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Abstract
While variation of the energy functional yields the Schrödinger equation in the usual,
linear case, no such statement can be formulated in the general nonlinear situation
when the Hamiltonian depends on its eigenvector. In this latter case, as we illustrate by
sample numerical calculations, the points of the energy expectation value hypersurface
where the eigenvalue equation is satisfied separate from those where the energy is
stationary. We show that the variation of the energy at the eigensolution is determined
by a generalized Hellmann–Feynman theorem. Functionals, other than the energy,
can, however be constructed, that result the nonlinear Schrödinger equation upon
setting their variation zero. The second centralized moment of the Hamiltonian is one
example.

Keywords Nonlinear Schrödinger equation · Variational principle · Generalized
Hellmann–Feynman theorem · Second centralized moment

1 Introduction

Apart from the linear Schrödinger equation written in standard notation

(Ĥ − E Î ) � = 0 (1)
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nonlinear equations are also considered in various areas of physics and chemistry.
These can be grouped into two categories:

(1) The eigenproblem is nonlinear in energy.

(i) An example for such nonlinearity is

( Â0 − E Â1 − E2 Â2 − E3 Â3 . . .)� = 0

where Âi -s are linear operators. Results on problems of this type in the mathe-
matical literature are extensive, including the search of appropriate variational
principles [1–3].

(ii) Another example is the Feshbach-type [4] effective Hamiltonian appearing in
Löwdin’s energy dependent partitioning technique [5,6]:

Hef f � =
[
HAA + HAB

(
HBB − E

)−1
HBA

]
� = E �,

where AA, AB, . . . indicate blocks (projections) of the Hamiltonian.

We shall not further consider this case in this paper.
(2) The equation is nonlinear in the eigenvector�, whichmay occur when theHamil-

tonian depends on the eigenvector:

(
Ĥ(�) − E

)
� = 0. (2)

This is the case we shall be concerned with here.

Examples for case (2) are

(i) the nonlinear Schrödinger equation describing the interaction of a molecule with
a polarizable medium (setting Â and B̂ appropriately) [7–12]:

(
Ĥ0 − Â

〈�|B̂|�〉
〈�|�〉

)
� = E �. (3)

(ii) The Gross–Pitajevskij equation [13] (GPE), which is the bosonic analogue of the
Hartree–Fock equations:

(T̂ + V̂ + λ||ψ ||2)ψ = Eψ.

Here T̂ is the kinetic energy operator, V̂ is an external potential, andλ is a coupling
constant for inter-particle interactions. Effects of nonlinearity and variational
principles for GPE and its generalizations have been widely studied [14–18].

(iii) The Hartree or the Hartree–Fock equations for many-electron systems. The latter
in canonical form are written as

F̂ψi = εiψi (4)
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where the nonlinearity arises from the dependence of the Fockian F̂ on the density
matrix P constructed with occupied one-electron orbitals {ψk} in basis set {μ}
as:

Pμν =
occ∑
k

〈μ|ψk〉〈ψk |ν〉. (5)

(iv) Certain nonlinear differential equations for Hamiltonian systems have the form
of nonlinear eigenvalue problems. These can originate from special variational
principles [19–21].

(v) The non-perturbative form of the Bloch equation [22–24]

Ĥ �̂ = �̂ Ĥ �̂ (6)

where the wave operator is either of form �̂ = |�〉〈�| or �̂ = |�〉〈ϕ|where ϕ is
a reference function, constitute another example for wave function nonlinearity.
In fact, Eq. (6) was named as the nonlinear Schrödinger equation by Löwdin [23].

In this paper, we shall treat cases (i) and (iii) discussing variational principles.
When relating the ordinary linear Schrödinger equation (1) to the variation of the

energy (preserving normalization of the eigenvector by a Lagrangian multiplier E),
one proceeds as

δ [〈�|H |�〉 + E(1 − 〈�|�〉)] = 0

resulting

〈δ�|H − E |�〉 + c.c. = 0,

which for arbitrary variations 〈δ�| is satisfied only when H |�〉 = E |�〉.
In this procedure we have utilized that δH = 0.

2 The nonlinear case

2.1 Variation of the energy expectation value

When treating the nonlinear Schrödinger equation (2), onemust not assume that δH =
0. One should rather write the variation of the energy expectation value E with the
appropriate Lagrange multiplier E as

δE = δ
(
〈�|Ĥ − E |�〉

)
,

where the constant term E whose variation is zero has been omitted. Carrying out the
variation we have

δE =
(
〈δ�|Ĥ − E |�〉 + c.c.

)
+ 〈�|δ Ĥ |�〉. (7)
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This shows that satisfying the Schrödinger equation is insufficient to make the vari-
ation of the energy expectation value zero. On the contrary, imposing the variational
condition δE = 0, the Schrödinger equation will not be satisfied.

2.2 The generalized Hellmann–Feynman theorem

If � is chosen to satisfy the Schrödinger equation, the first term in Eq. (7) as well as
its complex conjugate vanish, and one is left with

δE = 〈�|δ Ĥ |�〉. (8)

This equation gives us the variation of the energy expectation value when the wave
function is an eigenfunction of the nonlinear Hamiltonian H(�). The formula is in
analogy with the Hellmann–Feynman equation [25], which gives the derivative of the
energy with respect to an external parameter R of the potential:

∂E

∂R
=

〈
�|∂ Ĥ

∂R
|�

〉
.

It seems that the similar equation (8) is valid for the variation of the energy expectation
value in the nonlinear Schrödinger equation, too. One may call Eq. (8) the generalized
Hellmann–Feynman theorem.

2.3 The Hartree–Fock case

The general formulation of the previous sections can be applied to the variation of
Fockian expectation values in a straightforward manner. We write the orbital energies
using standard notation as

εi = 〈ψi |F̂ |ψi 〉.

The variation of εi with respect to orbital rotations is

δεi =
(
〈δψi |F̂ |ψi 〉 + c.c.

)
+ 〈ψi |δ F̂ |ψi 〉. (9)

The orbital variations can be described by a unitary matrix (this will take care of
preserving the orthonormality of orbitals):

ψi + δψi =
∑
k

[
eε

]
ik ψk =

∑
k

[
δik + εik + O(2)

]
ψk,
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where the exponential parametrization of a unitary matrix is used with antihermitean
matrix ε. Linear variation of orbital ψi is, accordingly

δψi =
∑
k

εik ψk =
occ∑
k

εik ψk +
vir t∑
k

εik ψk . (10)

To keep the variation orthogonal to the varied orbital, one may want to include the
restriction i �= k in the occupied sum. This is taken care by εi i being 0 due to the
antihermiticity of ε. It follows that we consider variations with the property

〈ψi |δψi 〉 = 0.

This property ensures that quantities of type

〈δψi |F̂ |ψi 〉 = 〈δψi |ψi 〉εi = 0,

since we take the variation at the canonical orbitals ψi which are eigenvectors of F̂ .
As a consequence, the first term and its complex conjugate in Eq. (9) disappear and
one is left with

δεi = 〈ψi |δ F̂ |ψi 〉, (11)

which is the manifestation of the generalized Hellmann–Feynman theorem discussed
above in the Hartree–Fock case.

To evaluate δ F̂ , we write the diagonal elements of F̂ as

εi = hii +
occ∑
k

(
2(ψiψi |ψkψk) − (ψiψk |ψkψi )

) = hii + 2Ji − Ki

with standard notation. When taking the variation of this, we utilize Eq. (11). This
means that the terms involving the variations of ψi drop out, and one should consider
only the variations with respect to ψk in the summation of the Coulomb and exchange
operators. This will be expressed by the variation symbol δi . One gets:

δεi = 2 δi Ji − δi Ki =
occ∑
k

(
2 (ψi ψi |δψk ψk) − (ψi ψk |δψk ψi )

)
+ c.c.

The next step is to expand the orbital variations according to Eq. (10). Writing this
down for the Coulomb term Ji first:

δi Ji =
occ∑
k

occ∑
j

(
εk j (ψiψi |ψ jψk) + ε∗

k j (ψiψi |ψkψ j )
)
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+
occ∑
k

vir t∑
j

(
εk j (ψiψi |ψ jψk) + ε∗

k j (ψiψi |ψkψ j )
)

=
occ∑
k

occ∑
j

(
εk j (ψiψi |ψ jψk) + ε∗

jk︸︷︷︸
−εk j

(ψiψi |ψ jψk)
)

+
occ∑
k

vir t∑
j

(
εk j (ψiψi |ψ jψk) + ε∗

k j (ψiψi |ψkψ j )
)

=
occ∑
k

vir t∑
j

(
εk j (ψiψi |ψ jψk) + ε∗

k j (ψiψi |ψkψ j )
)

with the asterisk indicating complex conjugation. In the last-but-one step we applied
an interchange of labels j, k, and realized that the two terms involving summation
over occupied orbitalsψk andψ j cancel due to the antihermiticity of ε. The two terms
containing virtual summation survive, since there j and k are not equivalent indices.

The same manipulation can be repeated for the exchange terms to get

δi Ki =
occ∑
k

vir t∑
j

(
εk j (ψiψk |ψ jψi ) + ε∗

k j (ψiψ j |ψkψi )
)

The quantity 2 δi Ji − δi Ki constitutes the internal variation of the Fockian, which
determines orbital energy variations through (11).

The fact that orbital variations within the occupied space do not contribute to the
variation of orbital energies is trivial, since δ F̂ comes from the variation of the density
matrix P which is invariant to any mixing within the occupied space.

2.4 Numerical illustrations

We include two simple illustrations. The first one is a two-state model for equations
of type (3). We set A = B and aim to solve the nonlinear equation

H0 � − λ
〈�|A|�〉
〈�|�〉 A � = E � (12)

where the strength of nonlinearity is characterized by λ. Working in the basis set of
the eigenvectors of H0 in the two-state model, choosing the energy origin at H0

11 and
the energy unit at H0

22, then

H0 =
(
0 0
0 1

)
.

Further, assuming only off-diagonal perturbation in A,
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Fig. 1 Variation of the energy
expectation value as a function
of wave function parameter x
(see text). The upper curve
(purple in color online) shows
E(x) for the linear case λ = 0,
while the non-linear situation for
λ = 1 is shown by the lower
curve (green in color online).
The self-consistent values of x
are indicated by the short vertical
sticks at ±1/

√
3 printed in

black, where E(x) = E = −0.5

A =
(
0 1
1 0

)
.

Finally, writing the eigenvector as

� =
(
1
x

)

the normalization 〈�|�〉 = 1 + x2 resulted.
This simple model can be solved analytically by the substitution of these choices

into Eq. (12) yielding, apart from a trivial solution x = 0, the self-consistent solutions:

x2 = 2λ − 1

2λ + 1

as a function of the perturbation strength λ. Choosing λ = 1 we get the two solutions
x = ±1/

√
3. The energy expectation value as a function of x is plotted in Fig. 1. The

non-interacting case, when the Schrödinger equation is linear, is λ = 0. Then, trivially,
the expectation value has a stationary point (minimum) at x = 0, the zero order
solution. The non-linear case is illustrated by choosing λ = 1. Then the expectation
value is not stationary for the self-consistent wave function x = ±1/

√
3, and when

E(x) is stationary (at around x = 0.775), x does not correspond to any solution of the
nonlinear problem.

The second example we consider are Fockian expectation value variations for a
model system consisting of one helium atom and two hydrogens. Pairwise orbital
rotations are performed with the unitary matrix

(
cosϕ − sin ϕ

sin ϕ cosϕ

)
.
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(a)

(b)

Fig. 2 Variation of Fockian expectation values for the model system HeH2 in a DZ basis set with respect
to occupied orbital mixing angle ϕ. Both the HOMO (Fig. 2a.) and the next-HOMO (Fig. 2b.) energies are
stationary for canonical orbitals ϕ = 0

Figure 2. shows the trivial situation when only the two occupied orbitals are mixed.
As a function of the mixing angle ϕ, the energies of the HOMO (Fig. 2a.) and the next-
HOMO (Fig 2b.) vary as expected, showing extremal values at ϕ = 0 corresponding
to the canonical case, the former showing a maximum, the latter a minimum.

Figure 3. shows that when occupied and virtual orbitals are allowed to mix, the
stationary points of orbital energies deviate from the canonical ϕ = 0 value. The
deviations are not too large, however.
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(a)

(b)

(c)

Fig. 3 Variation of Fockian expectation values for the model system HeH2 with respect to HOMO-LUMO
mixing described by rotation angle ϕ in a DZ basis set. The orbital energy curves for the HOMO (Fig. 3a.),
the LUMO (Fig. 3b.) and the next-HOMO (Fig. 3c.) are drawn

123



Journal of Mathematical Chemistry (2020) 58:340–351 349

3 A simple variational principle for nonlinear Schrödinger equations

We note first that for the linear, but time-dependent Schrödinger equation the original
Dirac–Frenkel variational principle [26,27] has been reformulated by McLachlan and
Ball [28], and discussed thoroughly by Löwdin andMukherjee [29]. The essence of the
reformulationwas the utilization of the second centralizedmoment of theHamiltonian

m2 =
〈
�|

(
Ĥ − 〈Ĥ〉

)2

|�
〉

(13)

with 〈· · · 〉 indicating Rayleigh expectation value 〈�| . . . |�〉/〈�|�〉.
In this section we emphasize that the secondmoment may also serve as a variational

functional for the time-independent nonlinear Schrödinger equation.
An alternative form of m2 can be written as the square norm

m2 = ||r ||2 = 〈r |r〉

whith the residual vector

|r〉 = (
Ĥ − 〈Ĥ〉)|�〉.

It is evident that if the nonlinear Schrödinger equation (2) is satisfied, |r〉 = 0, thus
m2 = 0, too. A formal proof that vanishing m2 is equivalent to the linear Schrödinger
equation was given by Nakatsuji and Davidson [30]. We repeat their arguments here
with the necessary modification requested by nonlinearity to show that the statement
remains valid also in the nonlinear case.

All examples studied here assume that the nonlinear Hamiltonian entering Eq. (2) is
Hermitean. Therefore at somewave function� wemay consider the spectral resolution
of H(�) as

Ĥ(�) =
∑
k

Ek(�) |�k〉〈�k |

leading to

(
Ĥ − 〈Ĥ〉

)2 =
∑
k

(
Ek − 〈Ĥ〉

)2 |�k〉〈�k |.

One must emphasize that the expansion vectors �k also depend on �, which is not
indicated in the equations to avoid a cumbersome notation.

Wave function � entering Eq. (13) can be expanded as

� =
∑
k

Ck |�k〉,
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leading to

m2 =
∑
k

|Ck |2
(
Ek − 〈Ĥ〉

)2
.

Since every term is nonnegative, setting m2 = 0 involves that each term in the sum-
mation over k must be zero individually. This involves (since Ek �= 〈Ĥ〉 in general)
that Ck = 0 for most k. To avoid a trivial solution � = 0, there must be at least one
value of k, say i , for which

Ei = 〈Ĥ〉

with the associated coefficientCi �= 0. Thismeans that� must be a pure state� = �i ,
which is then a self-consistent solution of the non-linear Schrödinger equation. In
case of 〈Ĥ〉 being equal to a degenerate level, � becomes a linear combination of the
degenerate states.

Based on this conclusion, one may write down the variational principle

δ

〈
�|

(
Ĥ − 〈�|Ĥ |�〉

〈�|�〉
)2

|�
〉

= 0 (14)

where � is a (class of) trial function(s). One may distinguish two cases:

(a) � is parametrized sufficiently well so that the family of functions it represents
contains one or more true self-consistent eigenvector of the nonlinear Eq. (2). In
this case the absolute minimum of the non-negative functional is 0, i.e., the second
centralized moment vanishes and the optimal � becomes an exact eigenstate.

(b) � is less flexible than in case (a), so that solving the variational problem (14)
does not yield m2 = 0. In this case the variation of � provides the best possible
approximation within the permitted function class, resulting the smallest possible
positive value for m2. The optimal � serves as an approximate eigenfunction.

It is worth mentioning that the above procedure may be, in principle applied to any
self-consistent eigenstate of a nonlinear Hamiltonian, though optimization for excited
states may not be easy. Numerically stable procedures for determining excited states
variationally, that make use of second centralized moments, were proposed recently
[31,32] for linear Hamiltonians.
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