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Abstract

Nuclear magnetic resonance spectroscopy originated in physics and quickly found ver-
satile applications of paramount importance in other sciences, including chemistry.
Signal processing in this methodology is a key to data analysis and interpretation.
Herein, one of the most powerful tools from mathematical theory of approxima-
tions, known as rational polynomials, is the prime example of reliable handling of
the two stumbling blocks that hamper further progress: noise suppression and reso-
lution improvement. Within this realm resides the fast Padé transform (FPT), which
simultaneously solves both these problems. It has a self-correcting procedure, which
is automatically built in rational polynomials through noise suppression by pole-zero
cancellations in spectra. Moreover, by solving the quantification problem (called spec-
tral analysis in mathematics), the FPT can unequivocally separate overlapped peaks
and thereby improve resolution. Further, lineshape estimations are provided by both
non-parametric and parametric signal processing in the FPT. Since the FPT includes
singularities (poles) of the expanded function, it achieves exponental convergence
exp (—N) (the so-named spectral resolution) with respect to the size N of the basis
set. This is contrasted to merely the inverse-power-law convergence 1/N in the fast
Fourier transform because its basis functions do not describe the singularities of the
expanded function. The present investigation reports on practical aspects of all these
critical features and gives several representative illustrations for measured time signals
heavily contaminated with noise.
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1 Introduction

The present study is on the estimation problem by parametric and non-parametric
analysis in magnetic resonance spectroscopy (MRS) [1,2]. In MRS, times signals are
measured, whereas spectra are computed. Time signals are not directly interpretable
due to many coupled components that are attenuated sinusoids and cosinusoids. At
first glance, spectral lineshapes have an advantage since they present at least some
recognizable structures appearing as peaks or resonances.

However, this is only an apparent advantage because the initial obstacle with tightly
packed complex damped harmonics in the input time signal did not magically dis-
appear from the subsequent frequency-domain analysis. Rather, the related trouble
exists in spectral lineshapes too where, in fact, coupled time-signal constituents are
now disguised through their direct influence on the emergence of closely overlapping
resonances.

The art is then in splitting apart the overlapped peaks even if the input time signals
were noise-free as in the case with theoretical simulations. Measured time signals
dramatically aggravate the situation due to unavoidable contamination of recorded
data with noise.

Historically, it was the fast Fourier transform (FFT) [1], which helped research in
data analyses across inter-disciplinary fields. Depending on total signal lengths, the
use of the FFT could mean huge reduction of computational demands. Nevertheless,
computational speed is not all that is needed. It may be necessary but not sufficient.
For example, nowadays, the ever pursuing quest for much improved resolution de
facto rules out the FFT from useful applications especially in MRS. The reason is low
resolution of the FFT coupled with its other well-documented drawbacks, including
e.g. linearity which translates into inability to suppress noise from the input time-signal
data.

Therefore, to better reconstruct the physical information and improve resolution, it
is critical to have a signal processor which can accurately analyze the measured time
signals by simultaneously reducing noise and separating overlapping resonances. We
show that such a key twofold goal for encoded time signals can reliably be achieved
by using the fast Padé transform (FPT) [1-55]. This is demonstrated by several repre-
sentative illustrations of both the shape and parameter estimations with the FPT.

2 Theory and methods
2.1 Mathematics of signal processing

To account for the physical nature of time signals, or equivalently, free induction decay
(FID) curves, encountered in MRS, the following decomposition is appropriate [1,2]:
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K
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where 7 is the sampling or dwell time, N is total signal length and i is the imaginary
unity, i = /—1. Here, vy is the fundamental complex linear frequency, v, = Re(vi)+
iIm(vg), while di is the associated complex amplitude, dy = |di|exp (ipx), whose
magnitude and phase are |di| and ¢, respectively. Quantity Re(vk) represents the
chemical shift which is a dimensionless frequency at which the k th molecule resonates
with the external excitation. The imaginary part Im(vi) of the complex frequency vy
is proportional to the full width at half maximum (FWHM) of the & th resonance. The
reciprocal of Im(vy) is proportional to the lifetime of the k th resonance.

For the estimation problem, the input data in the time domain are the FID data
points, {c,}. These can be either synthesized (i.e. simulated theoretically through
computations), or available through experimental data from measurements (encoding).
In the case of the frequency domain, the input data for estimation is a single response
function in the form of the finite-rank Green function Gy (z~1):

N—1
_ 1 o
Gn(z ‘)=N’;cnz n gl g 2mive 2.2)

This is a Maclaurin polynomial of degree N — 1 with the expansion coefficients given
by the input signal points {c,} (0 < n < N — 1). If the time signal were infinitely
long (N = 00), function Goo(z™) = limy_, o0 Gy (z~") would become a Maclaurin
series (with an unlimited number of terms) in which case it is necessary to define
the convergence radius. Since such a series is an expansion in powers of z !, its
convergence radius would be outside the unit circle (|z] > 1).

2.2 Discrete and fast Fourier transforms

The discrete Fourier transform (DFT) is deduced directly from Eq. (2.2) by taking
the sweep frequency v to be at the Fourier grid frequencies k/T (k <0 < N — 1),
where T is the total duration of the FID (i.e. the total acquisition time in encoding),
T =Nr:

N—1
1 .
DFT} = 5 § :cne—"’m"k/N O<k<N-1). (2.3)
n=0

In other words, to pass from (2.2) to (2.3) all that is needed is to discretize (digitize)
the continuous running frequency v accordingtov = k/7T (k =0,1,2,..., N — 1).
Afterward, using the relation 7 = N, it follows that vt = k/N, which is the term
appearing in the exponential from (2.3). Further, the FFT is defined by means of
the DFT from Eq. (2.3) by employing therein the Tukey-Cooley fast algorithm. This
algorithm converts the initial N> multiplications into N log, N multiplications, when
N is a composite number of the form N = 2t ® = 1,2,3,...). The starting N 2

@ Springer



Journal of Mathematical Chemistry (2019) 57:2082-2109 2085

multiplications in the DFT are due to multiplications of two vectors of length N: one
is the so-called work vector Wy where Wy = e 27"/N () < k < N — 1) and the
other is the vector comprised of N time signal points {c,} (0 < n < N — 1). For
smaller NV, the DFT can occasionally be even faster than FFT. However, for large N
(for which the so-named fast algorithms are used), the FFT introduces an enormous
advantage over the DFT.

2.3 Fast Padé transform

The spectra defined by e.g. the diagonal FPT are defined by the two equivalent and
complementary forms denoted by FPT(™) and FPT") depending whether they use
the independent variable z~! or z, respectively, to connect to the input data Gy (z~1).
These spectra in the FPT®) are Padé-Green functions denoted by G;(zﬂ). Their
diagonal forms are non-linear response functions given by the polynomial ratios of
a common degree K with the complex harmonic as the independent variable, which
can be either z~! or z. Both forms Gy (z"") and G‘[E (z) of the polynomial quotients
Py (z /0% (™! and P;(' @)/ Q;(z) are unique in their respective independent
variables z~* and z:

P -1
G;(z‘%:%, 2 > 1, (2.4)
P{(2)
Gl(z) = K=, 1. 25
x () 0T lz| < (2.5)

The polynomials Plf (z*") and Q; (z*1) can be represented as the finite developments:

K K
P =) prz", PE@=)_ p'7, (2.6)
r=0 r=1
K K
O h=) a7 Q=) a7 @7
s=0 s=0

where { pfﬁ, qsi} are the expansion coefficients that are yet to be determined by a
straightforward procedure which will be given in the continuation of this exposition.
In the meantime, notice that there is no free term z° in polynomial P,“(L (z), or stated
equivalently, paL =0.

By default, functions G}(z) and G;(Z*I) converge inside (|z] < 1) and outside
(Jz| > 1) the unit circle, respectively. However, by the Cauchy analytical continuation,
both G} (z) and G (z~!) converge in the entire plane of the complex frequency, i.e.
inside (|z] < 1) and outside (|z| > 1) the unit circle, with the exception of the K poles
that are the solutions of equations Q% hH =o.

At first glance, since GJIQ (z) and G (z~") are comprised of polynomials (with the
finite number K of the expansion terms), one may think that consideration of the
convergence region would be unnecessary. However, implicitly both G}(z‘l) and
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G}; (z) contain their series since the polynomial reciprocals 1/ Q% (z~ and 1/ Q;g (2)
expanded in powers of z~! and z, respectively, have infinitely many terms (i.e. they
are series).

Thus for the reason of principle, i.e. irrespective of whether or not the inversions
of Oy (z7!) and Q‘IE (z) are carried out in some concrete computations, the issue of
the convergence region has to be settled (note that, generally, the model order K need
not be finite). Nevertheless, it turns out that this matter of convergence is of a purely
formal nature for the functions G (z‘l) and GT x (2) from Egs. (2.4) and (2.5) because
of a twofold reason: the polynom1al quotient forms of these functions and the Cauchy
analytical continuation.

The same input Green function Gy (z~!) from Eq. (2.2), as the expansion in pow-
ers of z7', is approximated by two different Padé functions G K(Z*I) and G x (2.
The relationships of the spectra G (zil) in the FPT* with Gy (z~!) are estabhshed
through the standard definitions of the Padé approximants:

P> —1
Gy Y~ Gr@™h or GN&UQ:E%ET%, (2.8)
P+
Gy )~ GER) o Gy H~ Q’;((é)) 2.9)

2.4 Error estimates

All meaningful mathematical models should have some reasonable ways to estimate
the invoked errors when describing the given function by the employed approxima-
tions. To learn about the error estimate within the FPT, let us rewrite, e.g. (2.8) in its
equivalent form:

Py (z7!
GniEh - ’i(—l) =02, (2.10)
Qg™
Here, the remainder O(z 2K 1) represents a series beginning with the power z 2K~
o
0= Y az @2.11)

n=2K-+1

where all the expansion coefficients {a,} (2K + 1 < n < 00) are obtainable in terms
of the input data {c, }. Thus, we see that the definition (2.8) of the FPT(™) provides the
explicit formula for the error committed when the original Green polynomial Gy (z~!)
is described by the Padé-Green rational polynomial P Y Ox (z~1). This can be
summarized in a manner familiar to estimation problems (Input-Model=Error):

Pgh oK1

— =0 )

QK(Z—I) . (2.12)
Input — Model = Error

GGz —
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In other words, by definition, the FPT(™) for the initial function Gy (z~!) from (2.2),
as given by (2.10), signifies that the following strict equality (in lieu of the approximate
equality in (2.8)):

Pz

Gniz hH = ,
Nz 0 D

(2.13)

is valid through all orders z 2K This means that every coefficient a, of the higher
terms z~>K—¢ with £ > 1 is automatically taken as zero. A similar reasoning can be
extended to cover also the FPT™) with an analogous interpretation of relationship
(2.9) leading to the equality:

PE(2)

Gyiz H= )
N(EZT) 05

(2.14)

2.5 Extrapolation and interpolation

Crucially, in e.g. the FPT(), the definition (2.13) itself can be used to generate all
the K expansion coefficients {p; } and {g;"} of polynomial Py (z~!) and Q% (z™1),
respectively. This is achieved through multiplication of both sides of (2.13) by
Q,_((z_l). Then, in the ensuing relation, GN(Z_I)Q} zh= Py (z~1), the product
Gy(iz™hH Q}(z‘l) is treated as a convolution.

Such a procedure yields a single system of linear equations from which the whole
set of the expansion coefficients {g; } (0 < s < K) of the denominator polyno-
mial QI;(Z_I) is obtained. The other system of linear equations for the expansion
coefficients {p, } (0 < r < K) of the numerator polynomial P (z7Y is, in fact,
an analytical expression given by the convolution of {c,} with the already obtained
set {g, }. This completes the generation of the polynomial expansion coefficients
{p; . q;} (and similarly for {p;, ¢;'} starting from Eq. (2.14)).

It is a remarkably robust procedure since solving a system of linear equation is
a success story of linear algebra in all of computing. It belongs to a prime category
of the most accurately solved numerical problems in an exemplary stable manner
[1]. The obtained solutions for {qsi} can be refined by the well-known singular value
decomposition (SVD) [55], as regularly done in all our applications of the Padé-based
signal processing.

Once the polynomials Py (z™!) and QE(Z_l) become available in the explained
way, we can expand their ratio P z™hH / Q}(z‘l) in a Maclaurin series in pow-
ers of z~! and compare it term-by-term with the input development Gy (z~'). The
outcome would be pleasing: the first M terms in the said Maclaurin series for
Py zH /Q}(z_l) coincide with the 2M terms of the development in the input
Maclaurin polynomial Gy (z~1). This means that, if the input Gy(z™Y) is trun-
cated by retaining e.g. its first N/2 terms alone, then modeling GN/z(Z_l) by
Py zhHy O% (z~1) in the FPT) would reconstruct exactly the remaining N /2 miss-
ing terms left out after passing from G Nz DHtoGy 2 (z’1 ).

In other words, the FPT(™) extrapolates the truncated input data set {c,} (0 < n <
M — 1) to{c,} (0 <n <2M — 1) for any positive integer M < N. Itis in this way
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that the FPT(™) accelerates convergence of the input Gy (z ') when the signal length
N is systematically augmented. In practice, such a gain translates into the ability of
the FPT(™) to predict the time signal points that would have been encoded had the
measurements continued beyond the total acquisition time 7 = Nt. The FFT cannot
extrapolate as it is limited to only those time signal points that are present in the input
FID of length N.

Moreover, the FPT(™) can perform interpolation, as well. This is achieved by com-
puting the given spectrum P (z~ Y Ox (z~!) atany desired set of values of the sweep
frequencies v. On the other hand, the Fourier grid frequencies are pre-assigned by the
total acquisition time 7. This implies that resolution of the FFT is the same for all
signals with the same 7. Stated equivalently, the FFT does not account for the different
nature of different time signals. The number of the grid frequencies is the same as the
number N of the input time signal points. Often, zero-padding is used by doubling the
input FID data set through appending N zeros to the tail of the original time signal.
This may somewhat ameliorate the appearance of the resulting Fourier spectrum, but
resolution cannot be improved by zero-filling.

The same advantageous interpolation feature is also shared by the FPT("), Although
they are equivalent and complementary, there is a clear difference between the FPT(™)
and the FPT™") . The latter transform is in terms of z which means that the initial conver-
gence radius of the FPT*) is inside the unit circle (|z| < 1) where the input Gy (z 1),
which is in terms of z 7!, diverges. Hence, inside the unit circle, the FPT(H) performs
analytical continuation by inducing convergence into the divergent development input
Gy(z™h for N - oo.

We always simultaneously apply the FPT(™) and FPT(") for the reason of cross-
validation within the same type of signal processing. In the end of computations,
after full convergence has been reached in the FPT(™) and FPT" | only the common,
joint reconstructions (spectral parameters, spectral lineshapes,...) are retained as the
final, meaningful results. With this intrinsic checking of the output of the Padé-based
estimation, chances are minor (if at all) to retain spurious information which, being
random, is unlikely to be shared by both the FPT(~) and FPT"). There is no other
signal processor with such a systematic, robust and reliable way of preserving true,
while simultaneously discarding false and misleading information from data analyses.

2.6 Signal-noise separation and denoising Froissart filter

Inthe spectrum Pk / Q  from the FPT, the numerator polynomial Pk gives the spectral
zeros and suppresses noise by a moving average (MA) process. Likewise, the denom-
inator polynomial Q yields the spectral poles. Moreover, the expansion coefficients
of QO coincide with those of an auto-regressive (AR) process. The combination of AR
and MA yields the auto-regressive moving average (ARMA) [1]. The zeros and poles
of the complex-valued envelope Pk /Qk are determined exclusively by Pk and Ok,
respectively, because the spectrum Pg/Qk is a meromorphic function. A function
having poles as its only singularities is called a meromorphic function. By its ratio-
nal polynomial representation Pg /Qk, the FPT is automatically of a polar structure,
which naturally yields the peaks as the main signature of spectral envelopes.
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Quite the contrary, the FFT, as a single Maclaurin polynomial, has no polar structure
whatsoever. As a consequence, the FFT needs too many of its basis set functions to
approximately mimic a polar structure, i.e. to describe a peak in a spectrum. Accord-
ing to Eq. (2.3), the basis set function in the FFT is the unattenuated, equidistantly
discretized harmonic variable exp (—2mink/N), with N being the total time signal
length, whereas n and k are the running numbers of the data in the time and frequency
domain, respectively. The Fourier grid linear frequencies, k/7 (0 < k < N — 1),
being real-valued, are all located exactly on the circumference (|z| = 1) of the unit
circle. On the other hand, the natural accumulation limit of noise poles is the same
circumference |z| = 1 of the unit circle. As such, the Fourier grid frequencies are
completely embedded in noise and, hence, they are likely to often coincide with noise
poles. Since the Fourier grid frequencies are real, they cannot reconstruct the sought
complex eigen-frequencies of metabolites.

In the expansion methods, exponential convergence, exp (— M), with respect to the
size M of the basis set can be achieved only with basis functions that take into account
singularities of the expanded function. This is automatically the case with the FPT due
to its polar structure. As stated, poles are the only singularities of rational polynomials
Pk /Qk from the FPT. Moreover, the signatures of spectra are peaks. These stem
directly from the singularities (poles) in any MRS spectrum. The mentioned undamped
harmonics, as the basis functions in the FFT, do not describe the singularities of the
expanded function G y (z~!). Therefore, convergence in the FFT relative to an increase
of the basis size N (which is also the total signal length) can follow only the inverse
power law (1/N).

In sharp contrast to Fourier analysis, the parametric FPT™ reconstruct the complex
eigen-harmonics {zkil}, where zkil = exp (X2miviT), whose imaginary parts shift
the genuine poles away from the circumference |z| = 1 of the unit circle. Such a
shifting is inside (|z] < 1) or outside (|z] > 1) the unit circle since |z] < 1 or |z] > 1
in the FPT™) or FPT(™), respectively. The benefit is in significantly reducing overlap
of genuine with spurious poles and this, in turn, improves signal-to-noise ratio (SNR).
The gain is achieved under the provision that there is a way to minimize or possibly
eliminate altogether the presence of spurious poles resulting from noise in the input
FID and/or from round-off errors in signal processing. It is here that the concept of
signal-noise separation (SNS) via identification of Froissart doublets comes to the
rescue for the FPT.

Froissart doublets are pole-zero coincident pairs characterized by small amplitudes
(like noise background). The word “doublet” signifies that a Froissart structure always
appears as a pair (a couple comprised of a pole and a zero). Generally (i.e. irrespective
whether we are dealing with spurious or genuine resonances), a pole-zero distance is
proportional to the amplitude of the given component in the FID. That is why these
amplitudes of time signals are alternatively called residues: they are proportional to
whatever is left after subtracting the poles from the zeros.

This explains why Froissart doublets are feeble: a small pole-zero distance in a
spurious couple produces a small amplitude. Since they are weak, they can be easily
perturbed and, thus, distorted. Even small changes of some of the input parameters (e.g.
slight truncations of the full signal length ) can lead to large alteration of Froissart
doublets e.g. in their locations in the complex plane and/or strength. This makes
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them random, like noise. Such a marked instability classifies Froissart resonances as
unphysical (spurious) spectral structure.

These spurious resonances are automatically removed from the Padé spectrum
through its self-corrected feature: a spurious poles from Q x cancels the spurious zero
from Pk in the given Froissart doublet. Such a pole-zero cancellation of spurious
Froissart pairs, as the result of the underlying pole-zero coincidence, occurs thanks
to the rational form Px/Qk in the spectrum of the FPT. As such, detecting pole-
zero coincidences amounts to filtering noise. This gives the name denoising Froissart
filter (DFF). The DFF is unique to the FPT because the spectrum of this processor
is a polynomial quotient Px /Q where we have pole-zero cancellations due to the
emergence of Froissart doublets as pole-zero coincidences.

On the other hand, there is part of the Padé spectrum Pg/Q g, which is resilient
to perturbations (such as truncation of the signal length N, etc). Therefore, these
stable spectral structures are categorized as physical (genuine). They are comprised
of genuine poles as well as genuine zeros that do not coincide. For such structures,
there are no pole-zero cancellations in the spectral quotient Px / Q. Thus, since the
coincident, i.e. noisy poles and noisy zeros are gone through their cancellations, all
that is left in the Padé spectrum Pg/Qx is the true, physical information (genuine
poles and genuine zeros). This is how the FPT improves SNR.

The gist of the matter is in the concept of signal-noise separation, SNS, in the
FPT: this processor accomplishes its self-correction by reducing non-physical, noisy
information (via pole-zero cancellation in Froissart doublets) and, at the same time,
by retaining the physical signal (no pole-zero cancellations in genuine resonances)
[14]. It is a paradigm shift in signal processing which can be given an alternative,
transparent name “‘signal modulated estimation” (SME).

e The SME is summarized as the following algorithm: optimize signal analysis
through a modulation of estimation by maximizing extraction of true, while simulta-
neously minimizing the chance for unknowingly retaining the false information.

Such a weeding of the final linelist in data analysis is of paramount importance in all
applications of signal processing to encoded FIDs. This is the case because corruption
of physical by unphysical information adversely impacts on the interpretation of the
measured data.

3 Spectral representations

The initial or default spectral representations in the FPT™ are given by the polyno-
mial quotients PI? / Qf. These representations are common to both non-parametric
and parametric FPT®) . The parametric versions of the FPT® have two additional
representations given by the Heaviside expansions and the canonical forms. The Heav-
iside partial fraction decompositions read as:

Py %) _di+2": dEz*! A
+ - YK + - '
QK(Z:I:I) P Z:i:l _ Zk,Q
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Here, the functions dkizil /(@ — z,ic o) represent the component spectra for the k th
molecule. On the other hand, the canonical representations are defined by:

K +
PeEY  pg —zkp -
0% (*1) _in - ¢
k2 dK j—1 ZkQ

The quantities zki pand z,f o are the roots of the characteristic equations P;; (z,fl) =0

and Q,j? (zfl) = 0, respectively, with the simplified notations zlﬂg = zf p and z]:—LlQ =
+
%o

Advantageously, the amplitudes dk in the FPT™® are available in the analytical
forms as the Cauchy residues of the spectral envelopes Pi(zil) /0 K(Zil) taken at
the roots zk 0 They have the following two equivalent expressions:

d; = il o , (3.3)
(d/dz )QK(Z ) :H_Z
and P N
i i [To= 2k, 0 ~ %k, P (3.4)
k — K + + :
9k Hk/:l,k’;ék k0 T 0
The peak heights are obtained from the component spectra dkizil /(zH — zjE 0) for v

taken at the chemical shift Re(vk Q) of the k th resonance and their explicit expressions
are shown in the pertinent ﬁgures from the Results section.

4 Results

In this section, we illustrate the main features of the expounded theory of signal
processing within the FPT. Both non-parametric and parametric estimations will be
performed and the ensuing total shape spectra or envelopes will be compared with
each other.

4.1 Characteristics of the encoded time signals

We shall use the time signal encoded at a General Electric magnetic resonance (MR)
scanner with the static magnetic field strength By = 1.5T corresponding to the Larmor
frequency vp, = 63.87 MHz. The encoding was made at the Astrid Lindgren Children’s
Hospital (Stockholm) from the parietal temporal brain region from a child who had
cerebral asphyxia. The total signal length of this FID is 512, the bandwidth (BW)
is 1000Hz and the sampling time 7 = is 7 = 1/BW = 1 ms. Single-voxel proton
MRS was used in encoding this FID with the point-resolved spectroscopy sequence
(PRESS). More precisely, as usual in MRS, some 128 such time signals were encoded
and subsequently averaged to improve SNR (a single encoded FID would be too noisy
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to be of any practical use). Such an occurrence is alternatively referred to as 128 NEX
(number of excitations). It is this averaged FID which is used in our signal processing.
Altogether, three values of echo time (TE) were employed in encoding (TE = 24, 136
and 272 ms) alongside the repetition time (TR) of 2000 ms. The present illustrations
deal only with TE = 24 ms since, in this case, the short lived resonances have not
decayed and, thus, are advantageously the subject of reconstructions. They are often
very important for overall interpretation. Zero-filling to 1024 FID points is used in the
FFT and, for consistent comparisons, the same zero-padding is also employed in the
FPT. As such, the total time duration of the zero-padded FID becomes 7 = 1024 ms.
During the process of encoding, the giant water resonance was partially suppressed
by means the standard inversion recovery.

4.2 Reconstructions in signal processing

Prior to reconstruction, the FID was phase corrected. This was done through multipli-
cation of the complex-valued FID by the phase factor exp (i¢g) where ¢p9 = —1.1831
rad. This particular value of ¢ represents the minimum of the real parts of the complex
FFT spectrum with the originally encoded, raw FID. As always, for cross checking,
we apply both the FPT(™) and FPT™). However, for brevity, all the results will be
reported for the FPT™) alone. As such, hereafter, it is sufficient to refer to FPT*) by
FPT, for short. Specifically, for parametrically computed Padé spectra, it is useful to
consider the so-called “Usual” (U) and “Ersatz” (E) spectra. The U- and E-spectral
envelopes are computed from the standard Heaviside partial fraction decomposition
with dj (complex amplitude) and |d| (absolute value of complex amplitude), respec-
tively. The absorption mode of an “Ersatz” spectrum is convenient because it is always
positive-definite. We can say that in an Ersatz spectrum, phase of each reconstructed
resonance is corrected thanks to the extraction of the pertinent phase (which may con-
tain some distortions due to various factors in encoding of time signals). By default,
the terms “Usual” and “Ersatz” refer only to the parametric FPT. No such distinc-
tion can be made in the non-parametric FPT because this signal processor does not
encounter dy as quantification is not performed. As such, naturally, the present non-
parametrically produced total shape spectra will not have the acronyms U (“Usual”)
nor E (“Ersatz”).

We first address the effect and significance of the procedure called spectra averaging.
As stated, it would not make sense to encode a single time signal. Likewise, it may not
be of much practical use either to complete computations for a single model order K .
In both cases, the reason is the same: presence of too much noise. For a single FID,
intolerably large noise comes from various sources of noise (mostly of uncontrollable,
i.e. random nature). Even after yet another partial suppression of the residual water by
means of some theoretical procedures, a spectrum computed by any signal processor
may also be heavily corrupted with noise (at least at some frequency intervals) which
stems from both encoding and reconstructions of spurious resonances. All such noise
is random, meaning that it may widely fluctuate with even minor external changes.
To mitigate the influence of noise, averaging is performed in the time and frequency
domain. As mentioned, in the time domain, many FIDs are encoded and then averaged.
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Likewise, in the frequency domain, many spectra are computed for different values of
K and the results are averaged.

As an example, we first computed non-parametrically some 31 total shape spectra
or envelopes for K varying in the interval [ Kmin, Kmax] Where K = Kpin + AK with
AK =1, Knin = 385 and Kmax = 415 (i.e. K = 385, 386, ..., 415). Model order
K and the partial signal length Np are connected by the relation Np = 2K . As such,
the values of the partial signal length belong to the interval Np € [770, 830]. These are
called partial signal lengths due to the implied truncation (Np = 770, 772, ..., 830)
of the full signal length, N = 1024.

Figure 1 illustrates spectra averaging. Panel (a) of this figure exhibits the differences
in 31 envelopes of varying model orders K. Some fluctuations (small or large) are
present almost throughout the displayed frequency region of interest (ROI). Most
notable changes, appearing as sharp spikes with large amplitudes and thin linewidths,
are around 2.55 and 4.3 ppm. All these random fluctuations practically disappear from
the average spectrum depicted in panel (b) of the same figure. Simultaneously, due to
their robust stability (resilience to noise perturbations), physical or genuine resonances
are seen in Fig. 1b to survive averaging.

Mathematically, the spectrum in Fig. 1b corresponds to the arithmetic average of
31 spectra from Fig. 1a. Note the presence of the labels “The 1st iteration” and “The
1st average” on panels (a) and (b), respectively. This is written in anticipation that
the process of generating an average spectrum may be repeated to encompass higher
iterations (2nd, 3rd,...), as will indeed be the case in the analysis which follows.
Observe also that the acronyms written for a number of peaks in Fig. 1b abbreviate the
names of the molecules present in the examined substance, which is a slice excited by
the applied pulses in the radiofrequency (RF) part of the electromagnetic radiation.

The reason for which the fluctuations in lineshapes for varying K are mitigated in
Fig. 1b is simply in the fact that SNR is improved by a factor /M by averaging where
M is the number of individual envelopes (M = 31 in the present computations). This
is a general feature of improvements of SNR when it comes to random perturbations.
However, the present mechanism for reduction of randomness (noise and noise-like
features) is transpired by pole-zero cancellations. Recall here that spurious (noisy)
resonances appear in pairs (Froissart doublets) that are washed out by pole-zero can-
cellation in the Padé spectrum. In principle, such cancellations should occur for each
value of K. If this was indeed the case, no fluctuation and spurious resonances (spikes)
should, in fact, be seen throughout the entire Nyquist range of frequencies, including
the ROI from Fig. 1a. This, however, is not observed in Fig. 1a. The reason is twofold.
First, unlike noiseless synthesized time signals where pole-zero cancellation is exact,
noise in any encoded FID precludes exact pole-zero cancellation. Consequently, the
less exact pole-zero cancellation, the more spike-looking the envelope. Second, the
lack of pole-zero cancellations for noisy spectral structures may also partially be due
to those values of K for which the Padé spectra have not yet fully converged.

We saw that Fig. 1 deals exclusively with non-parametric signal processing. To
complement and cross-validate this information, Fig. 2 compares the envelopes com-
puted by both the non-parametric and parametric estimations. First, on Fig. 2a, we
show again the real part of the 1st average complex envelope (as in Fig. 1b). Second,
on Fig. 2b, we show the real part of a new complex total shape spectrum computed
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Using FID Data Encoded at Short Echo Time (24 ms): Elimination of Spurious Noiselike Spikes
K
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Fig. 1 Spectra averaging in the 1st iteration. Panel (a) shows the real parts of 31 envelopes (total shape
spectra) in the non-parametric FPT for model orders K in the interval K € [385, 415] corresponding to
the partial signal lengths Np € [770, 830]. These partial signal lengths are truncations of the full signal
length N = 1024. The first half of N contains the encoded FID. The remaining 512 entries are the added
real numbers with zero-valued intensities, i.e. they are zeros (one zero-filling from 512 to 1024). Panel
(b) displays the real part of the 1st average complex envelope. We took the arithmetic average of the 31
complex envelopes from the lineshape estimations by the non-parametric FPT with K € [385, 415]. This
implies that for real-valued spectra, the curve on panel (b) is the average of the curves from panel (a). It
is observed that the spurious, noisy spikes from panel (a) are smoothed out on panel (b) by the process of
spectra averaging (Color figure online)
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In Vivo MRS for Cerebral Asphyxia: Direct and Inverted Average Envelopes in FPT®

Equivalence of Non-Parametric and Parametric Reconstructions of Total Shape Spectra
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Fig.2 Non-parametric versus parametric lineshape estimations. Panel (a) is a copy borrowed from Fig. 1b
(the real part of the 1st average complex envelope from the non-parametric FPT). Panels (b) and (¢) concern
the non-parametric and parametric FPT, respectively, at a single model order K = 512 (Np = 1024), i.e.
at the full signal length. Both processors employ the same FID generated by the IFFT-inverted 1st average
complex envelope from the non-parametric FPT. It is seen on panels (b) and (c) that the non-parametric and
parametric FPT give the same envelope. Hence self-cross-validation within the FPT (Color figure online)
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non-parametrically at a single value of model order, K = 512 (i.e. using the full
signal length Np = N = 1024). The said new complex spectrum is generated using
the FID obtained by inversion of the average complex envelope whose real part is in
Fig. 1b. Here, inversion is performed by means of the standard inverse fast Fourier
transform (IFFT). The new FID is afterward subjected to the Padé-based processing
and the results are shown in panels (b) and (c) of Fig. 2 for non-parametric and para-
metric estimations, respectively. It is observed that these two predictions are in full
agreement throughout the spectrum. When plotted together on the same graph (not
shown to avoid clutter), the curves from panels (b) and (c) would be indistinguishable
from each other. This outcome of the effected comparison, retrospectively validates
quantification (reconstruction of peak positions, widths, heights, phases) performed
by the parametric FPT.

As elaborated, Fig. 1 illustrates the effect and significance of reduction of a marked
sensitivity to changes in model order K. Therein, a substantial reduction of this sensi-
tivity is seen already with the Ist arithmetic average. Computation-wise, such a finding
is of a considerable practical importance. Nevertheless, this does not imply that the
analysis should stop at the 1st average spectrum from Fig. 1b without any further
checking. Quite the contrary, it is prudent to go beyond the 1st average and perform
iterations. In other words, for more comprehensive verification purposes, it would
be important to have a follow-up iterative process, as anticipated earlier. This would
permit seeing what actually remains after repeated averaging as a more robust sign of
the stability of the whole reconstructed physical information (due to all the genuine
resonances) from the processed FID.

With this goal, we performed a number of iterations by extending further the pro-
cedure from Fig. 1. The 1st iteration from Fig. 1a consists of applying the FPT to the
originally encoded FID (once zero filled) for a sequence of 31 values of model order
K . Using the resulting 31 complex envelopes, their real parts are plotted in Fig. 1a and
the ensuing real average envelope is re-displayed in Fig. 3a for further comparisons.
What could be a part of the 2nd iteration has already been accomplished in Fig. 2b, but
only for a single value of model order (K = 512). This time, however, we generalize
the process from Fig. 2 by extending it to a sequence of values of K. Specifically, the
reconstructed FID stemming from the IFFT-inverted 1st average complex envelope is
subjected to the repeated Padé non-parametric shape estimation at the same interval
of model orders as before, K € [385, 415]. This constitutes the 2nd iteration which
gives the new 31 complex envelopes whose real parts are shown in Fig. 3b. Such real-
valued envelopes exhibit by far much less intense fluctuations in the lineshapes for the
individual values of K than those in Fig. 1a. Averaging the complex envelopes from
the 2nd iteration yields the 2nd average complex envelope whose real part is depicted
in Fig. 3c. It is seen that the 1st and the 2nd real average envelopes from Fig. 3a and
3c are in excellent agreement.

Figure 4 includes the 3rd iteration and the ensuing 3rd average spectrum. For a
parallel presentation and comparisons of relative performance, panels (a) and (b) re-
display the spectra due to the 1st and the 2nd iterations borrowed from Figs. 1 and
3. The 3rd iteration from panel Fig. 4c begins by first generating the next new FID.
Prior to producing that FID, we perform arithmetic averaging of complex envelopes
from the 2nd iteration (as we did in Fig. 3c). Afterward, this 2nd average complex
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In Vivo MRS for Cerebral Asphyxia: Iterative Averaging of Non-Parametric Envelopes in FPT®
Steady and Persistent Stabilization of the Average Envelope Through the Second lterative Step
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Fig.3 The 2nd average envelope. Panel (a) is a copy borrowed from Fig. 1b (the real part of the 1st average
complex envelope from the non-parametric FPT). Using the non-parametric FPT, panels (b) and (c) focus
on the 2nd iteration and the associated 2nd average envelope, respectively. The 2nd iterative envelopes with
K € [385, 415] are generated through the FID obtained by the IFFT inversion of the 1st average complex
envelope. The resulting 31 real-valued envelopes on panel (b) exhibit spurious spikes only around 3.4, 4.2
and 4.35 ppm. This demonstrates stability of spectra averaging through the 2nd iterative step (Color figure

online)
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Convergence Rates of the 1%, 2" & 3 Iterations and the 1%, 2™ & 3" Average Envelopes
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Fig.4 Iterative spectra averaging with the first three iterations. Panel (a) is a copy borrowed from Fig. 1a (31
envelopes from the 1stiteration). Panels (b) and (c) represent the 2nd and the 3rd iterations, respectively. All
the three panels (a), (b) and (c) deal with 31 envelopes generated by the non-parametric FPT for the same
range of model order K, i.e. K € [385, 415]. The 2nd and the 3rd iterative envelopes are produced by using
the FIDs obtained by the IFFT inversion of the 1st and the 2nd average complex envelopes, respectively.
Marked spikes in the 1stiteration (panel a) are significantly reduced in the 2nd iteration (panel b), as already
seen in Fig. 3b. The 3rd iteration (panel ¢) has no spikes at all. The corresponding real parts of the 1st, 2nd
and 3rd average complex envelopes are depicted on panel (d). These three curves coincide with each other,
showing robust stability in spectra averaging through the 3rd iterative step (Color figure online)
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envelope is IFFT-inverted to obtain the 2nd new complex FID. Finally, such a newly
reconstructed FID is subjected to Padé non-parametric processing for K € [385, 415]
yielding the 3rd iteration with 31 complex envelopes whose real parts are given on
panel (c) of Fig. 4. Therein, even the last remaining fluctuations around 3.4, 4.2 and
4.35 ppm seen earlier in Fig. 3b have now disappeared altogether. There are no more
noticeable spikes in any of these 31 envelopes. The new 31 complex envelopes from
the 3rd iteration are averaged to yield the 3rd average complex total shape spectrum.

Finally, Fig. 4d compares the real parts of the 1st, 2nd and 3rd average complex
envelopes. The ensuing three curves are practically indistinguishable from each other.
This shows the stability of the reconstructed physical information through the 3rd
order in the explained iterative process. Moreover, the same conclusion holds true
also for further iterations, as we explicitly checked using every successive iteration of
the orders 4, 5, ..., 12. Thus, for a further analysis, it is safe to retain the 3rd average
complex total shape spectrum.

In the illustrations from Figs. 1 and 3, we dealt exclusively with the non-parametric
Padé processing. This concerns lineshape estimation alone. The exception is Fig. 2¢c
showing the real part of the complex envelope generated by the parametric Padé pro-
cessing. This latter parametric envelope employs the 1st new FID reconstructed from
the Ist average complex envelope which is generated non-parametrically and whose
real part is shown in Figs. 1b and 2a. Figure 2¢ was restricted to the analysis of line-
shapes alone and, as such, carried no information about the underlying reconstructed
parameters (via the peak positions, widths, heights, phases).

However, Fig. 5 deals with the said peak parameters stemming from the Padé-based
solution of the quantification problem. To quantify the information hidden in the input
FID, reconstruction is done by parametric processing in the FPT. To this end, given
that the 3rd iteration has fully stabilized, as stated earlier, we employ the 3rd new FID.
This time signal results from the IFFT inversion of the 3rd average complex envelope
which resulted from the non-parametric FPT. The real part of the 3rd average complex
envelope due to the non-parametric FPT is shown in Fig. 5a (a repetition of one of the
three curves in Fig. 4d). We then subject the 3rd reconstructed FID to the parametric
FPT at K = 512 by using the full signal length (Np = N = 1024). The results of
quantification give all the sought peak parameters. These parameters are then used to
generate the component lineshapes as the constituents of the envelopes.

Two kinds of such component spectra are shown in Fig. 5. These are the Usual,
U, and Ersatz, E, component lineshapes. As stated, the U- and E-spectra are obtained
by employing the complex amplitudes dy and their absolute values |di|, respectively.
The real parts of such complex component U- and E-spectra are shown in Fig. 5b, c,
respectively. It is seen that the absorption and dispersion modes are mixed together in
the component U-spectra from Fig. 5b. On the other hand, the component E-spectra
from Fig. Sc are all in the purely absorptive mode and, hence, positive-definite.

Also displayed in panels (b) and (c) of Fig. 5 are the peak heights (symbolized
by open circles) retrieved from the analytical expressions listed in this figure. Peak
heights in the component U-spectra are generated from the complex-valued amplitude
dy, of the k th harmonic in the FID. This is the reason for which the peak heights in the
component U-spectra are phase modulated and, thus, appearing as |dj| cos (¢x) where
generally the phase ¢, takes on non-zero values (¢ # 0).
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In Vivo MRS for Cerebral Asphyxia: Envelopes, Components (Usual: U & Ersatz: E) and Peak Heights
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Fig.5 Component spectra from the 3rd average envelope. Panel (a) shows the real part of the 3rd average
complex envelope (also present in Fig. 4d) from the non-parametric FPT. The corresponding 3rd average
complex envelope is IFFT-inverted to deduce the reconstructed FID which is afterward subjected to the
parametric FPT at a single model order K = 512 (Np = 1024) associated with the full signal length
N = 1024. Padé-based quantification with this FID yields the peak parameters. From these the complex
components are generated in the “Usual”, U, and “Ersatz”, E, modes. The real parts of the complex U- and
E-components are displayed in panels (b) and (c), respectively. These panels also show the corresponding
peak heights. Absorption and dispersion components are mixed together in the U-spectra (panel b). Only
pure absorptive, symmetric component Lorentzians appear in the E-spectra (panel ¢) (Color figure online)
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This phase modulation of the magnitude |di| is present in the expression for the
peak height written on the title of panel (b) in Fig. 5. As seen in Fig. 5b, such phase
modulations of |di| cause that the open circles for the peak heights are close to the
abscissa, where they become nearly zero-valued for ¢ =~ 7 /2 (cos ¢x = 0) in the case
of dispersive lineshapes. On the contrary, some of the nearly absorptive U-component
lineshapes in Fig. 5b, have their maximae closely coinciding with the associated peak
heights because, in this case, ¢x ~ 0(cos¢r ~ 1) and, thus, no phase modulation
occurs, i.e. dr ~ |di| # 0.

Of course, no phase modulation ever occurs in the component E-spectra on Fig. 5c
since in these lineshapes the expressions for the peak heights deal with |di| from the
onset (see the corresponding expression written in the title of Fig. 5c). Namely, in
the component E-spectra, each complex amplitude, dy = |di|exp (i @) is phase cor-
rected through multiplication by the factor exp (—i ¢y ). This makes the phase corrected

amplitude d,gphase corrected) positive-definite via d,ﬁphase corrected) _ di x exp(—igy) =

|di| exp (igr) x exp (—igr) = |dx| > 0. As a consequence, the open circles for the
peak heights of the component E-spectra coincide exactly with the maximae of the
purely absorptive lineshapes in Fig. Sc.

Peak heights from Fig. 5b, ¢ depend on the peak widths as clear from the dis-
cussed analytical expressions listed in these two panels. Peak widths are connected
to the imaginary parts of the reconstructed fundamental frequencies. The real parts of
these complex frequencies are not explicitly contained in the expressions for the peak
heights. However, each peak height is associated indirectly with the real parts of the
complex fundamental frequencies, as well. This occurs because it is at the positions
of the real parts of the complex fundamental frequencies that the maximae of e.g.
absorptive Lorentzian lineshapes are located. To complement this indirect informa-
tion, it is important to plot explicitly e.g. the magnitudes |di| as functions of the real
fundamental frequencies. This type of graph is called the magnitude plot. Likewise,
to illustrate the relationship between the real and complex fundamental frequencies,
it would be useful to display the corresponding Argand plots. These plots or dia-
grams show the imaginary versus real fundamental frequencies on the ordinates and
abscissae, respectively.

These discussed relationships are the topics on Fig. 6 where the Argand and the
magnitude plots are shown on panels (a) and (b), respectively. In particular, two kinds
of Argand plots are contained in Fig. 6a, one for the poles and the other for zeros.
As discussed in the Theory section, these zeros and poles are the respective roots
of the numerator (Pg) and denominator (Qk) polynomials in the Padé spectrum
Pk /Qk. To correlate the parametric information from the Argand and magnitude
plots to the spectral lineshapes, panel (c) of Fig. 6 shows the absorption lineshapes of
the component E-spectra alongside with the pertinent peak heights.

The essence of Fig. 6 is grasped by two kinds of behavior of the peak parameters. On
panel (a), coincidence or near-coincidence of poles and zeros in the complex frequency
plane (as one of the two signatures of the appearance of Froissart doublets) indicates
the presence of spurious, noisy information. The other signature of Froissart doublets
is a set of zero or near-zero magnitudes |di| of complex amplitudes di of spurious
resonances, as seen on panel (b) in Fig. 6. Overall, Fig. 6 illustrates the concept of

@ Springer



2102 Journal of Mathematical Chemistry (2019) 57:2082-2109

In Vivo MRS for Cerebral Asphyxia: Exact Quantification and Signal-Noise Separation in FPT®

Spurious (Noiselike) Froissart Doublets: Pole-Zero Confluences Yielding Zero—Valued Amplitudes
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Fig.6 Signal-noise separation by way of the denoising Froissart filter, DFF (pole-zero cancellations). The
spectral parameters reconstructed by the parametric FPT and used in Fig. 5 are here displayed as the Argand
plot (panel a) and magnitude plot (panel b). On panel (a), the reconstructed imaginary frequencies are shown
as the function of the corresponding real frequencies. Therein, spurious resonances are identified by pole-
zero confluences (open circles, as spectral poles, coinciding with full dots, as spectral zeros). These are
Froissart doublets describing noise. Such coincidences lead to zero-valued amplitudes (panel b) for noisy
resonances. Consequently, the associated zero-valued peak heights also follow, as seen in the component
“Ersatz” spectra (panel ¢). Pole-zero coincidences and the ensuing pole-zero cancellations represent the
mechanism by which the underlying denoising Froissart filter, DFF, accomplishes signal-noise separation,
SNS (Color figure online)
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signal-noise separation, SNS. As expounded in the Theory section, physical signal
is separated from noise by identification of Froissart doublets. Once identified, noise
which is disguised as Froissart doublets can be discarded from the linelist of the
reconstructed parameters. This amounts to signal-noise separation, SNS, which in turn
improves signal-to-noise ratio, SNR. In fact, this reduction or ultimately elimination
of noise is achieved in a self-contained manner within the Padé spectrum Px/Qx
because therein pole-zero coincidences automatically yield pole-zero cancellations.
Hence, the denoising Froissart filter, DFF, is a reliable self-correcting procedure for
retaining the true, physical information alone reconstructed from time signals encode
by MRS.

5 Discussion and conclusions

This study covers several important grounds. It is within the realm of data analysis
and interpretation by the methodology of reconstruction of information hidden in
the measured input data. Mathematically, it deals with a difficult ill-conditioned (ill-
posed) problem, called spectral analysis. This particular problem is alternatively called
the quantification problem in nuclear magnetic resonance spectroscopy (or magnetic
resonance spectroscopy, MRS, for short) from analytical chemistry. It is also known
as the harmonic inversion problem.

In mathematics and quantum physics, spectral analysis solves the given eigen-value
problem. The solution is a set of eigenvalues and eigenfunctions. When the underlying
operator in an eigen-problem is a Hamiltonian (e.g. the sum of the kinetic and potential
energy operators, as in physics) the eigen-values are the characteristic energies (eigen-
energies or fundamental energies) representing a set of the possible states of the given
system. In such a case, the absolute values of the squared complex scalar or inner
products of the eigen-functions with the initial state of the system give the intensity of
the lines in the energy spectrum. The eigen-energy spectrum is comprised of sticks or
bars with zero-valued line widths for purely discrete stationary stable states. On the
other hand, resonances of the system have non-zero line widths associated with finite
lifetimes.

Quantification in MRS deals with resonances of molecules that are present in the
examined substance or specimen. Solving this problem amounts to extraction of the
unknown spectral parameters. These are the quantifiers of resonances or peaks in
the frequency spectrum. Each peak is completely determined by reconstructing its
position (location in the frequency spectrum), width, height and phase. Such peaks
are associated with the components (complex harmonic functions) in the input data
that are the time signals encoded by MRS from the examined specimen. This gives
the name, harmonic inversion. Herein, an inverse problem is to be solved. It consists
of retrieving the unknown components of the input time signal. Namely, a set of the
digitized values of the encoded time signal is known and the task is to uncover the
constituent components of these input data. This problem is ill-conditioned because
of the lack of its continuous dependence on the input data points. As a result, even
small perturbations in the input data can lead to large deviations in the reconstructed,
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output data. Noise in the encoded time signals is a prime example of such ubiquitous
distortion of encoded time signals.

The main task in MRS is to improve resolution and reduce noise. Improved res-
olution would increase the specificity of magnetic resonance. Magnetic resonance
imaging, MRI, has good sensitivity, but its specificity is insufficient. Optimized MRS
would come to the rescue of the entire MR methodology. This could be achieved by
improving specificity through reliable quantification of the physical information from
the encoded data.

However, solving the quantification problem without knowing how to reliably sepa-
rate physical signal from noise belongs to the category of guess work that cannot be of
any practical use. Unfortunately, this is precisely the case with those signal processors
in MRS that are based on fitting. Such fitting techniques usually employ total shape
spectra (envelopes) from the fast Fourier transform, FFT. Another type of fitting the
given spectrum is to perform adjustments of parameters in some linear combination
of model spectra for each molecule assumed (prior to processing) to be present in the
investigated substance.

Fitting approaches with any constraints are equivocal and non-unique. This occurs
because the same least-square errors can be obtained by vastly different sets of the
adjusted free parameters. Moreover, fitting procedures are always under- and/or over-
modeling. In under-fitting, some of the true information is missed. In over-fitting,
some of the wrong/misleading information is misclassified as true. Both cases impact
adversely on whatever is thought to be worthwhile retaining after completion of fitting.
This implies that the fitting parameters are either under- or over-estimated. When some
of the genuine resonances have not been retrieved, or spurious resonances erroneously
declared as true information, the constraints imposed on fitting stretch or squeeze par-
ticularly the peak heights and peak widths. The latter two parameters (assuming that
the peak positions, i.e. chemical shifts, have properly been located) are the main quan-
tities for determination of molecular concentrations. In other words, inadequate values
of peak heights and peak widths would invalidate estimates of abundance of molecules.
This amounts to failing to accurately reconstruct the molecular concentrations as the
main information sought in MRS.

We pursue an alternative way by using an advanced signal processor without resort-
ing to any fitting. It is the fast Padé transform, FPT. Its chief feature is non-linearity
seeded in the mathematical form of the frequency spectrum given by quotient of two
polynomials, Px / O k. Rational polynomials are the best model functions in the math-
ematical branch called theory of approximations. The reason for their topping the list
of all the existing approximations is primarily in the polar structure.

Poles as the only singularities of the meromorphic functions Px/Qk capture at
once all the fundamental features of generic systems: the eigen-frequencies. The
eigen-frequencies, or fundamental frequencies, are the trademarks of each system.
They embody the features that make one system differ from the other. These eigen-
frequencies or eigen-energies describe the states of the system with its characteristic
oscillations of various degrees of freedom (e.g. vibrations, rotations of molecules, etc).
The roots of the characteristic or secular equation Qg = 0 give the sought funda-
mental frequencies. The corresponding intensities of the spectral lines are provided
by an analytical expression for the Cauchy residues of the polynomial ratio Px/Qxk
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taken at the eigen-frequencies from the said secular equation. It is in this straight and
eminently clear manner that the parametric FPT completes exact quantification, the
main goal of MRS. This holds true for synthesized and encoded time signals.

Mathematically, K is the polynomial degree which is also the model order. Phys-
ically, K represents the total number of reconstructed resonances. The number K is
unknown prior to signal processing and this parameter is also unambiguously recov-
ered by the FPT. The way this is accomplished is ingrained in signal-noise separation.

The true number of resonances is invariably larger than the estimated K. This is a
direct consequence of the necessary over-determination of the system of equations for
generation of the expansion of the numerator Pg and denominator Q x polynomials.
To eliminate the excess in the found K, spurious resonances due to noise must be
discarded from the output. This is accomplished by the denoising Froissart filter, DFF,
which is the mechanism for signal-noise separation, SNS.

Spurious, noisy resonances emerge in pairs or doublets. They have first been
detected by Froissart in numerical experiments with simulations. Hence the name
Froissart doublets for spurious resonances associated with noise. Such random, noisy
resonances are spotted by their pole-zero coincidences. Spurious zeros from Pg cancel
spurious poles from Q g because they appear in the spectrum as the polynomial ratio
Pk /Qk. This is the way in which pole-zero cancellation (as a self-correcting added
value unique to the FPT) performs signal-noise separation, SNS. By this concept unsta-
ble, spurious resonances disappear altogether, whereas stable, genuine resonance stay.
Subtracting the number of spurious resonances from the estimated total number K of
resonances (genuine + spurious) yields the final, true number of molecules present in
the specimen scanned by MRS.

The discussed features are internally validated within the two complementary and
equivalent variants of the FPT, one initially convergent inside, and the other outside
the unit circle in the plane of the complex harmonic variable. However, by the Cauchy
analytical continuation, both variants converge everywhere in this complex plane with
the exception of poles. The final linelist of spectral parameters is completed only after
this cross-validation which retains the quantities jointly reconstructed by both versions
of the FPT.

The parametric FPT improves resolution by splitting apart overlapping resonances.
This is evidenced by the predicted component spectra generated from the reconstructed
parameters. With this virtue at hand, alongside the concept of SNS (via DFF), the FPT
becomes capable of simultaneously improving resolution and suppressing noise. These
are the two major stumbling blocks that so far hampered progress of MRS. As such,
it would seem that there could be a little doubt as to which signal processor should be
most suitable for quantification in MRS.

All the expounded characteristics of the FPT are comprehensively illustrated in this
work. The presented example is focused on exact reconstruction of spectral parameters
from a time signal encoded by MRS with 1.5T scanner at short echo time, TE = 24
ms. We here chose this short TE because in such a case most of short-lived resonances
have not decayed yet. This offers an opportunity to extract maximal information since
often short-lived resonances are most critical in interpretation of the encoded data.
Another reason for selecting to analyze a time signal encoded at a short TE is the
presence of many overlapping resonances in the frequency spectrum. With all the
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overlapped resonances resolved, the parametric FPT becomes the gold standard for
testing performance of other estimators, including the derivative fast Padé transform
[5-7.,42].

The present specific application of the FPT concerns MRS time signals encoded in
vivo from a child who had suffered cerebral asphyxia. One of the reasons for choosing
this problem is that MR spectra associated with asphyxia or ischemia are exceedingly
dense and have heretofore been very difficult to resolve and interpret. The clinical
context within MRS for pediatric, as well as adult neurodiagnostics is another reason
for focusing on this particular problem.

Within neurodiagnostics, in vivo MRS has been primarily based upon a small num-
ber of metabolites and their concentration ratios. Among these is N-acetyl aspartate,
NAA, resonating at approximately 2.0 ppm, which indicates the abundance and via-
bility of neurons. With cerebral ischemia or asphyxia, the concentration of NAA is
reduced [56]. This is due to the marked vulnerability of cerebral neurons to hypoxia.
However, NAA can also be lowered with almost any damage to the brain, including
brain tumors [57].

Another diagnostically important metabolite is choline, Cho, resonating around
3.2 ppm, which reflects phospholipid metabolism of cell membranes, and is a
marker of membrane damage, cellular proliferation and cell density. In cerebral
ischemia/hypoxia, a lactate, Lac, doublet, centered at 1.3 ppm, is expected, related to
the predominance of anaerobic glycolysis. However, lactate can similarly be observed
in brain tumors and sometimes in healthy brain tissue [56,58—60]. Lipids, Lip, also
resonating at around 1.3 ppm, often appear with reperfusion after hypoxia. Cerebral
energy metabolism is reflected by creatine, Cr, which resonates at 3.0 ppm. Concen-
tration of Cr in the brain is usually stable after the first year of life [60].

In the pediatric population, brain metabolite concentrations as well as metabolite
concentrations ratios, depend upon the age. Myoinositol, m-Ins, is the dominant brain
metabolite in neonates. In older infants, Cho is usually the largest peak. As the child’s
brain matures, Cr and NAA concentrations increase. Concordantly, Cho to NAA and
Cho to Cr concentration ratios normally fall with the child’s age [61].

One goal of the present study is to enhance neurodiagnostics through MRS, aiming
towards greater accuracy in identifying cerebral hypoxia/ischemia versus other pathol-
ogy, including brain tumors, which present differential diagnostic dilemmas. Broader
implications for cancer diagnostics further motivate this investigation. Especially, it
should be noted that hypoxic regions often occur within tumors. These regions are par-
ticularly resistant to radiation therapy as well as to chemotherapy. Moreover, hypoxia
promotes genomic instability and is associated with the invasive/metastatic process
[62]. Consequently, identifying hypoxic regions via MRS could contribute overall to
better cancer treatment planning. Notably, the cancer biomarker phosphocholine, PC,
also reflects hypoxia [63].
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