

It is noticeable thatQCDW−EIS−4B hugely underestimates bothQBCIS−4B and exper-
imental data at all impact energy. This is remarkable given that both QCDW−EIS−4B and
QBCIS−4B make use of the logarithmic Coulomb phases in one of the two scattering
channels. However, the eikonalization in the BCIS-4B method is harmless as it relates
to the relative motion of heavy nuclei. In contradistinction, however, the eikonaliza-
tion from QCDW−EIS−4B refers to the electronic Coulombwavefunctions and this turns
out to be harmful. As mentioned, the differences between the Coulomb phases in the
CDW-EIS-4B and BCIS-4B methods are inconsequential at infinitely large distances.
However, charge exchange is a local process whose probability is negligible only for
small electron-nucleus distances. This occurrence invalidates the replacement of the
two full Coulomb wavefunctions by their asymptotic behaviors in the CDW-EIS-4B
method.

Figure 6 is similar to Fig. 5 in every respect except that QBDW−4B is plotted instead
of QBCIS−4B. Here, the graphed QBDW−4B also refers to the same two values of the
Gauss-Legendre order, N � 48 and 192 as was in Fig. 5. The overall discussion and
conclusion reached for Fig. 5 applies to Fig. 6, as well. Next, Figs. 7 and 8 also refer
separately to N � 48 and 192, respectively2. However, this time both QBCIS−4B and
QBDW−4B are plotted together on each of these two figures so as to more clearly
exhibit the similarities and differences between the BCIS-4B and BDW-4B methods
on a larger scale than that from Fig. 4.

4 Discussion and conclusion

The present study deals with several well-established four-body distorted wave meth-
ods for two-electron capture by heavy nuclei from heliumlike atomic systems. The
quantum-mechanical distortedwave formalismwith all the four active particles is used
with no recourse whatsoever to the semi-classical impact parameter method. As an
illustration, we consider total cross sections for double charge-exchange in collisions

2 The case with N � 48 has previously been condidered also in Refs. [8, 40]. In the caption to Fig. 1 of Ref.
[8], the number of the Gauss-Legendre integration points per axis in the pertinent 5-dimensional integrals
should have been stated to be 48 instead of 96.
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of alpha particles with helium atomic targets at a wide impact energy range (100-
10000 keV). Five methods (BCIS-4B, BDW-4B, CB1-4B, CDW-4B, CDW-EIS-4B)
are compared with each other, as well as with the existing experimental data available
at energies 100-7000 keV. The total cross sections (Q) in the employed first-order
(CB1-4B) and second-order (BCIS-4B, BDW-4B, CDW-4B, CDW-EIS-4B) meth-
ods for the general case of arbitrary nuclear charges necessitate multiple numerical
integrations or quadratures.

For such collisions, three quadratures are required for computing QCB1−4B.On the
other hand, QCDW−4B as well QCDW−EIS−4B invoke four numerical integrations. As to
both QBCIS−4B and QBDW−4B, five quadratures are needed. For the special case with
symmetric encounters (e.g. alpha particles with helium atoms), only a single numerical
integration ought to be performed in QCB1−4B. Nevertheless, even for this particular
case, the cross sections QCB1−4B have been generated by using the general program
with any nuclear charges involving three-dimensional quadratures. This is done to
bring closer the numerical effort invested in obtaining QCB1−4B to the more involved
computations for QCDW−4B, QCDW−EIS−4B, QBCIS−4B and QBDW−4B. Moreover,
for consistency, when comparing our results for QCB1−4B with QCDW−4B, QBCIS−4B
and QBDW−4B, the same Gauss-Legendre order N is used per each integration axis
in the CB1-4B, CDW-4B, BCIS-4B and BDW-4B methods (for each N , there are N
pivots and N weights). The exception is the use of the Gauss-Mehler quadrature rule
for the azimuthal angle φτ from the numerical integration over momentum vector τ

associated with the Fourier transform in the CDW-4B method. It was sufficient to use
the Gauss-Mehler order M � 20 because a thorough check computation yielded the
same results for QCDW−4B with M � 40.

With this setting, the convergence rate of QCB1−4B, QCDW−4B, QBCIS−4B and
QBDW−4B for varying N depends exclusively on the behavior of the integrands (the
functions to be integrated). The results for QCDW−EIS−4B have not been computed
in the present work and they are taken from Ref. [55]). We vary N from 48 to 192
in steps of 16 (N � 48, 64, . . . , 192). The integrands encountered in QCB1−4B and
QCDW−4B are perfectly smooth and, consequently, these cross sections are found to
converge remarkably fast, thus attaining the final results alreadywith N � 48 at nearly
all impact energies. Due to use of the integral representations for the two Kummer
confluent hypergeometric functions (1F1), the integrands in QBCIS−4B and QBDW−4B
contain the branch points at 0 and 1. Nevertheless, after the simultaneous twofold
Cauchy regularization at these two branch points, the integrands in BCIS-4B and
BDW-4Bmethods become smooth. As a result, the convergence rate of QBCIS−4B and
QBDW−4B is good with the ensuing accurate findings with the lowest order N � 48
at most of the considered impact energies 150keV ≤ E ≤ 7000keV.

The general transition amplitudes (for any initial and final states) in the three-body
versions of the BCIS and BDWmethods (i.e. BCIS-3B, BDW-3B) coincide with each
other for one-electron capture by any nuclei from any hydrogenlike atomic targets.
The ensuing results for QBCIS−3B and QBDW−3B are identical. Such an occurrence
is due to the availability of the exact hydrogenlike wavefunctions. This ceases to be
the case for two-electron capture by nuclei from heliumlike targets. The reason is in
the unavailability of the exact heliumlike wavefunctions. In such cases, it is important
to compare QBCIS−4B and QBDW−4B for double charge exchange in four-body rear-

123



Journal of Mathematical Chemistry (2020) 58:1133–1176 1171

rangement collisions. For two-electron transfer from helium by alpha particles, it is
reassuring to find that QBCIS−4B and QBDW−4B are in close mutual agreement. This
happens even for the presently used simplest one-parameter Hylleraas’ ground-state
wavefunction of helium.

Ionization dominates over charge exchange at high energies for both one- and two-
electron transitions. This demands inclusion of ionization channels in the intermediate
stage of the given capture collisional process. In other words, prior to being captured,
electrons should first be ionized and then captured from continuum intermediate states.
Such a situation requires a two-step process much in the line of the classical Thomas’
double scattering, originally investigated for a purely three-body electron capture
collision. It is this two-step mechanism which leads to the notion of second-order
methods. There is also the one-step mechanism yielding the first-order methods. Here,
electronic transitions are caused by direct collisions of projectile nuclei with target
electrons. At high impact energies, the two-stepmechanism dominates over the single-
step mechanism. This is evidenced already in a purely three-body capture process by
inspecting the two sharply different asymptotic expressions of Q at high energies in
the first- and second-order methods.

The most striking difference between the first-and second-order estimates of Q for
three-body rearrangement collisions at very high energies occurs when either the ini-
tial or final bound states (or both) have non-zero angular momenta (li , l f ). This is seen
from the behaviors QFirst−order ∼ v−12−li−l f and QSecond−order ∼ v−11 at asymptot-
ically high values of the impact velocity v. Measured charge-exchange cross sections
favor the asymptotic estimates from the second-order methods for zero- or non-zero
angular momenta. This is also the case at intermediate-to-high (non-asymptotic) non-
relativistic energy region. The second-order is the lowest-order for which a three-body
capture process can be described by pure classicalmechanics. This is Thomas’ billiard-
like double collisions comprised of two steps or components. Here, a rearrangement
collision is conceived as being built from two consecutive elastic collisions that result
in the appearance of a peak near ϑlab � 0.47 mrad in differential cross sections. This
Thomas peak dominates the forward peak at asymptotically high energies. A single
step mechanism, as a first-order approximation, is feasible in quantum mechanics. It
is made possible by the velocity matching resonance when a large electronic momen-
tum in the final momentum-space hydrogenlike wavefunctions in the exit channel
becomes close to the velocity of a scattered projectile. The resulting cross sections
are, however, negligible (at asymptotically large impact energies) compared to the
cross sections from the Thomas two-step mechanism.

The same or even a more pronounced situation with two Thomas peaks applies to
double charge exchange. Two-electron capture is a much weaker process (less proba-
ble) than one-electron capture. This makes double capture more sensitive to the usual
assumptions of the theory than in the case of single-electron capture. Themost dramatic
example is an assumption about the presumed validity of eikonalization of electronic
continuum intermediate states when going from one- to two-electron capture. This
assumption turned out to be reasonably adequate in the CDW-EIS-3B method for
single charge-exchange, but fails flagrantly in the CDW-EIS-4B method for double
charge-exchange. In particular, within the validity domain of high-energy theories,
total cross sections in the CDW-EIS-4B method for the ground-to-ground-state tran-
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sition in double charge exchange in the α–He collisions underestimates (by orders of
magnitudes) the corresponding results from the CDW-4B method and experimental
data.

At the same time, both the BCIS-4B and BDW-4B methods perform by far much
better than the CDW-EIS-4B method. This is seen in good agreement between experi-
mental data and BCIS-4B as well as BDW-4B methods at energies above 700 keV for
double charge exchange in the α–He collisions. The BCIS-4B and BDW-4B methods
also employ the eikonalized continuum intermediate states, but these are for relative
motions of heavy nuclei. Such heavy-particle eikonalizations are adequate and the
same total cross sections are obtained by using either the full Coulomb wavefunctions
of nuclei or their logarithmic Coulomb phases. This hold true, not only in the BCIS
or BDW methods, but also in the CDW and CB1 methods (or in any other method)
for single as well as double charge exchange.
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