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Abstract
Magnetic resonance spectroscopy (MRS), as a powerful and versatile diagnostic
modality in physics, chemistry,medicine and other basic and applied sciences, depends
critically upon reliable signal processing. It provides time signals by encoding, but
cannot quantify on its own. Mathematical methods do so. The signal processor of
choice for MRS is the fast Padé transform (FPT). The spectrum in the FPT is the
unique polynomial quotient for the given Maclaurin expansion. The parametric FPT
(parameter estimator) performs quantification of time signals encoded with MRS by
explicitly solving the spectral analysis problem. Thus far, the non-parametric FPT
(shape estimator) could not quantify. However, the non-parametric derivative fast
Padé transform (dFPT) can quantify despite performing shape estimation alone. The
dFPT was successfully benchmarked on synthesized MRS time signals for deriva-
tive orders ranging from 1 to 50. It simultaneously improved resolution (by splitting
apart tightly overlapped peaks) and enhanced signal-to-noise ratio (by suppressing the
background baseline). The same advantageous features of improving both resolution
and signal-to-noise ratio are presently found to be upheld with encoded MRS time
signals. Moreover, it is demonstrated that the dFPT hugely outperforms the deriva-
tive fast Fourier transform even for derivatives of orders as low as four. The clinical
implications are discussed.
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Abbreviations
Ace Acetate
Ala Alanine
Asp Aspartate
au Arbitrary units
BW Bandwidth
Cho Choline
Cr Creatine
dDFT Derivative discrete Fourier transform
dFFT Derivative fast Fourier transform
DFT Discrete Fourier transform
dFPT Derivative fast Padé transform
FID Free induction decay
FFT Fast Fourier transform
FPT Fast Padé transform
FWHM Full width at half maximum
GABA Gamma amino butyric acid
Gln Glutamine
Glu Glutamate
Glx Glutamine plus glutamate
GSH Glutathione
Lac Lactate
Leu Leucine
Lip Lipid
m-Ins Myo-inositol
MR Magnetic resonance
MRS Magnetic resonance spectroscopy
NAA N-acetyl aspartate
NAAG N-acetyl aspartyl glutamic acid
NEX Number of excitations
PC Phosphocholine
PCr Phosphocreatine
PE Phosphoethanolamine
ppm Parts per million
PRESS Point-resolved spectroscopy sequence
RMS Root-mean-square
ROI Range of interest
s-Ins Scyllo-inositol
SNR Signal-to-noise ratio
STEAM Stimulated echo acquisition mode
Tau Taurine
TE Echo time
TR Repetition time
Val Valine
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1 Introduction

Magnetic resonance spectroscopy (MRS) is one of the most versatile methods for
uncovering the internal structure of matter [1–3]. For example, MRS can find out
how many molecules, and of which specific kind, are present in vastly different
specimens/substances irrespective of their structural complexity. Such quantitative
information is of utmost importance because the detected larger or smaller concen-
trations (abundances) of the most informative molecules, when compared with the
corresponding standards regarding the matter under investigation, can advantageously
be used formany purposes not only in basic and applied sciences but also in technology
and industry.

There are two domains associated with MRS. These are the time domain and the
frequency domain. The results from MRS can be given in either form of this dual
representation. They are equivalent since they contain the same information. The
passage from one to the other representations is achieved by means of the direct and
inverse transforms (Fourier, Padé).

Being primarily a measuring/detecting device, MRS encodes time signals (in the
time domain) stemming from the intrinsicmolecules of the examined substance. These
time signals, or equivalently, free induction decay (FID) curves come after an external
perturbation of a selected slice of the specimen by the triple magnetic perturbations
(static as well as gradient magnetic fields and radiofrequency pulses). With the act of
encoding, MRS completes its measuring task. However, MRS does not itself provide
the key information which is the sought assembly of molecular concentrations in the
specimen.

Theory (by way of mathematical methods) does so by data processing of time
signals acquired byMRS [2,3]. Data analysis by mathematical methods can be carried
out in either the time or frequency domains. This is opposed to encoding which is
only in the time domain. The literature in MRS is abundant with the terms “acquired
spectra”. This is wrong, since spectra are never encoded by MRS. Spectra are the
results of the theory by which various mathematical transforms are used to pass from
the acquired time signals to the computed spectra.

One of such mathematical transforms in MRS is the fast Padé transform (FPT) [2–
19]. It can perform both shape and parameter estimations. The customary form of
either of these two estimations does not take derivatives of the computed spectra and,
thus, it is referred to as the non-derivative (or zero-order derivative) FPT.

The most recent upgrade of the FPT is the derivative fast Padé transform (dFPT) [6,
15–17]. This processor can provide quantification by exclusive reliance upon shape
estimation. In other words, the non-parametric dFPT deals with spectral envelopes
alone, and yet its high-order derivatives can reconstruct the precise numerical values
of the number of the physical peaks, their positions, widths, heights, areas (and, thus,
molecular concentrations) without recourse to any fitting.

First introduced and benchmarked on synthesized MRS time signals, the dFPT
showed its outstanding performance by simultaneously eliminating noise and sepa-
rating tightly overlapping resonances. For instance, despite being merely 0.001ppm
apart, metabolites phosphocholine (PC) and phosphoethanolamine (PE), have been
separated and exactly quantified by the non-parametric dFPT [15–17] (hereafter, ppm
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denotes parts per million). In the reconstructed total shape spectrum or envelope,
these two resonances were overlapped to such an extent that they appeared as a single
perfectly symmetrical Lorentzian. This envelope gave no hint whatsoever that under-
neath of a large PE peak resided a small PC peak. The concentrations of the PC and PE
molecules were 0.3 and 2.25µM/g, respectively. This was a challenging quantification
problem which the non-parametric dFPT solved readily and exactly by computation
of higher derivatives of the pertinent total shape spectrum.

The gist of the matter is that the derivative operator of a sufficiently high order is, in
fact, a converter which maps the magnitude envelope from the dFPT into a set of well-
isolated (i.e. non-overlapping) stable peaks. Most importantly, when appropriately
scaled, such lone peaks turned out to be the corresponding component spectra for
each physical resonance contained in the envelope from the non-derivative parametric
FPT.

These isolated resonances are physical (genuine) because all the unphysical (spu-
rious, noisy) resonances are flattened down to their zero-valued heights (i.e. annulled)
since derivatives effectively suppress noise in the dFPT. Stated equivalently, the deriva-
tive operator (when teamed up with the Padé-based estimation) is an efficient noise
filter.

The reason for which the scaled isolated peaks from shape estimation by the dFPT
(multiple derivatives) are the component spectra from parameter estimation by the
FPT (no derivatives) is twofold:

(i) The same high-order derivatives applied to both the envelope in the non-
parametric dFPT and the component spectra in the parametric dFPT coincide.

(ii) The peak parameters in the component spectra from the two parametric estima-
tions, dFPT (multiple derivatives) and FPT (no derivatives), are uniquely related
by the known analytical expressions.

Therefore, it follows from (i) and (ii) that the peak parameters in the isolated
resonances from the given envelope in the non-parametric dFPT are uniquely related
to the peak parameters in the component spectra from the parametric FPT.

The reconstruction linelist of the applied non-parametric dFPT, as the output of
the computer program, contains the number of the peaks, their positions, widths and
heights for each physical resonance in themagnitudemode of the high-order derivative
envelopes. All that is needed is to compute these envelopes at a very dense grid of the
sweep frequencies. Then, in the program, the command “max” for the values (sticks) of
the magnitude envelope in the chosen isolated Lorentzian would simultaneously give
the peak height and the chemical shift (resonance frequency). Moreover, within the
same magnitude envelope of this Lorentzian, the output of the program also contains
the two numerical values (alongside their positions on the chemical shift axis) of the
halved maximum stick. The difference between these two latter chemical shifts is the
full-width at half-maximum (FWHM). The peak width and the peak height yield the
peak area which is proportional to the concentration of the molecule (metabolite) to
which the given resonance is assigned. No peak phase is required to be reconstructed
since the magnitude mode is phase-insensitive. The same procedure is performed
automatically for all the physical (genuine) peaks in the magnitude spectrum. The
unphysical (spurious) resonances are washed out.

123



150 Journal of Mathematical Chemistry (2020) 58:146–177

This expounded procedure amounts to providing quantification without actually
solving the spectral analysis problem (and, of course, without fitting, either). In
Refs. [15–17], this goal was accomplished, with both noiseless and noisy simulated
MRS time signals. After a thorough benchmarking of the dFPT for synthesized input
data, it would be important to extend the analysis to encoded MRS time signals. The
present study is the first step in this direction. Our goal here is to see whether already
low derivative orders (from the 1st to the 4th) in the non-parametric dFPT could
simultaneously improve frequency resolution and signal-to-noise ratio (SNR). The
subsequent studies in our plan will use higher-order derivatives in the non-parametric
dFPT to test explicit quantification of encoded MRS time signals by performing only
shape estimations.

Very recently [19] it has been demonstrated that, regarding SNR, the FPT can
dramatically improve acquisition of MRS time signals. The two main routine pulse
sequence encodings used in acquiring time signals in MRS are the stimulated echo
acquisition mode (STEAM) and the point-resolved spectroscopy sequence (PRESS).
Overwhelmingly, PRESS has been favored in practice because of its better SNR rel-
ative to STEAM. This has occurred despite several important advantages of STEAM
compared with PRESS. The question asked in Ref. [19] was: is it possible to exploit
the known advantages of STEAM by performing FPT-guided encoding instead of the
conventional fast Fourier transform (FFT)-assisted acquisition of FIDs from MRS?
The favorable SNR capabilities of the FPT motivated this question. The answer from
Ref. [19] was in the affirmative: noise root-mean-square (RMS) errors in the spectra
were decreased by orders of magnitudes (between 3619 and 14253%) relative to the
FFT. Moreover, the SNR of creatine (Cr) and choline (Cho) peaks reconstructed by
the FPT were increased more than 95%. Since noise is suppressed even more by the
derivative fast Padé transform than by the FPT, it is foreseen that further gains in
SNR in conjunction with STEAM can be achieved by implementing the dFPT-based
acquisition of time signals encoded by MRS.

2 Recapitulation of benchmarking the dFPT on synthesizedMRS time
signals

The dFPT is the mth order (m = 1, 2, 3, . . .) derivative of the conventional FPT
(m = 0). The derivative operator Dν is takenwith respect to the sweep linear frequency
ν as Dν = d/dν. It is applied to the customary non-derivative complex envelope
PK /QK in the FPT, where PK and QK are polynomials. Here, K is the model order
which also represents the number or resonances, i.e. the number of molecules in the
substance under study. Both the FPT and dFPT can be processed non-parametrically,
i.e. by shape estimations.

The introduction of the dFPT took place in Refs. [15–17] for synthesized MRS
time signals with zero-valued phases. Therein, the primary focus was on the critical
challenge of identifying and quantifying phosphocholine, PC, in a manner which
would be themost amenable to unambiguous interpretation. Noiseless datawere tested
first. Afterward, we proceeded to noise-corrupted time signals. These simulated data
were generated to resemble typical encodedMRS time signals that lead to both isolated
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and tightly overlapped resonances. In MRS, reliable identification and quantification
of PC is a exceedingly demanding task for non-parametric signal processors.

The PC resonance is completely invisible in customary non-derivative envelopes.
This is due to the dominant adjacent PE resonance under which PC is entirely buried.
As stated, the PC-to-PE chemical shift separation is only 0.001ppm with PC and PE
resonating at 3.220 and 3.221ppm, respectively. In general, the PC and PE metabo-
lites sharply differ in abundance. In such a case, a practical goal with derivatives is to
unravel this overlap, i.e. the underlying structure, by progressively narrowing the reso-
nances. Thereby, eventually each resonance becomes clearly visible and its abundance
unequivocally displayed at higher derivative orders.

Within the FPT, in the non-derivative absorption envelope Re(PK /QK ), the com-
pound resonance near 3.220 and 3.221ppm is a completely symmetrical single peak
with no hint whatsoever that there could be any underlying structure. However, as seen
in Refs. [15–17], the situation changed subtly in the magnitude mode with application
of the 1st derivative of the Padé complex envelope, |(d/dν)PK /QK |. Therein, the peak
at 3.220ppm was no longer symmetrical, since a slight bulge emerged to the right.
Further, already with the 2nd derivative in the magnitude mode |(d/dν)2PK /QK |,
this bulge became more distinct, suggesting the possibility of another peak besides
the dominant PE resonance. The situation became even clearer for the 3rd deriva-
tive |(d/dν)3PK /QK | where PC was plainly visible. Additionally, the baseline was
flattened throughout the entire displayed chemical shift region from 3.21 to 3.29ppm.

In Refs. [15–17], the detailed examination of increasing derivative orders has been
presented in full. Therein, we proceeded to the high order derivatives where complete
stabilizationwas observed. Namely, in Ref. [15], we computed the 42nd, 46th and 50th
derivative orders via |(d/dν)42PK /QK |, |(d/dν)46PK /QK | and |(d/dν)50PK /QK |,
respectively. Overall, the full converging effect of the derivative was seen. When the
saturation level was reached, the peak widths became systematically narrowed by the
pertinent identifiable scaling factors that made it possible to exactly reconstruct the
peak parameters. This includes the critical region 3.220–3.221ppm containing the PC
and PE peaks. The two latter overlapping resonances were extremely well delineated,
with both of their baselines descending nearly or completely to the zero value of the
ordinates (i.e. merged into the abscissae).

The tails of all the other derivative lineshapes were entirely embedded in the chem-
ical shift axis itself. This shows that the differential operator in |(d/dν)m PK /QK |, no
matter how high the derivative order m is taken, introduces no noise, random or any
other kind for that matter (from e.g. round-off errors in numerical computations with
finite arithmetic). Such findings suggested that the dFPT could also perform well for
noisy time signals reaching the full converging effect of the derivative transform in
the so-called “normalized” representation.

As shown in Ref. [15], normalization in the dFPT has been performed, so that
the increased peak heights of derivative spectra (m > 0) could still be plotted on the
same graphs with the non-derivative (m = 0) envelopes. Crucially, the cross-checking
relationships of the lineshapes for the magnitude modes with the real absorptive and
imaginary dispersive parts of the given complex-valued envelopes have been estab-
lished [16].
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In non-derivative spectra (m = 0), the absolute value (modulus) of the amplitudes
dk from an MRS time signal, as well as the resonance peak positions, are the same in
the magnitude and absorption modes. On the one hand, the peak widths are broadened
by a factor of

√
3 in the magnitude mode relative to the absorption mode (m = 0).

In Ref. [16], we provided an in-depth comparison of spectra of increasing derivative
orders for magnitude, absorption and dispersion modes. Therein, at higher derivative
ordersm, the resonances appear as thin, distinct peaks in themagnitudemode, whereas
in the absorption or dispersivemodes, the resonances have several side lobes. Thus, the
magnitude mode of higher order derivative spectra is more conducive to interpretation
than the absorption mode of derivative spectra.

As such, the extremely narrow symmetric Lorentzian peaks (from their tips to bot-
toms) in the magnitude modes for higher derivative order solve a practical problem
encountered with conventional non-derivative (m = 0) lineshapes. Namely, extended
Lorentzian tails always mask adjacent and even distant spectral structures of poten-
tially informative content. This is recognized as the “leakage problem” in MRS. The
high-order derivative envelopes circumvent this problem by nullifying the tails and
exactly determining the peak areas, thus yielding the sought correct concentrations of
metabolites in the scanned substance.

After validation for the noiseless case, we proceeded to examine the performance of
the dFPT for time signals with added noise, and compared this with the derivative fast
Fourier transform (dFFT), using the absorption mode. This was done in Refs. [6,15].
Both processors performed envelope estimations using the same noisy time signal
points {cn +rn}where {cn} are the noiseless time signal points. The added corruptions
{rn}were a set of randomnumberswith zero-meanGaussian distributions (white noise)
of standard deviationσ = 0.0289RMS. These simulated time signalswere based upon
those encoded in Ref. [20]. The total signal length of these encoded time signals was
very long (62MB or 65536 data points). Such a long signal length was needed in
Ref. [20] in order to obtain reasonable appearing envelopes in the conventional FFT
(m = 0).

However, for the simulated noiseless time signals, there was no reason to use all the
65536 data points in the Padé-based reconstructions. The same rationale also applies
to the noisy synthesized time signals for which we used amuch shorter signal length in
the FPT and dFPT. As illustrations, comparisons were made employing the results of
the reconstructions by the dFPT and the dFFT for the derivative ordersm = 3−6. The
dFPT yielded results that were the same for the noiseless and noisy time signals. This
implies noise suppression by the 3rd to 6th order derivative transform in the dFPT. On
the other hand, the same added noise severely distorted the 3rd to 6th order derivative
spectral envelopes in the dFFT.

Even though the noise corruption level of the input time signal was of a rather small
standard deviation (σ = 0.0289 RMS), it is remarkable that this noise was hugely
amplified in the dFFT by proceeding from the third to the sixth-order derivatives. For
higher-orders m of derivatives (m ≥ 7), the dFFT completely fails, as it processes
merely the enhanced noise. By contrast, the results from the dFPT remain the same
for noise-free and noise-corrupted time signals in the cases withm ≥ 7, as was also for
0 ≤ m ≤ 6. This demonstrates the noise suppression capability of the mth derivative
operator Dm

ν when applied to the envelopes from the non-parametric FPT.

123



Journal of Mathematical Chemistry (2020) 58:146–177 153

The dFFT greatly amplifies noise even for relatively low derivative orders m, such
that all genuine information is lost. This occurs because the dFFTprocesses the product
of the power function tm and the given time signal c(t), both in their digitized forms.
Here, the mth power of time t puts higher weight on the later time signal points,
dominated by noise in encoded data.

In Ref. [17], we made one critical step further, by setting up the goal of validating
the non-parametric dFPT with the parametric dFPT. This was done by comparing
the full lineshapes of derivative envelopes from the non-parametric dFPT with the
corresponding derivative component spectra from the parametric dFPT.

As a shape estimator, the non-parametric dFPT never even addresses, let alone
solves the quantification problem (i.e. it never consider eigenvalue problems, rooting
characteristic/secular equations, …). The parametric dFPT first solves the quantifi-
cation problem from which the lineshapes of components and envelopes are plotted.
Thus, if the derivative component spectra from the parametric dFPT could be fully
reconstructed by the derivative envelopes from the nonparametric dFPT, the goal of
achieving quantification would be done by derivative lineshape processing alone. This
was indeed possible, as has been shown in Ref. [17].

3 Theory of derivative signal processing

3.1 Derivative fast Fourier transform

For a continuous time signal c(t), the standard finite Fourier integral denoted by F(ν)

over time t , which runs from zero to T , is given by:

F(ν) = 1

T

T∫

0

dte−2π iνt c(t). (3.1)

Here, T is the total duration of the time signal c(t). If time t is equidistantly discretized
(digitized) as t = nτ (n = 0, 1, 2, . . . , N − 1), the Fourier integral F(ν) from (3.1)
would become the Riemann sum:

F(ν) = 1

N

N−1∑
n=0

e−2π iνnτ cn, (3.2)

where cn ≡ c(nτ) and T = Nτ . Here, τ is the sampling time. In an MRS encoded
time signal, T is the total acquisition time of all the N data points in a single FID set
{cn} (0 ≤ n ≤ N − 1). Frequency ν is a continuous (analog) variable in (3.2). If ν is
also digitized by sampling it at the N equidistant points (the so-called Fourier grid),
the Riemann sum on the rhs of Eq. (3.2) would be reduced to the discrete Fourier
transform (DFT) denoted by Fk as:
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Fk = 1

N

N−1∑
n=0

e−2π ink/Ncn . (3.3)

For N = 2� (� = 1, 2, 3, . . .), computations in the DFT with the N 2 multiplications
is accelerated to only N log2 N multiplication using the Tukey–Cooley fast algorithm
and this leads to the FFT [2].

If a derivative operator Dm
ν of order m with respect to ν via Dm

ν = (d/dν)m is
applied to F(ν) from Eq. (3.1), it would follow:

F (m)(ν) = 1

T

T∫

0

dte−2π iνt cm(t), cm(t) = (−2π i t)mc(t), (3.4)

where F (m)(ν) ≡ Dm
ν F(ν) and,

Dm
ν =

(
d

dν

)m

(m = 1, 2, 3, . . .). (3.5)

Similarly, applying Dm
ν to Eq. (3.2) gives the derivative discrete Fourier transform

(dDFT):

F (m)
k = 1

N

N−1∑
n=0

e−2π ink/Ncn,m, cn,m = (−2π inτ)mcn . (3.6)

We then see that the derivative operator Dm
ν in Fourier-based MRS is equivalent

to introducing the apodization function (− 2π i t)m or (− 2π inτ)m multiplying the
analog or digital time signal c(t) or cn , respectively. This apodization puts emphasis
on the noise-dominated tails of the encoded times signals. The derivative fast Fourier
transform, dFFT, is obtained from the total shape spectrum F (m)

k by using the Tukey-
Cooley algorithm for the dDFT in Eq. (3.6). This amounts to simply multiplying the
input time signal {cn} (0 ≤ n ≤ N−1) by the apodization power function (− 2π inτ)m

and applying the standard non-derivative FFT (m = 0) to the product (− 2π inτ)mcn
for a fixed derivative orderm > 0. Simple, it undoubtedly is. But that is about all. The
price for this simplicity is, however, very high: even for relatively low values of m,
the power function ∼ (nτ)m multiplying cn takes over to become a dominant factor at
longer FID encoding. As a result, the dFFT ends up by processing merely noise from
encoded FIDs with all the physical information irretrievably lost.

3.2 Derivative fast Padé transform

The dFPT consists of applying the multiple-derivative operator Dm
ν = (d/dν)m of

order m(m = 1, 2, 3, . . .) to the given total shape spectrum from the non-derivative
conventional FPT (m = 0). For the dFPT, the input envelopes can be from the non-
derivative (parametric or non-parametric) FPT. However, the non-parametric dFPT is
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of the main interest as the goal is to show that quantification can be achieved by exclu-
sive reliance upon shape estimation. The parametric FPT accomplishes quantification
already in its non-derivative variant (m = 0). Therefore, the parametric dFPT was
used only at the benchmarking stage to validate the non-parametric dFPT.

As is well-known, the complex-valued envelopes, i.e the Green response functions
G±

K (z± 1), in the two equivalent variants of e.g. the diagonal non-derivative fast Padé
transform, denoted by FPT(±), are defined by the rational functions:

FPT(±): G±
K (z± 1) = P±

K (z± 1)

Q±
K (z± 1)

, z = e±2π iντ , (3.7)

where z± 1 are the complex harmonics, ν is an arbitrary linear frequency (real or
complex) and, as before, τ is the constant sampling rate for the input time signal {cn}
of full length N (0 ≤ n ≤ N −1). Here, P±

K (z± 1) and Q±
K (z± 1) are the characteristic

polynomials (with a common degree K ), given in terms of their expansion coefficients
{p±

r , q±
s }, respectively:

P±
K (z± 1) =

K∑
r=r±

p±
r z

±r , Q±
K (z± 1) =

K∑
s=0

q±
s z±s, (3.8)

where r+ = 1 and r− = 0. The superscripts ± are employed to indicate the use
of z1 ≡ z and z−1 as the independent variables in the spectral functions G±

K (z± 1).
For ν complex, to have damped harmonics, we must have |z± 1| < 1. Thus, in the
case of complex ν with Im(ν) > 0, the FPT(+) and FPT(−) converge for |z| < 1
and |z| > 1, i.e. inside and outside the unit circle, respectively. However, by way of
the Cauchy analytical continuation, the FPT(+) and FPT(−) also converge outside and
inside the unit circle |z| > and |z| < 1, respectively. In other words, both the FPT(+)

and FPT(−) converge everywhere in the complex plane of the harmonic variables z
and z−1, respectively, except at the poles z± 1

k of G±
K (z± 1). The poles of G±

K (z± 1)

are the K roots of the denominator polynomials Q±
K (z± 1), i.e. the unique solutions

{z± 1
k } (1 ≤ k ≤ K ) of the characteristic equations Q±

K (z± 1) = 0.
As mentioned, we obtain the dFPT(±) of orderm by applying the operator Dm

ν onto

the FPT(±). Introducing the notation G(m)±
K (z± 1) for the mth derivative of G±

K (z± 1)

with respect to ν as:

G(m)±
K (z± 1) = Dm

ν GK (z± 1), (3.9)

the dFPT(±) of order m becomes

dFPT(±): G(m)±
K (z± 1) = Dm

ν

(
P±
K (z± 1)

Q±
K (z± 1)

)
. (3.10)

We emphasize that in Eq. (3.10), the input envelopes G±
K (z± 1), i.e. the polynomial

ratios P±
K (z± 1)/Q±

K (z± 1) from the customary non-derivative FPT(±) are com-
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puted non-parametrically. Advantageously, the non-parametric derivative envelopes
Dm

ν (P±
K (z± 1)/Q±

K (z± 1)) fromEq. (3.10) provide the exact number of peaks and their
parameters (positions, widths, heights and phases) of all the physical resonances. This
has explicitly been shown in Ref. [17] for largem by the complete agreement between
the lineshapes of the non-parametric derivative envelopes and the derivative component
spectra in the dFPT(−) of order m. The latter spectra refer to the lineshapes obtained
by applying the derivative operator Dm

ν to the component spectra constructed after
solving the quantification problem in the parametric FPT(−). Although not reported
in Ref. [17], the same findings and conclusions have been verified to hold true for the
high-orders m in the dFPT(+), as well.

Relationships exist between the two sets of the peak parameters, one for the dFPT(±)

with m > 0 and the other for the FPT(±) with m = 0 [17]. Thus, reliance exclusively
upon the non-parametric derivative envelopes, permits reconstruction of the exact peak
positions, widths, heights and phases of every physical resonance that would have been
available from a direct application of the non-derivative parametric FPT(±).

The spectra in the non-parametric and parametric dFPT(±) are given by the analyt-
ical expressions for any arbitrary positive integer m in terms of the Bell and Eulerian
polynomials, respectively. With these analytically available derivative spectra, the
operator Dm

ν does not introduce any additional noise when the input time signal {cn}
is processed by the dFPT(±). Note also that analytical (as opposed to numerical) dif-
ferentiation is itself free from errors. Moreover, in the dFPT(±), the derivative operator
Dm

ν never acts on the ν-dependent harmonic variable exp (− 2π iνt) which multiplies
the time signal c(t), as opposed to the passage from (3.2) to (3.4) when going from
the DFT to dDFT (and afterward from the FFT to dFFT), respectively.

This means that in the dFPT(±) there is no dFFT-type apodization by which the
power function ∼ (nτ)m multiplies the time signal cn (nor any other apodization for
that matter). As noted, when the time signal number n (in units of the sampling rate τ )
is augmented, as encoding proceeds toward the completion of the total acquisition time
T , more and more noise is encountered. In other words, this power function massively
counters the usual exponential decay of cn . As a result, especially for higher derivative
ordersm, mainly noise is processed when the FFT is applied to the product∼ (nτ)mcn
in the course of obtaining the envelopes in the dFFT.

According to the theory of derivative resonances in derivative envelopes computed
by the dFPT(±), when the derivative order m is augmented, the peak positions do
not change, whereas the peak heights increase and simultaneously the peak widths
decrease. These latter two trends for m > 0 are concomitant, such that their product
in a normalized derivative resonance can reconstruct the peak area of the absorption
mode of the non-derivative (m = 0) component spectrum from the parametric FPT(±).

Importantly, and this is the main advantage of derivative estimation by the
non-parametric dFPT(±), for higher derivative orders m, the normalized derivative
envelopes coincide with the Padé non-derivative component spectra. This key feature
amounts to performing quantification by shape estimation alone. Therefore, partic-
ularly for the magnitude mode of the normalized high-order derivative envelopes in
the dFPT(±), the stabilized (relative to both K and m) estimation permits accurate
determination of the positions, widths and heights of the non-derivative absorptive
peaks. The resulting products of the peak heights with the peak widths are propor-
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tional to the concentrations of molecules in the substance examined by MRS. As
mentioned, the magnitude mode is convenient because it is phase-insensitive, i.e. it
does not necessitate phase corrections of the encoded time signals.

Moreover, peaks in the magnitude mode are straightforward for interpretation of
the peak areas that are the essential ingredient to the sought molecular concentrations.
These latter quantities are the ultimate goal of MRS. In non-derivative estimation,
the magnitude mode is not used because, as noted, it widens the peak widths by

√
3.

However, in derivative estimation, especially for higher orders m, peak widths are
significantly narrower than those in the non-derivative absorptive resonances. Thus,
the magnitude mode is the spectral mode of choice for displaying the normalized
derivative envelopes. On the other hand, the product of the peak heights with the peak
widths remains constant once convergence has been attained. In order to facilitate
monitoring of convergence of resonances from derivative envelopes, by comparing
them with their non-derivative counterparts, it is necessary that the former envelopes
are normalized relative to e.g. the tallest peak in the non-derivative envelopes from the
FPT(±). With such normalization procedures, the increased peak heights in derivative
envelopes for m > 0 can be plotted on the same graphs with the non-derivative
envelopes (m = 0). In the present work, all the Fourier and Padé magnitude derivative
envelops are normalized to the NAA peak height (at ∼2 ppm) in the corresponding
magnitude non-derivative envelopes.

4 Results and analysis of derivative reconstructions

4.1 Characteristics of the encoded time signals and the related reconstructed
spectra

As described earlier in Ref. [18], the time signals were encoded at a General Electric
magnetic resonance (MR) clinical scanner with the static magnetic field of relatively
low strength, B0 =1.5T, associated with the Larmor frequency νL = 63.87MHz. The
encoding was performed at the Astrid Lindgren’s Children Hospital (Stockholm) from
the parietal temporal brain region from a child who suffered cerebral asphyxia. Single-
voxel proton MRS was used together with the PRESS sequencing. The number of
excitations (NEX)was 128. These 128 encodedFIDs are averaged (arithmetic average)
to improve SNR of the data. It is such an averaged time signal that is processed.

The averaged FID is phase corrected through multiplication by exp (iφ0), where
φ0 = −1.1831 rad. This is inconsequential for spectra in the magnitude mode for
which, evidently, | exp (iφ0)| = 1. Phasing is often used in MRS in an attempt to
roughly bring the real part of the given complex spectrum closer to a positive-definite
lineshape. As stated, phasing is not necessary for the magnitude mode of the envelope.
The bandwidth (BW) and the sampling time τ were 1000Hz and 1ms (τ =1/BW),
respectively. The echo time (TE) and the repetition time (TR) were 24ms and 2000ms,
respectively. The total length of each of the encoded FIDs was 512, implying that
the total acquisition time (T = Nτ) was 512ms. Afterward, the averaged FID was
zero-filled once to have the full signal length N = 1024 for both Fourier and Padé
estimations.
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Zero-filling in the given input FID can occasionally be beneficial esthetically to
Fourier envelopes. It is usually not done in a Padé-based estimation because spectra
in this processor can be computed at any desired number of frequencies. Moreover,
for Padé signal processing, the FID can meaningfully be extended by adding an arbi-
trary number of realistic time signal points generated from the encoded data points
themselves. Such a gain is achieved automatically by convolution of the encoded FID
data points with the expansion coefficients of the denominator polynomial in the fast
Padé transform. This gives a predictive power to Padé processing. Thus, the fast Padé
transform can predict the FID data points that would have been measured had the
encoding continued beyond the original total acquisition time (T = 512 ms in the
case under study). Presently, we did not do this Padé-conceived extrapolation of the
encoded 512 FID data points. Instead, for a direct comparison, we consider the same
input time signal (the encoded 512 FID points plus 512 zeros) in both Fourier and
Padé reconstructions.

Very recently [18], the same above-described FID has also been used in the non-
derivative fast Padé transform, FPT(+), within both parametric and non-parametric
processing. In Ref. [18], the concept of iterative spectra averaging from Refs. [4,6]
was employed. The total number of iterations in averaging was 12 and 3 of them
have been explicitly shown and analyzed in detail. Convergence of iterations was
remarkably good such that even the 1st iteration could suffice for practical purposes.
In the current study dealing with the first application of the dFPT(+) to encoded FIDs,
we will process the raw time signal alone (zero filled once). However, in the nearest
future, the derivative fast Padé transform will be employed together with iterative
spectra averaging (frequency domain) and extrapolation (time domain).

Presently, only non-parametric estimations will be applied by means of the FPT(+)

and dFPT(+). For these two processors, the full signal length will be used (N = 1024)
whose first 512 data points were encoded and the rest is a set of 512 added zeros (one
zero filling). With such a choice, in this study, the model order K in the Padé spectrum
PK /QK is chosen to be 512 (K = N/2 = 1024/2). As to our Fourier-based computa-
tions, besides N = 1024 (one zero filling), longer signal lengths will also be employed
with repeated zero-padding to illuminate its net effect on the resolution in the dFFT.

In panel (a) of Fig. 1, the real part of complex spectrum, via the non-derivative (m =
0), non-parametric envelope Re(P+

K /Q+
K ), is displayed. Therein, we see a substantial

number of metabolite peaks identified according to their resonant frequencies, in the
frequency range of interest (ROI) from 0.75 to 4.4ppm. Notably, a number of peaks
are split apart due to destructive interference. Thus, for example, N-acetyl aspartate
(NAA) and N-acetyl aspartyl glutamic acid (NAAG) can be identified as two ridges
on the top of the peak centered at about 2.0ppm. Also noteworthy is that especially
from about 1.3 to 3.8ppm, most of the baseline is lifted above the zero level of the
ordinate which is given in arbitrary units (au).

Panel (b) displays the non-derivative (m = 0) non-parametric envelope gener-
ated by the FPT(+) in the magnitude mode |P+

K /Q+
K |. Although there are substantial

similarities between the two modes, there are also some noteworthy differences. For
example, the peak centered at about 2.0ppm on panel (b) is now nearly twice taller
compared to that on panel (a), but without the clear ridges distinguishing NAA and
NAAG. This peak at 2.0ppm is amplified due to constructive interference in the mag-
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nitudemode, as opposed to destructive interference (aroundNAA andNAAGon panel
a) yielding a dip in the real part of the complex envelope.

Moreover, at the outermost parts of the ROI, the envelope is markedly lifted. Thus,
from about 0.9 to 0.75ppm, the spectrum rises to about 13 au in the magnitude mode,
whereas the real part of the complex spectrum descends to below 0au. At the other
extreme of the ROI, from about 4.2 to 4.4ppm, the magnitude envelope ascends to
nearly 15au, while the real part of the complex envelope lowers to 4–5au. The reason
for these differences in the extrema of the ROI is related to the background, which
is strongly influenced by the residual tail from water (presently set to resonate at
4.61ppm) and lipids. The residual water peak (not shown) is still about 7 times taller
than the NAA peak on panel (b) of Fig. 1.

The great majority of spectral peaks on panels (a) and (b) of Fig. 1 are seen not
to be pure Lorentzians (bell-shaped symmetric lineshapes). The presence of non-
zero phases of oscillatory waveforms in any encoded FID would lead to mixing of
absorptive and dispersive profiles even for well-isolated resonances. Non-zero phases
of the present FID are the reason for which, in Fig. 1a, the real part Re(P+

K /Q+
K ) of the

complex spectrum P+
K /Q+

K contains mainly non-Lorentzians. On the other hand, the
magnitude mode is phase insensitive, in which case all isolated resonances should be
pure Lorentzians. Nevertheless, this is still not the case formost peaks in themagnitude
envelope |P+

K /Q+
K | from Fig. 1b because therein nearly all resonances are overlapped,

not isolated.
Further comparison is provided in Fig. 2 between these two modes of the non-

derivative (m = 0) non-parametric envelopes from the FPT(+). As reference, the real
part Re(P+

K /Q+
K ) and magnitude |P+

K /Q+
K | borrowed from Fig. 1 are re-displayed on

panels (a) and (b) of Fig. 2. Herein, to facilitate another comparison, we used color
coding for the two curves: blue for Re(P+

K /Q+
K ) and red for |P+

K /Q+
K |. On panel

(c) these two curves are superimposed. Thereby, the similarities and differences, as
noted in Fig. 1, are even clearer. In particular, the extent by which a large part of the
magnitude envelope is lifted relative to the real part of the complex spectrum becomes
more evident than in Fig. 1. This is the case especially in the region between 1.5 and
2.0ppm, as well as from about 2.7 to 3.7ppm.Moreover, a marked baseline lifting also
occurs above 4.2ppm due to constructive interference of metabolite resonances with
the remnants from the still strong water residual tail. Also, the peak at about 2.0ppm is
substantially widened in the magnitude mode, as is the peak centered at about 3.5ppm
corresponding to a part of the myo-inositol (m-Ins) triplet. Also noteworthy is that the
valley in between creatine, Cr, and phosphocreatine (PCr) at 4.0ppm is much deeper
in the real part of the complex envelope compared to the magnitude mode.

Next we pass to derivative signal processing. With this goal, we begin with the
Fourier technique in Fig. 3. Panels (a) and (b) of this figure display the magnitude
envelopes in the FFT and dFFT, respectively. In the case of the dFFT, the 4th order
derivative envelope |(d/dν)4Fk | is depicted on panel (b). In the dFFT (panel b:m = 4),
the resonance widths are generally broadened compared to the FFT (panel a: m = 0).
Panel (c) superimposes the two envelopes, one from the FFT (m = 0) and the other
from the dFFT (m = 4). Therein, much of the finer structure is lost with the derivative
operator (d/dν)4 in the dFFT. Relative to the FFT (m = 0), not only that most of the
peaks are broadened, but they are also much coarser in the dFFT (m = 4).
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Fig. 1 Two spectralmodes (real part vs.magnitude) in the FPT(+) at the signal length N = 1024 (K = 512).
Panels (a, b): The real part and the magnitude of the complex envelope, respectively. The two spectral
modes are similar except at the edges and around 2ppm (near NAA and NAAG). On panel (a), a destructive
interference yields a dip between the NAA and NAAG peaks close to 2ppm. Near 2ppm, a constructive
interference on panel (b) enhances (nearly by a factor of 2) the peak height of NAA, whereas merely a
slight shoulder is seen for NAAG (Color figure online)
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Fig. 2 Two spectralmodes (real part vs.magnitude) in the FPT(+) at the signal length N = 1024 (K = 512).
Panels (a, b) borrowed from Fig. 1: the real part and the magnitude of the complex envelope, respectively.
Panel (c): Superimposed envelopes from the real (blue) and magnitude (red) modes to expose more clearly
the extent of broadening of the peak widths in the latter versus the former mode (Color figure online)
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Fig. 3 Comparison of themagnitudemodes of the complex envelopes in the FFT (a:m = 0) and normalized
dFFT (b: m = 4) at the signal length N = 1024 (K = 512). Panel (c): Superimposed envelopes from the
FFT (green) and dFFT (red). Therein, resonance widths are broadened in the dFFT (m = 4) compared to
the FFT (m = 0). This tendency worsens with augmentation of the derivative order in the dFFT (not shown)
(Color figure online)
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Overall, Fig. 3 amply illustrates the effect of the apodizing power function
(−2π inτ)4 in the dFFT. As per the Theory section, this apodization is generated
by applying the derivative operator (d/dν)4 to the complex envelope in the FFT. At
larger times nτ , encoding is corrupted by noise more than at the earlier instances of
data acquisition. Noise is further amplified by the power function (nτ)4. Such a cir-
cumstance exacerbates the situationwith the dFFT (m = 4), which processes the noise
amplified FID data set, {(nτ)4cn}. This broadens the peaks from the FFT (m = 0),
which processes directly the FID data points, {cn}.

Figure 4 deals with non-derivative and derivative magnitude envelopes from the
FPT(+) and dFPT(+), respectively. Therein, the non-derivative (m = 0) envelope
|P+

K /Q+
K | (panel a) from the FPT(+) is compared with the 4th derivative envelope

|(d/dν)4P+
K /Q+

K | (panel b) from the dFPT(+). The former ismarked in green, whereas
the latter is in blue. Strikingly, in panel (b) for |(d/dν)4P+

K /Q+
K |, a substantial portion

of the spectrum is significantly lowered almost to the baseline. Most notably between
2.5 and 3.3ppm, a large number of distinct, narrow resonances have emerged. Also
on panel (b), centered at 2.0ppm, there are now two clearly distinguished peaks with
a deep bifurcation between them.

In Fig. 4, the two envelopes from panels (a) and (b) are superimposed in panel (c).
On this plot, numerous thin resonances and the substantial lowering of the baseline in
|(d/dν)4P+

K /Q+
K | are clearly exhibited in direct comparison with the non-derivative

magnitude mode |P+
K /Q+

K |. It is fascinating that the relatively low 4th order derivative
in the dFPT(+) is capable of convertingmany complexes from |P+

K /Q+
K | into clear and

well-delineated resonances, a good number of which are nearly isolated despite being
tightly packed. This shows that even a low-order derivative envelope in the dFPT(+)

can split apart spectrally crowded regions that are largely smeared and/or smoothed
out in |P+

K /Q+
K | from the non-derivative FPT(+). Such an observation is evidenced in

Fig. 4c throughout the displayed range of frequencies.
Figure 5 is concerned with comparison between the two derivative shape estimators

(Padé and Fourier): the dFPT(+) and dFFT. Panels (a) and (b) show the 4th derivative
envelopes |(d/dν)4Fk | (Fourier) and |(d/dν)4P+

K /Q+
K | (Padé), respectively. In Fig. 5

too, as in the first four figures, the full signal length N = 1024 is employed by both
processors, dFFT and dFPT(+). As stated, this includes only one zero filling (original
512 data points appended by 512 zeros). In Fig. 5a for |(d/dν)4Fk | in the dFFT, the
derivative Fourier envelope appears to be substantially rougher. It shows a notably
lower resolution than even the non-derivative Padé envelope |P+

K /Q+
K | in the FPT(+)

from Fig. 4a.
Specifically, all of the peaks on panel (a) in Fig. 5 are wide and rough, with minimal

or no indication of any substructures. There is practically no hint of a split in the broad
peak at 2.0ppm, where merely a vague shoulder is noticed. Moreover, none of the
abundant fine resonances between 2.5 and 3.3ppm can be seen. At about 3.7ppm, a
single wide structure is present, instead of the triple serrated peak corresponding to
m-Ins.

Panel (b) of Fig. 5 re-depicts the Padé magnitude envelope of the 4th derivative
|(d/dν)4P+

K /Q+
K | borrowed from Fig. 4b for comparison with the dFFT. On panel (c),

the curves from panels (a) and (b) are superimposed to have a clearer differentiation

123



164 Journal of Mathematical Chemistry (2020) 58:146–177

1.522.533.54
0

5

10

15

20

25

Magnitude Mode

FPT(+) : TE = 24 ms

Magnitude of the Non−Parametric Complex Envelope: |P +
K

/Q+
K
| = |{Σ

r=1
K p+

r
zr }/{Σ

s=0
K q+

s
zs }|

K = 512 (N = 1024)

m = 0 (Non−Derivative)

Lip

La
c

Ala

AceG
A

B
A

NAA

N
A

A
G

G
lnG

A
B

A

Glx

NAAA
sp

G
S

H

Cr

P
C

r
P

E
T

au

Cho

P
C

s−
In

s
Tau

m−Ins

Glx

C
r

P
C

r
P

E
+

C
ho

m
−

In
s

(a)  Chemical Shift (ppm)

10
3 × 

|P
+ K
/Q

+ K
| (

au
)

1.522.533.54
0

5

10

15

20

25

Magnitude Mode

K = 512 (N = 1024)

m = 4 (the 4th Derivative)

dFPT(+) : TE = 24 ms

Magnitude of the Non−Parametric 4th Derivative: |(d/d ν)4P +
K

/Q+
K
| = |(d/dν)4{Σ

r=1
K p+

r
zr }/{Σ

s=0
K q+

s
zs }|

 (b)  Chemical Shift (ppm)

10
3 × 

|(
d/

dν
)4 P

+ K
/Q

+ K
| N

 (
au

)

1.522.533.54
0

5

10

15

20

25

Magnitude Mode

FPT(+) & dFPT(+) : TE = 24 ms

Magnitude Spectral Mode of Non−Parametric Complex Envelopes: Re(P +
K

/Q+
K
) and |(d/d ν)4P +

K
/Q+

K
|

K = 512 (N = 1024) Green: m = 0 (Non−Derivative)

Blue: m = 4 (the 4th Derivative)

(c)  Chemical Shift (ppm)

10
3 × 

{|
P

+ K
/Q

+ K
|,|

(d
/d

ν)
4 P

+ K
/Q

+ K
| N

} 
(a

u)
In Vivo MRS for Cerebral Asphyxia: Non−Derivative versus Derivative Pade Processing, FPT (+) vs. dFPT (+)

Comparison of Two Magnitude Envelopes: m = 0 (Non−Derivative) vs. m = 4 (the 4  th Derivative)

Fig. 4 Comparison of the magnitude modes of the complex envelopes in the FPT(+) (a: m = 0) and
dFPT(+) (b: m = 4) at the signal length N = 1024(K = 512). Panel (c): Superimposed envelopes
for m = 0 (red) and m = 4 (blue). Herein, relative to the FPT(+) (m = 0), the dFPT(+) (m = 4) shows
resolution improvement (splitting overlapped peaks) and enhanced SNR (lowering the background baseline)
(Color figure online)
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between the dFPT(+) and dFFT. Therein, almost everywhere, the Fourier envelope
(red), with itsmultiple bumps, appears as somewider umbrellas over sharply separated
individual resonances from the Padé envelope (blue). Often, e.g. a single spectral
umbrella from the dFFT is seen to cover 2–4 resonances from the dFPT(+). As such,
the entire panel (c) of Fig. 5 looks as if the blue Padé envelope were the components
of the red Fourier envelope. This analogy helps trace the reason for which the Fourier
envelope is nearly everywhere more elevated than the Padé envelope. For example,
by not being able to resolve NAA and NAAG through destructive interference, the
dFFT performs constructive interference near 2ppm. This yields a wide shoulder at
the location of the dip/valley between NAA and NAAG. So indeed, close to 2ppm, the
Fourier red curve is like a folding (convolving) function of the Padé blue curve. Similar
analogies also apply to all the other parts of the spectrumwhere Fourier complexes are
juxtaposed to Padé splitting of compound spectral structures. In other words, Fig. 5c
gives the impression that the red Fourier curve is the total shape spectrum of the blue
Padé component-type spectra, even though both curves are merely the non-parametric
envelopes.

The just evoked analogy, “a spectral umbrella-type envelope” versus “the hidden,
resolved peaks” is extended to Fig. 6 by posing the question: could the blue substruc-
tures underneath their red cover be revealed by the dFFT itself through drawing the
Fourier curve at more frequency points than those used in Fig. 5? A denser sampling
grid on the chemical shift axis in the dFFT can easily be achieved by putting more
zeros at the tail of the FID, i.e. by using repeated zero-padding of the time domain
data. To check for this eventuality, we systematically enhanced zero-filling of the
originally encoded 512 FID data points (from 2 to 8 times). The sole outcome of this
exercise with 2–8 zero-padding is to minimally smooth the appearance of the deriva-
tive Fourier spectrum. For instance, with 8 zero-fillings, the only improvement by the
dFFT in Fig. 6 is in smoothing the rough edges of spectral “bumps”. These bumps are
still seen as the same type of umbrellas over the well resolved envelope in the dFPT(+).
However, the substantive problem inquiring whether any new splitting by the dFFT in
Fig. 6 occurs is not solved. Namely, there are no further resonances identified by the
dFFT in Fig. 6 with 8 zero-fillings compared to Fig. 5 with only one zero filling. This
implies that supplementary zero-padding of the FID does not improve resolution in
the dFFT.

Figures 7 and 8 are of the type of Figs. 5 and 6 with the same idea of comparison
between |(d/dν)4P+

K /Q+
K | (Padé) and |(d/dν)4Fk | (Fourier). The only difference is

that Figs. 7 and 8 single out two specific narrower frequency intervals. They both
zoom into two spectral subregions of particular interest, one from 1.8 to 2.5ppm
(right column, panels e–h), and the other from 2.75 to 3.5ppm (left column, panels
a–d). These are the two innermost regions of the initial wider ROI extending from
0.75 to 4.2ppm. Figures 7 and 8 begin with the non-derivative reference envelopes in
the FPT(+) (Padé) for the two frequency subintervals, ν ∈ [2.75, 3.5]ppm (panel a)
and ν ∈ [1.8, 2.5]ppm (panel e).

In the 1st row of Fig. 7, on panel (a) for |P+
K /Q+

K | in the FPT(+), the most promi-
nent resonances are identified as Cr at 3.0ppm and Cho at 3.2ppm. Further, N-acetyl
aspartate, NAA centered at 2.0ppm is the largest resonance on panel (e) of Fig. 7,
which is also for |P+

K /Q+
K |. Several other peaks are suggested within the highly ele-
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Fig. 5 Comparison of the magnitude modes of the complex envelopes in the dFFT (a) and dFPT(+) (b)
for m = 4 at the signal length N = 1024(K = 512). Panel (c): Superimposed envelopes from the dFFT
(red) and dFPT(+) (blue). Superior performance of the dFPT(+) over that in the dFFT is seen. A number
of peaks are clearly delineated and resolved in the dFPT(+) as opposed to the dFFT (Color figure online)
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Fig. 6 Comparison of the magnitude modes of the complex envelopes in the dFFT (a: 8 zero-fillings,
N = 4096) and dFPT(+) (b: one zero-filling, N = 1024) for m = 4. Panel (c): Superimposed envelopes
from the dFFT (red) and dFPT(+) (blue). Extensive zero-filling of the encoded FID does not improve
resolution in the dFFT. Only smoothing is obtained in the dFFT for extra zero-padding, but the Fourier
compound structures remain unresolved (Color figure online)
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Fig. 7 Comparison of the magnitude modes of the complex envelopes in the dFFT and dFPT(+) at the
same signal length N = 1024. The left and right columns are for two innermost bands of the fuller ROI
from Figs. 3, 4, 5 and 6. Panels (a, e): The FPT(+) (m = 0), (b, f): the dFFT (m = 4), (c, g): the dFPT(+)

(m = 4). Panels (d, h): Superimposed envelopes from the dFFT (red: m = 4) and dFPT(+) (blue: m = 4).
Therein, the dFPT(+) narrows the peak widths, as opposed to line broadening in the dFFT (Color figure
online)
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vated rolling baseline. Long-extending tails of each individual resonance contained in
the magnitude envelope add up and this lifts the entire spectrum considerably above
the abscissae on panels (a) and (e) of Fig. 7.

The 2nd row (panels b and f) of Fig. 7 presents the envelopes |(d/dν)4Fk | (Fourier)
generated by the dFFT. Comparing the envelopes on panels (a) and (b), the latter
spectrum is overall much rougher with only a suggestion of an extended and bumpy
Cho peak around 3.2ppm. On panel (f) for the dFFT, it is seen that the NAA peak is
markedly broadened. Also, most of the other structures from the reference envelope
on panel (e) are obscured on panel (f).

Panels (c) and (g) in the 3rd row of Fig. 7 show the dFPT(+) as the 4th derivative
envelopes |(d/dν)4P+

K /Q+
K |. Therein, notably, on panel (c), some sixteen clear peaks

have emerged, and they are resolved to such an extent that some of the valleys among
them descend almost or completely to the background baseline. For example, in the
narrow region between 3.13 and 3.3ppm, five distinct resonances are predicted by the
dFPT(+). Of utmost importance is that the choline compound in the middle of panel
(c) is fully resolved into all its components even though shape estimation alone is used
in the dFPT(+). Similarly, between 2.75 and 2.95ppm, another five peaks are clearly
delineated. In panel (g) there is a marked split between NAA and NAAG at 2.0ppm,
and several other fine structures have begun to emerge, as well.

In the 4th row of Fig. 7, on the bottom panels (d) and (h), shown together are the
two envelopes: |(d/dν)4Fk | (Fourier, red) and |(d/dν)4P+

K /Q+
K | (Padé, blue). Herein,

it becomes patently clear what we meant earlier on Figs. 5 and 6 by the notion of “the
Fourier envelope-umbrella” extending over the Padé envelope. Some eight peaks from
the Padé envelope |(d/dν)4P+

K /Q+
K | are seen underneath 2–3 bumps in the Fourier

envelope |(d/dν)4Fk | even in the two very narrow frequency bands ν ∈ [3.05, 3.30]
(panel d) and ν ∈ [2.10, 2.35]ppm (panel h).

Figure 8 differs from Fig. 7, only in the number of zero fillings of the FID for the
dFFT, eight and one, respectively. Seeing the sharp edges on panels (d) and (h) of Fig. 7,
at the Fourier grid frequencies in the dFFT with the signal length N = 1024 (one zero
filling), it is tempting to think that some splitting of the Fourier envelope-umbrella
could potentially be achieved by further zero-filling of the FID. This would lead to the
additional Fourier grid frequencies (exceeding the number 1024) on the chemical shift
axis. Such hopes proved futile on Fig. 6c for the wider ROI within ν ∈ [1.1, 4.2]ppm
and definitely remain so in the two narrower bands ν ∈ [2.75, 3.50] (panel d) as well
as for ν ∈ [1.8, 2.5]ppm (panel h) fromFig. 8. Zooming in Fig. 8 relative to Fig. 6 only
puts in more transparent evidence the fact that extensive zero-padding for estimation
by the dFFT may smooth out the sharp edges, but cannot improve resolution.

In Fig. 9, we focus exclusively upon the performance of the dFPT(+) for
|(d/dν)m P+

K /Q+
K | with four consecutive derivative orders (m = 1− 4). As reference

spectral data, the non-derivative (m = 0) variant |P+
K /Q+

K | in the FPT(+) is given on
panels (a) and (f). To complement Figs. 7 and 8, here in Fig. 9, we consider the two
outermost frequency intervals, one from 3.4 to 4.0ppm (left column, panel a–e) and the
other from 1.0 to 1.8ppm (right column, panels f–j). The first range ν ∈ [3.4, 4.0]ppm
on the left column of Fig. 9 contains two groups of different molecules, one with Glx
in a narrow band (3.82–3.91ppm), and the other with m-Ins, which is spread out in
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Fig. 8 Comparison of the magnitude modes of the complex envelopes in the dFFT (8 zero-fillings, N =
4096) and dFPT(+) (one zero-filling, N = 1024) for m = 4. The left and right columns are for two
innermost bands of the fuller ROI from Figs. 3, 4, 5 and 6. Panels (a, e): The FPT(+) (m = 0), (b, f): the
dFFT (m = 4), (c, g): the dFPT(+) (m = 4). Panels (d, h): Superimposed envelopes from the dFFT (red:
m = 4) and dFPT(+) (blue: m = 4). Herein, no resolution improvement in the dFFT follows from more
extensive zero-filling of the encoded FID. Merely smoothing without resolving the Fourier amalgamated
structures is observed in the dFFT (Color figure online)
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Magnitude Modes of Non−Derivative (m = 0) vs. Derivative (m = 1 − 4) Pade Envelopes

Fig. 9 Comparison of the magnitude modes of varying derivative orders (m = 1− 4) in the dFPT(+). The
left and right columns are for the two outermost bands of the fuller ROI from Figs. 3, 4, 5 and 6. These
bands are complementary to those from Figs. 7 and 8. Panels (a, f): The FPT(+) (m = 0). Panels (b–j) are
all for the dFPT(+) as: m = 1 (b, g), m = 2 (c, h), m = 3 (d, i) and m = 4 (e, j). Relative to m = 0 (a),
better resolution is seen for m = 1 − 4 (b–e) (Color figure online)
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a wider band (3.50–3.82ppm). Here, Glx is the common abbreviation for Glutamine
(Gln) and Glutamate (Glu). The right column in the interval ν ∈ [1.0, 1.8]ppm is a
bit more diverse as it contains several molecules, such as lipid (Lip), lactate (Lac),
alanine (Ala) and acetate (Ace).

On the left column of Fig. 9, relative to the case with m = 0 (panel a), the main
m-Ins resonance near 3.77ppm remains unresolved and appears to be wider on panels
(b) and (c) for the 1st (m = 1) and second (m = 2) derivative, respectively. As to Glx,
these two lowest derivative transforms are seen to achieve some initial splitting, albeit
rough. Similarly, width broadening for resonances assigned to Lip, Lac, Ala and Ace
also occurs with the 1st and 2nd derivatives on the respective panels (g) and (h) from
the right column of Fig. 9.

On the right column of Fig. 9, relative to the 2nd and 3rd derivative envelopes on
panel (h) and (i), respectively, the 4th derivative envelope on panel (j) brings a clear
progress toward better resolution. For example, the trend of splitting in Ala as well
as in one of the Lac doublets (upstream, near 1.3ppm) begins to appear on panel
(j). A closer look shows that Lip and Lac are, in fact, less resolved on panel (h) for
m = 2 than on panel (i) for m = 3. Eventually, better resolution within these latter
two resonance complexes is achieved for m = 4, as seen on panel (j). Recall, by
reference to study [15], some oscillatory patterns in derivative lineshape profiles at
smaller values of m are not unexpected. Namely, the same occurrence has also been
detected with synthesized time signals (both noise-free and noise-contaminated) for
lower-order derivative envelopes from the dFPT(−) [15–17].

However, in closing the analysis of Fig. 9 by returning to its left column, it can be
seen that the 3rd derivative envelope (m = 3) on panel (d) is actually better resolved
than that for the 2nd derivative envelope the (m = 2) on panel (c). On panel (d),
the triplet in Glx begins to emerge. Moreover, the triplet in m-Ins, which appeared
as a single symmetrical Lorentzian in the 1st derivative envelope (m = 1) on panel
(b), now acquires two slight shoulders on panel (d) for m = 3 around the central
peak (∼3.77 ppm). Finally, on panel (e) for the 4th derivative envelope (m = 4), the
shoulders inm-Ins clearly indicate that there are indeed two side peaks surrounding the
central resonance at 3.77ppm. Also, the two other m-Ins triplets are nicely resoloved
in the frequency interval ν ∈ [3.5, 3.72] ppm. Moreover, a deeper splitting within Glx
permits the emergence of the constituent, distinctly delineated peaks.

4.2 Clinical relevance of the studiedMRS problem

For early tumor diagnostics, molecular imaging is vital. This is the case because
malignant transformation begins to develop at the molecular level. Diagnosing such
pathologic alterations at their early stages can greatly improve the chances for more
successful tumor control, potential cure, and impact positively on the patient’s survival
and quality of post-therapeutic life.

We have herein applied the dFPT to process MRS time signals encoded in vivo on
a 1.5T MR clinical scanner from a pediatric patient with cerebral asphyxia [4,6,18].
This problem was selected, in part, because MR spectra associated with ischemia or
asphyxia are very dense and, thus, have represented a great challenge for resolution
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and interpretation. This clinical problem is, furthermore, of major importance within
neurodiagnostics for children, aswell as for the adult population. Specifically, a critical
differential diagnostic dilemma in neuro-oncology is to distinguish non-tumorous
cerebral hypoxia/ischemia from brain tumors [21–39].

Heretofore, in vivo MRS within neurodiagnostics has mainly relied upon a few
metabolites and their concentration ratios. Among these are N-acetyl aspartate, NAA,
resonating at about 2.0ppm, which reflects viability and abundance of neurons. The
concentration of NAA is generally low with cerebral ischemia or asphyxia [21], since
cerebral neurons are exceedingly vulnerable to hypoxia. However, in brain tumors, as
well as in most other brain injury, diminished NAA is also generally reported [1,3].
A lactate, Lac, doublet, resonating at approximately 1.3ppm, is often observed in
MR spectra with cerebral ischemia/hypoxia, due to the predominance of anaerobic
glycolysis. In brain tumors, Lac is frequently seen, as well [21–23]. In approximately
the same chemical shift region, i.e. at about 1.3ppm, the appearance of lipid, Lip, has
also been reported, both in association with reperfusion after hypoxia and in brain
tumors.

There are additional challenges for neurodiagnostics through MRS in the pediatric
population, since account must be taken of the age of the child. In newborns, myo-
inositol, m-Ins, is the dominant brain metabolite. Total choline, Cho, resonating at
about 3.2ppm is reportedly the largest peak in older infants [24]. However, Cho as
an indicator of membrane damage, cellular proliferation and cell density is also very
often reported to be elevated in brain tumors, as well as in many non-tumorous brain
pathologies [1,3]. Cerebral energy metabolism is reflected by creatine, Cr, which
resonates at about 3.0ppm and whose concentration in the brain is usually stable after
the first year of life [23]. Concentrations of NAA increase as the child’s brain matures.
Thus, concentration ratios of Cho to NAA and Cho to Cr reportedly fall with the
normal development of the child’s brain [24].

One rationale for the clinical focus of this work is to improve neurodiag-
nostics through MRS, striving toward greater accuracy in identifying cerebral
hypoxia/ischemia versus brain tumors, as well as other pathology that present dif-
ferential diagnostic dilemmas. This aim is highly relevant for pediatric patients, in
addition to addressing the pressing needs of the adult population.

These investigations can have wider implications for oncology. Notably, hypoxic
areas are frequently found not only within brain tumors, but also within many other
malignancies. The hypoxic regions are generally resistant to treatment, both by radia-
tion or chemotherapy. In addition, hypoxia generates genomic instability and promotes
invasiveness [40]. Thus, identifying hypoxic regions viaMRS could help improve can-
cer treatment planning. Of particular note is that phosphocholine, PC, is an identified
cancer biomarker which also reflects hypoxia [41].

The present feasibility study is of high clinical relevance for in vivo MRS, and
motivates further applications of the derivative fast Padé transform to encoded data
associatedwith various tumors from e.g. brain, breast, prostate, ovary and other organs.
This is what we are set to do in the nearest future.
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5 Discussion and conclusion

Themost recent advance inmagnetic resonance spectroscopy,MRS, is the introduction
of the derivative fast Padé transform, dFPT. This processor complements the standard
non-derivative fast Padé transform, FPT. The dFPT was benchmarked on synthesized
MRS time signals or FIDs that were both noise-free and noise-contaminated. It has
been shown that the dFPT for high-derivative orders is capable of exactly recon-
structing all the peak parameters for every physical resonance by carrying out solely
estimation of total shape spectra or envelopes.

In the dFPT, the linewidths are narrowed and the peak heights concomitantly
enhanced. Simultaneously, the dFPTsuppresses noise by lowering the tails of lineshape
profiles. This leads to clearly visualized separation of overlapping peaks, implying res-
olution improvement and noise reduction. All of the mentioned features of the dFPT
have been establishedwith a primary focus on high-order derivatives. The reason is that
in such cases the derivative envelopes reduce to the underlying derivative components
that, in turn, permit unequivocal quantification.

The topic of the present paper is extension of the dFPT to encoded FIDs. However,
here, the focus is exclusively on low-order derivatives (from the 1st to the 4th). We
applied the dFPT to MRS time signals encoded at short echo time (24ms) with static
magnetic field of strength 1.5T. The total signal length was only 512 data points. Both
the FPT (no derivatives) and dFPT (multiple derivatives) are implemented in their
non-parametric forms (conventionally used in shape estimation).

The dFPT for low-order derivatives based on encoded FIDs is shown here to
uphold the two main features of this processor by improving frequency resolution
and signal-to-noise ratio, SNR, relative to the customary, non-derivative FPT. Low-
order derivatives of envelopes are chosen because this is a feasibility study aimed at
visualizing the improved resolution and SNR. For testing the precision of estimation
in the present applications of the non-parametric dFPT, we plan to use the parametric
dFPT, similarly to the previous studies on synthesized FIDs [15–17].

The magnitude mode of spectral envelopes is employed because it is phase-
insensitive. This means that each isolated peak is a symmetric Lorentzian for any
derivative order. Such a lineshape is most convenient for interpretation as if it were
a non-derivative pure absorption mode with no phase. In the usual quantification
with non-derivative estimators, the magnitude mode is not preferred because the peak
width is broadened by a factor of

√
3 relative to a symmetric absorptive Lorentzian.

Some peak width broadening also exists in the present magnitude mode of lower-order
derivatives of complex-valued amplitudes. However, this has nothing to do with the
fact that we are dealing here with encoded MRS data. Similar oscillatory patterns of
resonances toward their stabilization have also been reported with simulated MRS
time signals processed by low-order dFPT.

There is a clear trend of resolution enhancement when going from the 1st to the 4th
derivative envelope in the dFPT. In this regard, especially the 4th order dFPT is per-
forming excellently since it brings significant improvement over the 2nd order dFPT.
As expected, derivative resonances cannot fully stabilize at low-derivative orders.
Nevertheless, this trend is important as it sets the stage for convergence of normalized
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envelopes at higher derivative orders to be investigated soon using encoded MRS time
signals.

Notably, even though low-order derivatives are used, the dFPT is still found to
perform significantly better than the non-derivative FPT. This fact itself justifies the use
of low-order derivatives in the dFPT as the first attempt in improving the performance
of non-derivative estimations.

The derivative Fourier transform, dFFT, is observed to widen the resonance widths
relative to the FFT. Furthermore, with increasing derivative order, the performance of
the dFFT is worsened with respect to the FFT. This is just the opposite to what is expe-
rienced with the dFPT versus FPT (presently, for encoded FIDs, and in our previous
reports for synthesized MRS time signals). Noise has a much more detrimental effect
on the dFFT than on the FFT. The reason is in the fact that the derivative operator in
the dFFT apodizes the input FID with a power function of time raised to the given
derivative order. This apodization amplifies noise since the multiplicative time power
function puts the emphasis on the FID tail which is itself more corrupted with noise
than the earlier encoded FID data points.

By contrast, the same derivative operator acts entirely differently in the dFPT: it
processes the intact FID with no apodization whatsoever. The operation of derivation
is applied to a complex spectrum in the FPT and this leads to no time power function
(nor to any other apodizing function for that matter). The envelope in the FPT is given
by an analytical expression (a polynomial quotient) and so is the general derivative
envelope in the dFPT (a closed formula in terms of the Bell polynomials). A key
consequence is that the derivative operator itself does not generate any additional
noise in the dFPT. Quite the contrary, the derivative operator in the dFPT suppresses
noise because it flattens the rolling background by narrowing the peak widths and
simultaneously elongating the peak heights compared to the non-derivative FPT.

Overall, derivative envelopes from thedFPThave abetter SNR than those in theFPT.
In particular, the up-lifted rolling background from the FPT is considerably reduced in
the dFPT. Resonances that were packed and superimposed on high background in the
FPT are brought down by the dFPT close to the zero-valued baseline which is almost
embedded in the chemical shift axis.

Moreover, derivative envelopes in the dFPTare better resolved than those in theFPT.
A number of compound, amalgamated spectral structures in the FPT are disentangled
by the dFPT into the constituent isolated peaks. Thus, especially with the 4th order
derivative, the dFPT is shown to fully resolve the hidden multiplets of glutamine-
glutamate complex, Glx, as well as those associated with myo-inositol, m-Ins and
taurine, Tau. The same 4th order derivative in the dFPT completely splits apart the
choline-containing compound into its several components. It is the first time that a
shape estimator was able to clearly visualize all the constituents of the cholinemultiple
structure in a total shape spectrum. This finding is all the more significant by the fact
that merely a low-order derivative in the dFPT is applied to the encoded MRS time
signals. The present feasibility study holds promise for further exploration within the
’theme cancer’ in neurodiagnostics, and well beyond.
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