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Abstract
This review is on the fast Padé transform (FPT) for magnetic resonance spectroscopy
(MRS). It is structured into two portions. Firstly, we give an introductory overview,
emphasizing the conceptual framework. Secondly, we cover the specific, concrete
accomplishments with detailed analysis and selected illustrations. Key advances have
been achieved by the FPT for MRS in the most recent period. These consist of direct
applications of the FPT to time signals encoded by in vivo MRS from tumorous tis-
sues.We focus on the robust and comprehensive Padé-based solutions for the thorniest
problems (overlapping resonances, resolution, noise) that have hampered progress of
in vivo MRS for a very long time. Both parametric and non-parametric aspects of
signal processing in the FPT are thoroughly covered. The FPT, as a parameter estima-
tor, solves exactly the quantification problem by reconstructing the positions, widths,
heights and phases of all the physical peaks. This gives the component lineshapes of
all the true resonances. The non-parametric FPT, as a shape estimator, has thus far pre-
dicted the total lineshapes alonewithout separating the individual components. Finally,
we discuss the most recent advances in signal processing for MRS using the deriva-
tive fast Padé transform (dFPT). This upgrade is of utmost importance, as the dFPT
exactly reconstructs all the peak parameters for every physical resonance by carrying
out estimation of total shape spectra alone. The derivative operator within the dFPT
narrows the linewidths and concomitantly enhances the peak heights, while simulta-
neously suppressing noise. This leads to separation of overlapping peaks, resolution
improvement and noise reduction. Far-reaching ramifications of such an achievement
within MRS are highlighted with the prospects for further explorations to the benefit
particularly of cancer medicine.
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Abbreviations
Ace Acetate
acNeu N-acetylneuraminic acid
Ala Alanine
AR Auto-regression
ARMA Auto-regressive moving average
Asp Aspartate
au Arbitrary units
Av Average
BPH Benign prostatic hypertrophy
BW Bandwidth
CHESS CHEmical Shift Selective
Cho Choline
Cit Citrate
Cr Creatine
Crn Creatinine
CSI Chemical shift imaging
CT Computerized tomography
dFPT Derivative fast Padé transform
DFT Discrete Fourier transform
dFFT Derivative fast Fourier transform
dMRI Derivative magnetic resonance imaging
dMRS Derivative magnetic resonance spectroscopy
dMRSI Derivative magnetic resonance spectroscopic imaging
E Ersatz
FFT Fast Fourier transform
FID Free induction decay
FPT Fast Padé transform
FT-ICRMS Fourier transform ion cyclotron resonance mass spectrometry
FWHM Full width at half maximum
GABA Gamma amino butyric acid
GE General Electric
Glc Glucose
Gln Glutamine
Glu Glutamate
Glx Glutamine plus glutamate
Gly Glycine
GPC Glycerophosphocholine
GSH Glutathione
HBOC Hereditary breast and ovarian cancer
His Histidine
HLSVD Hankel-Lanczos singular value decomposition
ICRMS Ion cyclotron resonance mass spectrometry
IDFT Inverse discrete Fourier transform
IFFT Inverse fast Fourier transform
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Iso Isoleucine
Lac Lactate
LCModel Linear combination of model in vitro spectra
Leu Leucine
Lip Lipid
LP Linear predictor
Lys Lysine
MA Moving average
Mann Mannose
Met Methionine
m-Ins Myoinositol
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
NAA N-acetyl aspartate
NAAG N-acetyl aspartyl glutamic acid
NMR Nuclear magnetic resonance
NPV Negative predictive value
PA Polyamine
PC Phosphocholine
PCM Personalized cancer medicine
PCr Phosphocreatine
PE Phosphoethanolamine
PET Positron emission tomography
PET-CT Positron emission tomography-computerized tomography
ppm Parts per million
PPV Positive predictive value
PSA Prostate specific antigen
Pyr Pyruvate
Rad Radian
RF Radiofrequency
RIR Room impulse response
RMS Root-mean-square
RT Radiation therapy
s-Ins Scylloinositol
SNR Signal-to-noise ratio
SNS Signal-noise-separation
SRI Spectral region of interest
Tau Taurine
tCho Total choline
TE Echo time
Thr Threonine
Tyr Tyrosine
U Usual
Val Valine
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WET Water suppression through enhanced T1 effects
ww Wet weight
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1 Introduction

Basic sciences and their versatile applications are like two sides of the same coin.
Vastly varying intertwining is also present in basic sciences themselves, where theory
andmeasurements are the twin roads to the same goal of deciphering the laws of nature.
For instance, the Radon transform from 1913 in pure mathematics laid the founda-
tion of computed tomography (CT) in the 1960s and 1970s (Cormack, Hounsfield)
to dramatically improve radiographs from X-ray diagnostics in medicine. As an even
more striking example, discovery of nuclear magnetic resonance (NMR) from the
1940s and 1950s in physics (Rabi, Bloch, …) changed analytical chemistry forever
in decrypting the structure of proteins and other big molecules (Ernst, Wutrich, …).
It revolutionized medicine, as well, through magnetic resonance spectroscopy (MRS)
beginning already in the 1950s (Odenblad, …) and magnetic resonance imaging
(MRI) from the 1970s (Lauturber, Mansfield) for diagnostics, surgery and post-
therapeutic follow-up. Lauturber (chemist) and Mansfield (physicist) shared the 2003
Nobel Prize on Medicine and Physiology for their contribution to the development of
MRI.

“All science is interdisciplinary” declared Lauturber in his Nobel lecture. Therein,
remarkably, he stated that the key ingredient to MRI (locating resonating nuclei) has
been benefited from his experience with two-center molecular integrals in chemistry.
Nothing is more practical than theory, the truth which passed the test of time.

Going beyond MRI is the task of MRS. Anatomical/morphological findings from
MRI are complemented byMRSwhich informs on the chemical content of the scanned
tissue. The method of determining the molecular composition of the examined sam-
ple by NMR spectroscopy in analytical chemistry has enriched medical diagnostics
through MRS. This pathway of bonding basic research on MRS by way of mathemat-
ics, physics and chemistry with the applications in early cancer detection is the topic
of the present review. To have a specific focus, we review the most recent progress
within the last five years in mathematical optimization of MRS by advanced signal
processing based upon quantum physics and chemistry, the fast Padé transform (FPT).
With the stated goal, the selected problem areas of major public health concern in can-
cer medicine will be addressed while dealing with four human organs: brain, breast,
prostate and ovary.

123



390 Journal of Mathematical Chemistry (2019) 57:385–464

2 Theory

2.1 Mathematics of the fast Padé transform

Here,wewill give a synopsis of the salientmathematics of theFPTas it applies toMRS.
For full in-depth presentations, the reader is referred to Refs. [1,2]. In a hypothetical
situation with ideal encoding conditions (no magnetic field inhomogeneities, perfect
magnet shimming, complete water and/or lipid suppression, etc.), the waveforms of
the measuredMRS time signals are expected to be sums of complex-valued attenuated
exponentials:

cn =
K∑

k=1

dkz
n
k , zk = eiτωk , 0 ≤ n ≤ N − 1 , Im(ωk) > 0. (2.1)

Here, τ is the sampling rate (with the continuous time t discretized as t = nτ ), K is
the model order as well as the total number of non-degenerate resonances, and N is the
full signal length. Quantities ωk and dk are the complex fundamental frequency and
amplitude, respectively. Alongside K , the pairs ωk and dk are the nodal constituents
of each signal point cn . It is the quantum-mechanical origin of MRS that dictates the
mathematical form (2.1) for the time signal cn, which can equivalently be conceived
as an auto-correlation function.

All the inaccuracies arising from any MRS encoding would be disguised through
various uncertainties (deterministic, systematic, stochastic, etc.). Under this circum-
stance, the task of a reliable spectral analyzer is to recover the true spectral parameters
{K , ωk, dk} from a given noisy time signal. Importantly, the form (2.1) is not limited
to time signals originating from phenomena of a purely quantum-mechanical nature.
Quite the contrary, the stability of any system (classical or quantum) can be steadily
maintained only through some internal motions of the constituents, as most frequently
manifested by damped oscillations (2.1). Moreover, the dynamics of all systems are
mathematically described by some differential or difference equations. For example,
(2.1) is the exact solution of the K th degree difference equation with constant coeffi-
cients. The uniqueness of (2.1) for the latter difference equation is guaranteed by the
prescribed initial conditions that determine all the amplitudes {dk} (1 ≤ k ≤ K ). Time
signal (2.1) is linear in dk and non-linear in ωk . In spectral analysis, neither the K th
degree difference equation nor the K boundary conditions is known. All that is known
are the signal points {cn} (0 ≤ n ≤ N − 1) for the fixed values of τ and magnetic
field strength B0.This is what makes quantification an inverse problem: reconstruction
of the unknown parametrization {K , ωk, dk} (1 ≤ k ≤ K ) of the given time signal
{cn} (0 ≤ n ≤ N − 1), also called free induction decay (FID), satisfying relationship
(2.1). In (2.1), it is the non-linearity in ωk which causes the non-uniqueness of all the
fitting procedures for retrieval of spectral parameters. By contrast, for equidistantly
sampled time signal points (2.1), the FPT uniquely solves the non-linear quantification
problem by pure linear algebra (which is also computationally the most stable). To this
end, a single system of linear equations needs to be solved. Even the only remaining
non-linear operation in the parametric FPT, i.e. polynomial rooting, is solved by a
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linear operation through the equivalent eigenvalue problem of the extremely sparse
Hessenberg (or companion) matrix [1].

2.2 Generation of a spectrum

A spectrum in the FPT is generated from the encoded, raw, unedited time signal
{cn} (0 ≤ n ≤ N − 1) by transformation into the equivalent frequency domain.
In MRS, this spectrum is a reflection of the reaction or response of the tissue to
external perturbations by the radio-frequency (RF) pulse as well as by the static and
gradient magnetic fields. This phenomenon is described by the response function,
also known as the Green function. The running (or sweep) angular frequency ω is
the independent variable of the spectrum, in terms of which the linear frequency ν

is given by ν = ω/(2π). This frequency ω is embedded in the harmonic variable
z = exp (iτω). For a given MRS time signal, {cn}, of total length N , the exact,
complex-valued spectrum is represented by the following sum in harmonic variable
z−1 = exp (−iτω) :

GN = 1

N

N−1∑

n=0

cnz
−n . (2.2)

The system’s response function is this truncated Maclaurin series, or equivalently, the
finite-ranked Green function, which is also called the discrete, finite z−transform [1].
In the FPT, there are two equivalent spectra denoted by G±

K (z±1) corresponding to
the same input response function (2.2). This depends on whether the variable z or its
reciprocal z−1 is employed:

G±
K (z±1) = P±

K (z±1)

Q±
K (z±1)

, (2.3)

where

P±
K (z±1) =

K∑

r=r±
p±
r z

±r , Q±
K (z±1) =

K∑

s=0

q±
s z±s . (2.4)

Here, r+ = 1, r− = 0, z+1 ≡ z with {p±
r } and {q±

s } being the expansion coefficients
of the polynomials P±

K (z±1) and Q±
K (z±1), respectively. In the FPT(+), the numerator

polynomial P+
K (z) does not have a free, constant term, i.e. p+

0 = 0. When the poly-
nomial degree K is the same for both P±

K (z±1) and Q±
K (z±1), the spectra from Eq.

(2.3) are termed the diagonal forms of the FPT(±). These Padé spectra approximate
the input Green function GN (z−1) from Eq. (2.2) through GN (z−1) ≈ G±

K (z±1).

From this latter relationship, the ensuing two quotients P+
K /Q+

K and P−
K /Q−

K are both
uniquely extracted using Eq. (2.2). Prior to convergence, for the same truncation level
of the input time signal {cn} from (2.1), the polynomial ratios P+

K /Q+
K and P−

K /Q−
K

are different. However, upon achieving convergence, the complex spectra P+
K /Q+

K
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and P−
K /Q−

K are always the same, implying equivalence of the FPT(+) and FPT(−).

Regarding envelopes, this is one aspect of the utility of the intrinsic cross-validation
within the FPT.

2.3 Non-parametric signal processing

Non-parametric analysis via the FPT(±) is performed as soon as the expansion coef-
ficients {p±

r } and {q±
s } of the polynomials P±

K (z±1) and Q±
K (z±1), respectively, are

generated from the time signal {cn}. If all the phases ϕ±
k of the signal amplitudes (i.e.

the FID intensities) dk = |dk | exp (iϕ±
k ) are equal to zero, ϕ±

k = 0 (1 ≤ k ≤ K ),

then the real and imaginary parts Re(P±
K /Q±

K ) and Im(P±
K /Q±

K ) would be of purely
absorptive and dispersive spectral lineshapes, respectively. However, the phases of
encoded MRS time signals are non-zero due to various reasons, e.g. delay between
the excitation and the beginning of data acquisition, mechanical oscillations of the
receiver coil, static magnetic field inhomogeneity, etc. Thus, for encoded FIDs, there
will invariably be a mixture of absorption and dispersion lineshapes in Re(P±

K /Q±
K )

and Im(P±
K /Q±

K ).

2.3.1 Partitioning of spectral envelopes

The explicit expressions in e.g. the FPT(+) for Re(P+
K /Q+

K ) and Im(P+
K /Q+

K ) can
be analytically extracted from P+

K /Q+
K and the results are the so-called “partitioned

envelopes”. They are given by:

Re
(
P+
K /Q+

K

) = A+
K + B+

K , Im
(
P+
K /Q+

K

) = C+
K + D+

K , (2.5)

where,

A+
K = [

Re(P+
K )

] · [
Re(Q+

K )
]
/
∣∣Q+

K

∣∣2 = [
Re(P+

K )
]
Re

(
1/Q+

K

)
, (2.6)

B+
K = [

Im(P+
K )

] · [
Im(Q+

K )
]
/
∣∣Q+

K

∣∣2 = − [
Im(P+

K )
]
Im

(
1/Q+

K

)
, (2.7)

C+
K = − [

Re(P+
K )

] · [
Im(Q+

K )
]
/
∣∣Q+

K

∣∣2 = [
Re(P+

K )
]
Im

(
1/Q+

K

)
, (2.8)

D+
K = [

Im(P+
K )

] · [
Re(Q+

K )
]
/
∣∣Q+

K

∣∣2 = [
Im(P+

K )
]
Re

(
1/Q+

K

)
. (2.9)

The corresponding partitioned spectra in the FPT(−) are obtained directly from
Eqs. (2.5)–(2.9) by changing the superscript (+) into (−). The compartmentalization
of Re(P+

K /Q+
K ) and Im(P+

K /Q+
K ) is a redistribution of the full interference between

the two partitioned envelopes. Therefore, a smaller interference effect in {A+
K , B+

K }
and {C+

K , D+
K }, when each of these spectra is viewed separately, can unfold certain hid-

den resonances in compound peaks. Note, that the complex-valued spectrum P+
K /Q+

K
is itself sectioned into two spectra. One is the moving average (MA) given by P+

K
and the other is auto-regression (AR) provided by Q+

K . Their combination is the auto-
regressive moving average (ARMA), which is equivalent to the FPT(+). The MA and
AR sections describe zeros and poles of the ARMA process. Thus, alternatively, the
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MA and AR models are called the “All zeros” and “All poles” models [1]. In fact, it is
the reciprocal 1/Q+

K that is a spectrum with all the poles, whereas P+
K yields the val-

leys in between spectral peaks. Overall, we see that the partitioned spectra {A+
K , B+

K }
and {C+

K , D+
K } from Eqs. (2.6)–(2.9) are various direct and mixed products of the

real and imaginary parts of the MA and AR pathways in the ARMA process, i.e. in
the FPT(+). We emphasize that Re(P+

K /Q+
K ) and Im(P+

K /Q+
K ) are not decomposed

arbitrarily into {A+
K , B+

K } and {C+
K , D+

K }, respectively. Rather, each of these decom-
positions is unique [3,4], being motivated by the AR and MA compartments of the
ARMA process.

2.3.2 Derivatives of spectral envelopes

Very recently [5–7], we proposed yet another way to separate overlapping peaks by
Padé-based non-parametric estimations. This is called the derivative fast Padé trans-
form (dFPT). It consists of applying the derivative operator Dm

ν = (d/dν)m of order
m > 0 to the given non-parametrically generated total shape spectrum from the con-
ventional FPT (m = 0):

Dm
ν =

(
d

dν

)m [
Them th derivative operator

]
, (2.10)

Dm
ν

(
P±
K (z±1)

Q±
K (z±1)

) [
Non−parametric derivative envelopes : dFPT(±)

]
.

(2.11)

We re-emphasize that in (2.11), the input envelopes P±
K (z±1)/Q±

K (z±1) from the
customary FPT are computed non-parametrically. It is for this reason that the out-
put envelopes Dm

ν (P±
K (z±1)/Q±

K (z±1)) from (2.11) are called the “non-parametric”
derivative envelopes in the dFPT. Advantageously, however, as demonstrated in Ref.
[6], the non-parametric derivative envelopes Dm

ν (P±
K (z±1)/Q±

K (z±1)) in (2.11) pro-
vide the exact peak parameters (positions, widths, heights and phases) of all the
physical resonances. This has been benchmarked inRef. [7] by the complete agreement
between the lineshapes of the non-parametric derivative envelopes and the derivative
component spectra in the dFPT. The latter spectra refer to the lineshapes obtained
by applying the derivative operator Dm

ν to the component spectra constructed after
solving the quantification problem in the parametric FPT. The relationships between
the two sets of the peak parameters, one for the dFPT (m > 0) and the other for the
FPT (m = 0), derived in Ref. [6], permit reconstruction of the exact peak positions,
widths, heights and phases of every physical resonance by relying exclusively upon
the non-parametric derivative envelopes. The spectra in the dFPT are given by the
analytical expressions and, moreover, the derivative operator Dm

ν never applies to the
input time signals. This is the reason for enhanced signal-to-noise-ratio (SNR) in the
dFPT.Overall, the dFPT simultaneously increases resolution (through separation of all
the overlapped peaks) and suppresses noise. By contrast, in the derivative fast Fourier
transform (dFFT), the operator Dm

ν is applied directly to exp(−2π iνt) and this via
tmc(t) dramatically decreases SNR in the already poorly resolved Fourier envelopes
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[5–7]. These features will also be illuminated and elaborated in the detailed upcoming
analyses of the specific results from reconstructions.

2.4 Parametric signal processing

Quantification is achieved via polynomial rooting within the FPT(±). The roots of the
characteristic equations of the polynomials in the numerators (P±

K ) and denominators
(Q±

K ) provide the respective zeros and poles of the Padé spectra P±
K /Q±

K . The funda-
mental or eigen-frequencies {ω±

k } contained in the set {cn} are reconstructed via the
roots of equations Q±

K (z±1) = 0. The amplitudes {d±
k } are generated through the ana-

lytical expression for the Cauchy residues of the Padé quotients P±
K (z±1)/Q±

K (z±1)

taken at the k th pole z±1
k ≡ z±k . By definition, the poles z±1

k satisfy the corresponding
characteristic equations, Q±

K (z±k ) = 0 [8,9]. It has been systematically verified that
the computed total shape complex spectra P±

K /Q±
K are identical for parametric and

non-parametric signal processing in the FPT(±). This is yet another cross-validation
within the FPT. This cross-check retrospectively validates the reconstructed frequen-
cies and amplitudes. In such a way, the entire quantification process is corroborated
and benchmarked.

Finding the zeros of polynomials is a non-linear operation. For high degree poly-
nomials, computation can be both excessively long and insufficiently accurate. This
difficulty can be avoided altogether by solving the equivalent linear problem of highly
efficient and numerically exact computation of the eigenvalues of the corresponding
Hessenberg matrix. This latter square matrix (also called the companion matrix) is
extremely sparse, having the polynomial coefficients on its first row, unity on the
main diagonal and zero elsewhere. This sparseness permits large matrix dimension
(K × K ) and, thus, enables fast and accurate generation of a huge size of the set of the
eigenvalues that are equal to the roots of the K th degree polynomials Q±

K . As to the
amplitudes {d±

k }, their analytical Cauchy residue formulae d±
k = P±

K (z±1
k )/Q±′

K (z±1
k )

with Q±′
K (z±1) = (d/dz±1)Q±

K (z±1) are especially appealing. Here, the amplitude d+
k

is built from the single pole zk and, similarly, d−
k depends only on z−1

k . By contrast, in
some other parametric methods, e.g. the linear predictor (LP) and the Hankel-Lanczos
singular value decomposition (HLSVD), the k th amplitude relies upon the entire set of
all the reconstructed poles (spurious and genuine). As such, the presence of the spuri-
ous poles reconstructed by the LP and HLSVD unavoidably undermines the accuracy
of the amplitudes. Namely, instead of the analytically available Padé-based ampli-
tudes, the LP and HLSVD solve the second system of linear equations obtained by
inserting all the retrieved frequencies {ωk} (true and false) into (2.1).

2.5 Signal-noise separation and Froissart doublets

After the stabilized value of degree K has been attained in the FPT(±) insofar as the
computation is continued, all the subsequently reconstructed terms from the canonical
representations of the Padé numerators P±

K and denominator Q±
K in the ratios P±

K /Q±
K

cancel each other [10,11]. The stability of the total shape complex spectra is thereby
achieved as indicated by:

123



Journal of Mathematical Chemistry (2019) 57:385–464 395

P±
K+m(z±1)

Q±
K+m(z±1)

= P±
K (z±1)

Q±
K (z±1)

(m = 1, 2, 3, . . .). (2.12)

As mentioned, the amplitudes are the Cauchy residues of the quotients P±
K (z±1)/

Q±
K (z±1), and they have two equivalent analytical expressions:

d±
k =

{
P±
K (z±1)

(d/dz±1)Q±
K (z±1)

}

z±1=z±k,Q

or d±
k = p±

K

q±
K

K∏
k′=1

(
z±k,Q − z±k,P

)

∏
k′=1,k′ �=k

(
z±k,Q − z±k′,Q

) .

(2.13)

Here, z±k,P and z±k,Q are the roots of the characteristics equations of the numerator

and denominator polynomials P±
K (z±k,P ) = 0 and Q±

K (z±k,Q) = 0, respectively, where

z±k,P ≡ z±1
k,P and z±k,Q ≡ z±1

k,Q . The subscripts P and Q in z±k,P and z±k,Q are used to
distinguish the solution of the characteristic equations for the numerator and denomi-
nator polynomials P±

K and Q±
K , respectively. As per either of the two formulae in Eq.

(2.13), whenever z±k,Q = z±k,P , it follows:

d±
k = 0 at z±k,Q = z±k,P . (2.14)

Zeros and poles in the FPT spectrum draw their meaning from the fact that P±
K /Q±

K
are meromorphic functions. Functions whose poles are their only singularities are
called meromorphic functions. Alternatively, pole-zero coincidence can be viewed as
cancellation between resonances (peaks due to 1/Q±

K ) and anti-resonances (dips due
to P±

K ).
Besides pole-zero coincidences and zero or near-zero amplitudes, the “stability

test” further helps identify unphysical resonances. The FPT(±) always generate two
distinct sets of resonances. With the smallest change in the partial signal length N/M
with M > 1 (i.e. by truncating the total signal length and preserving the same band-
width), one set of resonances emerges as stable, while the other is unstable. Stable
and unstable resonances are characterized as genuine and spurious, respectively. With
any change in e.g. partial signal length or varying the level of external noise, spurious
resonances characteristically exhibit fluctuations of their spectral parameters in P±

K
and Q±

K . Moreover, albeit showing stochastic behavior, spurious resonances also dis-
play a certain order in these fluctuations (“order in chaos” so to speak). The reason is
that polynomials P±

K and Q±
K are actually inter-dependent, since the expansion coeffi-

cients {p±
r } of P±

K are deduced by convolution of time signal points with the expansion
coefficients {q±

s } of Q±
K [1,2]. This latter folding is dictated by the defining relations

P±
K (z±1) = GN (z−1)Q±

K (z±1) where the latter product is treated as a convolution.
Consequently, there is an association of P±

K with Q±
K and this generates a correla-

tion between the spurious subsets of the complete set of the reconstructed harmonics
{z±k,P } and {z±k,Q}. In other words, the spuriousness generated by P±

K is correlated

to the like spuriousness produced by Q±
K . Therefore, the noise-like distributions are
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limited since there is a connection between spuriousness stemming from P±
K and Q±

K .

The natural limit of the dominant population of spurious poles and zeros is the cir-
cumference (|z| = 1) of the unit circle in the complex plane of the harmonic variable
z = exp (iτω). It is precisely on the same circumference |z| = 1 that all the Fourier
non-damped harmonics (unattenuated sinusoids) {exp (−2π ik/N )} (0 ≤ k ≤ N − 1)
from the fast Fourier transform (FFT) are located and, thus, maximally mixed with
noise. The convergence radii of the FPT(+) and FPT(−) are also separated by this limit,
having their initially defined convergence regions inside (|z| < 1) and outside (|z| > 1)
the unit circle, respectively. However, by way of the Cauchy analytical continuation,
the FPT(+) and FPT(−) also converge in their complementary regions |z| > 1 and
|z| < 1, respectively. The FPT(+) testifies to the power of this concept, as it is an ana-
lytical continuator by design, working with the variable z at |z| < 1 precisely where
the input Green function GN (z−1) from (2.2) diverges. The correlation between P±

K
and Q±

K is the most apparent for spurious resonances for which the roots z±k,Q and

z±k,P coincide via the pole-zero equality, z±k,Q = z±k,P or near equality, z±k,Q ≈ z±k,P . A
fluctuating pole is linked to a fluctuating zero, and they collapse into each other via
z±k,Q = z±k,P , such that in the quotients P±

K /P±
K all the unstable spectral structures

are canceled out. Pole-zero coincidence produces the pole-zero cancellation. This is
evident in the canonical form of the Padé spectra:

P±
K (z±1)

Q±
K (z±1)

= p±
K

q±
K

K∏

k=1

z±1 − z±k,P
z±1 − z±k,Q

. (2.15)

These cancellations take place on the rhs of Eq. (2.15) through:

z±1 − z±k,P
z±1 − z±k,Q

= 1 (Pole−zero cancellation), (2.16)

whenever

z±k,Q = z±k,P (Pole−zero coincidence). (2.17)

Thus, pole-zero coincidence (2.17), as a signature of Froissart doublets, leads to pole-
zero cancellation (2.16). Through these cancellations, all the spurious resonances are
removed from the spectra (2.15) in the FPT(±). It is in this way that noise is, de
facto, eliminated from the FPT(±). Thus, through signal-noise-separation (SNS), all
the genuine resonances (z±k,Q �= z±k,P ) are retained, while all the spurious resonances
(z±k,Q = z±k,P or z±k,Q ≈ z±k,P ) are annihilated, i.e. automatically removed from the

spectral envelopes. Therefore, we see that noise suppression is inherent in the FPT(±)

due to the polynomial ratios for the spectra [1,2].
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2.6 Interference effects in the“Usual” and“Ersatz” spectra

To generate pure absorptive Lorentzians, the interference effects can be externally
suppressed. This is achieved by setting the reconstructed phases ϕ±

k to zero “by hand”,
ϕ±
k = 0 (1 ≤ k ≤ K ) in the final list of the reconstructed spectral parameters. The

so-called “Ersatz” (E) total shape spectra are thereby produced in the FPT(±). As
an example, we can illustrate this in the FPT(+) where the Heaviside partial fraction
decomposition of the Ersatz total shape spectrum is given by:

{
P+
K (z)

Q+
K (z)

}E

≡
K∑

k=1

|d+
k |z

z − z+k,Q
(Ersatz envelope). (2.18)

On the other hand, the “Usual” (U) Heaviside partial fraction decomposition of the
spectrum in the FPT(+) reads as:

{
P+
K (z)

Q+
K (z)

}U

≡
K∑

k=1

d+
k z

z − z+k,Q
(Usual envelope). (2.19)

The corresponding component spectra inherent in Eqs. (2.18) and (2.19) are extracted
via:

{
P+
K (z)

Q+
K (z)

}E

k

≡ |d+
k |z

z − z+k,Q
(Ersatz component k), (2.20)

{
P+
K (z)

Q+
K (z)

}U

k

≡ d+
k z

z − z+k,Q
(Usual component k). (2.21)

By replacing d+
k ≡ |d+

k | exp (iϕ+
k ) with |d+

k | in Eqs. (2.18) and (2.20), the real
parts of the total and component shape spectra of the Ersatz form Re(P+

K /Q+
K )E and

Re(P+
K /Q+

K )Ek from Eqs. (2.18) and (2.20), respectively, are produced in the purely
absorption modes. Their associated counterparts in the Usual form Re(P+

K /Q+
K )U and

Re(P+
K /Q+

K )Uk from Eqs. (2.19) and (2.21), respectively, contain absorption as well
as dispersion modes of the spectral lineshape.

It should be emphasized that peak heights are particularly important in MRS. In the
fitting techniques, these peak heights are estimated from graphs for the Fourier ampli-
tudes versus chemical shifts in the given FFT envelope. However, the FPT does not rely
at all upon visual display of spectral lineshapes to determine the peak heights, since the
Padé envelope and component lineshapes are provided by their mathematical, closed
formulae that explicitly contain the peak heights as the analytical expressions. Peak
height is defined as the value of the component spectrum taken at the position where
the running linear frequency ν matches the reconstructed chemical shift Re(ν+

k,Q) of

the considered k th resonance. In the FPT(+), we set ω = Re(ω+
k,Q) or ν = Re(ν+

k,Q)
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in (2.20) and (2.21) to derive the peak heights, {H+
k }E and {H+

k }U, of the k th res-
onance in the Ersatz and Usual component spectra, respectively. The results are the
following analytical expressions for the k th peak amplitude in the Ersatz spectrum:

{
H+
k

}E ≡
⎡

⎣
{
P+
K

(
eiτω

)

Q+
K

(
eiτω

)
}E

k

⎤

⎦

ω=Re(ω+
k,Q)

=
∣∣d+

k

∣∣

1 − exp
(
−τ/T �+

2,k

) , (2.22)

and in the Usual spectrum

{
H+
k

}U ≡
⎡

⎣
{
P+
K

(
eiτω

)

Q+
K

(
eiτω

)
}U

k

⎤

⎦

ω=Re(ω+
k,Q)

= d+
k

1 − exp
(
−τ/T �+

2,k

) . (2.23)

In Eqs. (2.22) and (2.23), the quantity T �+
2,k is the T �

2 relaxation time due to spin-spin

interactions for the k th resonance retrieved by the FPT(+) as:

T �+
2,k = 1

Im
(
ω+
k,Q

) = 1

2π Im
(
ν+
k,Q

) , Im
(
ω+
k,Q

)
> 0 , Im

(
ν+
k,Q

)
> 0.

(2.24)

The Ersatz peak height is the ratio of the amplitude |d+
k | and the factor 1 −

exp (−τ/T �+
2,k ),which can equivalently by written as 1−exp (−τ Im(ω+

k,Q)). The peak

“height” {H+
k }U from (2.23) in the Usual component spectrum is complex-valued, due

to the amplitude d+
k therein being complex. Consequently, {H+

k }U is the peak height
amplitude which, like every other amplitude, can be real- or complex-valued. The
Usual peak height magnitude |{H+

k }U| is equal to the the Ersatz peak height {H+
k }E.

The Ersatz peak height {H+
k }E is real-valued, and differs from Re{H+

k }U according
to:

Re
{
H+
k

}E = {
H+
k

}E =
∣∣d+

k

∣∣

1 − exp
(
−τ/T �+

2,k

) , (2.25)

and

Re
{
H+
k

}U = d+
k cos

(
ϕ+
k

)

1 − exp
(
−τ/T �+

2,k

) , (2.26)

where the relation d+
k = |d+

k |eiϕ+
k is used. The mathematical background of the FPT

is expounded in this section with the aim of facilitating the analyses of the applications
of this signal processor to several problem areas in cancer diagnostics, as detailed in
the subsequent sections of this review.
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3 Aspects of magnetic resonance of relevance tomedicine

3.1 Magnetic resonance phenomena as non-ionizing radiation

In medical diagnostics, NMR spectroscopy from physics and chemistry is renamed as
MRS. This is done for the reason of diverting the potential fear that some patientsmight
have when hearing the word “nuclear”. Such an issue belongs merely to nomenclature,
since MRS invokes no nuclear radiation whatsoever. It is only the nuclear spin states
that are excited byRFpulses during scanning of the examined tissue. TheRFpart of the
electromagnetic field spectrum is of weak intensity, which is below the excitation and
ionization thresholds of the tissuemolecules, thus resulting in no damage.Moreover, in
magnetic resonance (MR) scans of patients, none of the three simultaneously applied
external fields (RF, static and gradient magnetic fields) has the strength to ionize
atoms or molecules in the tissue. It is for this reason that MRS, as well as MRI,
are in the category of non-ionizing radiations. Such a feature is essential for medical
diagnostics because it allows the patients to undergo repeated monitoring by MRS
and MRI examinations within short time intervals, if needed. This is contrasted to
ionizing radiations, the most well-known example of which in medical diagnostics are
CT and positron emission tomography-computerized tomography (PET-CT). Ionizing
radiation used inX-ray-based diagnostics and radiotherapy (by gamma-rays, electrons,
atomic nuclei) can disrupt the internal structure of molecules and cells from the tissue
by causing changes that might yield irreparable damages, undergo mutations and/or
induce secondary cancers.

3.2 Hardware upgrades versus advanced signal processing

In the past, much attention has been paid to improvements of hardware for MR phe-
nomena used inmedical diagnostics by increasing themagnetic field strength B0 above
1.5T. However, this has not improved the overall status of MRS in the clinic. Despite
being known for decades now, this MR modality is still awaiting to become a part of
the standard diagnostic armamentarium in everyday medical diagnostics. The prime
reason for such a drawback is the lack of the necessary coupling of the enhanced hard-
ware capabilities (stronger magnets) to more reliable data analyses than those based
upon the FFT, and various equivocal fitting techniques.

The present article reviews the recent efforts aimed at bridging this gap by focus-
ing upon the fast Padé transform, FPT [1,2,12]. We address the limitations of the
FFT that impacted adversely on the expected progress in MRS. The multi-faceted
parametric and non-parametric estimations of spectral envelopes (total shape spectra),
and their components are thoroughly presented within the FPT. A veritable Padé-
conceived paradigm shift has been revealed by achieving super high-resolution with
lower magnetic fields, and short data acquisition times. This tandem accomplishment
is poised to make MRS both clinically reliable and cost-effective. Clinical reliabil-
ity is conveyed by trustworthy reconstructions of diagnostically relevant quantifiers
of metabolite molecules (abundance/concentrations, chemical shifts, relaxation times,
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etc). Cost-effectiveness is guaranteed by significant reductions of the total examination
time for the patient and, hence, much better turnout in the hospital management.

It is hoped that such favorable circumstances will establish the long anticipated
standing of MRS as the modality capable of revolutionizing not only diagnostics
(particularly in cancer medicine), but also screening, as well as image-guided surgery
and post-operative surveillance of patients [12,13].

3.3 Inter-disciplinarity in MRS

By judiciously intertwining mathematics, physics, chemistry and biology, research
in MRS offers the possibilities to improve tumor diagnostics. The fate and overall
success of all MR phenomena in medicine ultimately depends on the way in which the
data are evaluated and interpreted by the theoretically designed spectral analysis. No
measurement itself, irrespective of the extent of hardware innovations, and perfecting
the sequence encoding, can provide decision-making information without accurate
and reliable signal processing. This has also been emphasized by the U.S. National
Cancer Institute [13] stating that more robust signal processing is vital for achieving
the fuller potential of MRS. Without such signal processing, the diagnostic accuracy
of MRS is insufficient to meet the stringent clinical requirements.

The encoded MRS data are time signals and, hence, their evaluation is within the
realm of the interdisciplinary research area known as signal processing. Mathematical
optimization helps realize the potential of MRS in a more individualized approach
for patients afflicted with and/or at risk of malignancy, a clinical approach termed
“personalized cancer medicine” (PCM). We continue this review with a conceptual
framework, which provides the needed connection between the sought clinical infor-
mation and the necessary mathematical optimization [1,2].

With this background, the specific, concrete results are presented for Padé-
optimized MRS relevant to four problem areas of major public health concerns within
cancer diagnostics: prostate cancer, breast cancer, primary brain tumors and ovarian
cancer. We mainly focus on the period from 2013 onward, succinctly including earlier
salient results. A very brief overview of each of these four areas is first provided, noting
their profound importance for timely and accurate diagnosis, which can impact upon
patients’ survival and quality of life. The relevant results are reviewed as the process
of benchmarking the FPT, which includes handling noise-corrupted MRS time sig-
nals. This key problem is addressed first in the controlled setting with noise-corrupted
synthesized MRS time signals, and subsequently explored using the corresponding
encoded data from a standard test phantom head on a clinical MR scanner. Such a
review sets the stage for the detailed investigations on the applications of the FPT to
MRS time signals encoded in vivo on 1.5 and 3T MR scanners. This paves the road
for practical clinical implementation within the themes of the mentioned four problem
areas.

Firstly, it should be emphasized that MRI provides high spatial resolution, such
that morphology, i.e. anatomy is very well visualized. This is why MRI has become
one of the key modalities for all aspects of cancer diagnostics and care. Whereas MRI
is generally extremely sensitive in detecting abnormalities, its specificity is often low,
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such that many benign lesions are not confidently distinguished from malignancy.
However, through MRS, the status of the metabolic features of tissues or organs can
be assessed, and this enables proceeding beyond morphology. Thus, MRS can poten-
tially tap into the biochemical changes associated with the cancer processes, i.e. the
“hallmarks of cancer” [14,15]. This is particularly critical for early tumor detection,
because the malignant changes on the molecular level invariably precede their observ-
able manifestations on anatomical images of the scanned tissue.

In most applications within the MRS literature, single-voxel encoding is used.
However, for the purpose of volumetric coverage of the scanned tissue, multiple-
voxels are employed to combineMRI andMRS intomagnetic resonance spectroscopic
imaging (MRSI). This is alternatively called chemical shift imaging (CSI), because
of the explicit reference to resonating frequencies called chemical shifts. Whenever
there is a suspicion that a single voxel is not sufficiently representative of the status of
the imaged tissue, MRSI is used for the corresponding volumetric coverage [16].

3.4 ComplementingMRI: improved specificity by way of MRS

Analytical chemistry, resonance physics and themathematics of time signal processing
are all intertwined in MRS, and this requires team work of basic science researchers
and clinicians. Radiologists were quick to acceptMRI and use it routinely as a standard
diagnostic modality. The reason is twofold. Firstly, MRI scans can be viewed directly
on the screen much in the same familiar way as the conventionally observed X-ray
images. Secondly, there is an added value consisting of superiority of soft tissue
discrimination by MRI over that of CT, implying timelier diagnosis, e.g. earlier tumor
detection.

No similar automatic service with the necessary diagnostic certainty is provided by
MRS without the mentioned interdisciplinary approach. The most important extra
bonus of MRS relative to MRI is differential diagnosis by the former modality.
Namely, some lesions that are non-specific on MRI could be differentiated by MRS.
For instance, brain tumor and benign lesions might appear similar on conventional
MRI. However, these two lesions could often be distinguished by MRS on the basis
on the level of two diagnostically importantmetabolites, N-acetyl aspartate (NAA) and
choline (Cho). Neuronal activity, reflected by NAA molecules, is generally decreased
in tumors. On the other hand, Cho as a marker of cell membrane turnover, is usu-
ally elevated in tumors. This biochemical information obtained in a non-invasive way,
by mathematical/physical/chemical analyses of the scanned tissue, translates into the
specificity improvement of MRS with respect to MRI. An illustration of this type was
previously given in the first figure of Ref. [17], through juxtaposing the information
fromMRI and MRS. Therein, two hyperlucent brain lesions appeared quite alike, and
thus gave no hint as to which of them might be associated with a pathology. However,
MRS from that figure helped tell the difference between the two lesions. The analysis
of the MRS data suggested that one lesion was benign, whereas the other could be
tumorous according to the decreased NAA and increased Cho levels. The latter lesion
was then diagnosed to be a low-grade astrocytoma, as confirmed histopathologically.
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3.5 Strategic issues for MRS withinmetabolomics and translational research

Molecular imaging can vitally contribute to offering patients with cancer (or at high
cancer risk), the best possible care [18–20]. Molecular imaging is becoming well-
recognized “as a tool that has the capacity to improve every facet of cancer care.
The growing demands among physicians, patients and society for personalized care
are increasing the importance of molecular imaging and shaping the development of
biomedical imaging as a whole” [15] (p. 182). As such, PCM could particularly benefit
from metabolomic (i.e. metabolic) profiles provided by MRS-based molecular imag-
ing. However, this potential is yet to be realized in full [18,21]. Metabolomics refers
to the global quantitative assessment of endogenous metabolites within a biological
system or tissue. Therein, MRS, MRSI and mass spectrometry are the main methods
used, either individually or grouped as a metabolomic profile, to detect metabolites in
cells, tissues and biofluids. A multi-faceted potential exists for metabolomics within
oncology, especially for timely detection of cancer, as well as a predictive and phar-
macodynamic marker of drug effect. When used as a translational research tool,
metabolomics can provide a link among basic science research, the laboratory and
the clinic. This is the case because metabolic and molecular imaging, such as MRS,
MRSI and positron emission tomography (PET), enable the identification ofmetabolic
markers non-invasively in vivo [22]. However, while PET is focused on one selected
metabolite at a time, MRS and MRSI deal simultaneously with many metabolites by
identifying the whole spectrum of diagnostically informative molecules.

Notwithstanding themany important achievements, the diagnostic accuracyofMRS
is still generally insufficient for the stringent requirements of PCM [18,21,23,24]. One
of the prime reasons for this situation is reliance upon ambiguous fitting techniques for
analyzing MRS data (encoded time signals and/or computed Fourier-based spectra).

3.6 The need for accurate molecular imaging throughMRmodalities

Among the most pressing needs within the framework of PCM is early assessment of
response to therapy and, in particular, to identify non-responders in order to facilitate
timelier therapeutic decision-making. Target definition for radiation therapy (RT) with
identification of tumor regions that should receive a boost is another important area
for molecular imaging through MR, as is pre-surgical staging. The potential of MRS
and MRSI to distinguish high from low risk malignancy (notably prostate cancer)
and to do so non-invasively and without exposure to ionizing radiation has also been
underscored. Further, post-therapeutic monitoring as well as intensive surveillance of
persons at high risk for certain cancers are critical areas for molecular imaging through
MR.

Regarding all these issues for PCM, the diagnostic biochemical information, i.e.
the concentrations of metabolites contained within the tissue, as reconstructed through
MRS, needs to be of the highest possible accuracy. However, within MRS, none of
the sought clinical information is conventionally obtainable in a direct way from the
encoded data. From an MR scanner, a time signal, as a multi-modal heavily-packed
exponentially damped function is customarily encoded. This is shown on panels (a)
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and (b) of Fig. 1 related to MRS for normal brain tissue. Such time signals are not
amenable to direct, clinically meaningful interpretation. The measured data must be
mathematically processed in either the time or frequency domain in order to extract the
clinically useful information. For example, the encoded data from the time domain can
be transformed into the frequency domain giving the spectral representation, which
exhibits a number of relatively discernable peaks called resonances as seen on panels
(c) and (d) in Fig. 1 for the predictions by the FFT and FPT, respectively. The estimated
areas of the components of these peaks in Fig. 1(d) are associated with metabolite con-
centrations (abundance), that constitute the clinically most interpretable information.

Already the introductory Fig. 1 embodies the salient features of the main story
behind MRS. It tells us, on panels (a) and (b), what is being encoded (uninterpretable
real and imaginary parts of the time signal) as well as, on panel (d), what is being
sought (metabolite concentrations via spectral components). Further, on panels (c)
and (d), the key finding of signal processing of the encoded data is conveyed through
a comparison of the FFT and FPT. Therein, the FFT from Fig. 1(c) has only the total
shape spectrum with no components, thus failing to autonomously fulfill the main
task of MRS: reconstruction of diagnostically pivotal metabolite concentrations. In
sharp contrast, as per panel (d) of Fig. 1, the FPT simultaneously yields the envelopes
and component shape spectra, thus providing metabolite concentrations en route. This
gives little doubt as to which of these two processors is more suitable for MRS.

3.7 Limitations of the fast Fourier transform for encodedMRS data

The customary approach has been to directly process all the encoded MRS signals by
the FFT, a low-resolution, non-parametric processor. Subsequently, the obtained set
of resonances in the Fourier envelope is often fitted by a given mathematical model to
assess the number of components of each peak. Such a non-unique approach inevitably
guesses the number of components and, thus, gives biased, inaccurate estimates of
metabolite concentrations. Illustrations of the limited information gleaned from sev-
eral Fourier envelopes are presented later in this review. The quantification problem
in MRS is extremely difficult, being “mathematically ill-conditioned”, meaning that
even small external perturbations (noise and noise-like impurities or corruptions) yield
large variations of the sought solution. This leads to large variances of the extracted
concentrations of metabolites. None of “the FFT plus fitting” techniques is capable of
unambiguously solving the problem of spectral analysis which is alternatively called
quantification. However, the main reason for resorting to MRS and MRSI is to solve
the quantification problem, which amounts to reconstructing a set of spectral param-
eters (for each physical resonance), comprised of chemical shifts, relaxation times,
oscillation amplitudes and phases, from which the metabolite concentrations are com-
puted. For example, chemical shifts inform about the molecular compounds in which
the MR-sensitive nuclei (e.g. protons in proton MRS) are bound in the scanned tissue.
Albeit difficult, the quantification problem is nevertheless solvable and the unique
solution does exist. The challenge is to find the correct mathematical method which
surmounts the ill-conditioning of the MRS quantification problem.
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online)
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3.8 Amore advancedmethod by the fast Padé transform

The existing estimators in the MRS literature were unable to simultaneously as well
as unequivocally solve the quantification problem, and separate the physical (signal)
from unphysical (noise) part of the examined FID. Therefore, we sought an alternative
method which, from the onset, would be more suitable for time signal processing than
the Fourier analysis. An important reason for being utterly inadequate in representing
functionswith peaks is the lack of a polar structure of the FFT.Apolar representation of
a function is built from a set of its pole-type singularities at which the function acquires
its maximum values. Polynomial representations, such as the FFT, are conventionally
applicable to smooth, periodic functions without singularities. If a function is polar,
then the FFT requires a huge number of sampled data points of that function to mimic
its poles by exhaustive interference effects. Such a demanding severity on the size of
MRS data makes the FFT ineffective, as it involves exceedingly long acquisition time.
In practical terms regarding MRS, long scanning time is required, which is a burden
to the patient as well as to health care resources. Hence the lack of cost-effectiveness
of the FFT-based MRS.

A distinct advantage is provided by rational polynomials as a quotient of two poly-
nomials that have the polar representation automatically built-in. Therefore, rational
polynomials are the most suitable candidates for describing functions with peaks,
such as spectra in MRS. A quotient of two polynomials is the Padé approximant [1].
Such a quotient is unique for the known input power series expansion of the given
function. This has long been recognized in interdisciplinary research, where the Padé
approximant is known as the front runner in spectral analysis: inmathematics, physics,
chemistry, engineering (response functions), mass spectrometry via ion cyclotron res-
onance mass spectrometry (ICRMS) and technology. We have employed the Padé
approximant over the years in physics and chemistry [25–28].

Thus, we transferred this versatile method of rational polynomials toMRS diagnos-
tics in clinical oncology. This new approach to signal processing inMRS is termed the
fast Padé transform, FPT [1]. Here, “fast” is used to indicate a quasi-linear scaling of
the computational complexity with the total signal length, using the Euclid algorithm
for extracting the numerator and denominator polynomials. Moreover, “transform”
implies that the time and frequency representations of the FPT are deducible from each
other by inversion, similarly to the FFT. Firstly, in the parametric FPT, the quantifica-
tion problem is solved uniquely yielding the complex-valued fundamental frequencies
and amplitudes. Secondly, the corresponding component spectra as well as the total
shape spectrum (the sum of all the component shape spectra) are constructed in any
mode (absorption, magnitude, power, etc.). Thus, by design, the parametric FPT sep-
arates all the overlapping peaks.

As outlined in the theory section, splitting apart the overlapping peaks can also be
achieved by the two forms of the non-parametric FPT, both using only the envelopes,
one dealing with qualitative, partitioned spectra [3,4], and the other with quantitative,
derivative spectra [5–7]. In particular, the higher-order derivative fast Padé transform,
dFPT, is capable of reconstructing exactly all the spectral parameterswithout explicitly
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solving the quantification problem [5–7], as will further be discussed in the present
review.

3.9 Adaptation of the Padé approximant to MRS for medical applications

A great deal was at stake when adapting the Padé approximant to MRS in oncology,
because of the high demands for reliability aimed at aiding clinicians in making the
most delicate decisions, in particular to distinguish cancerous from non-malignant
pathologies. To achieve this goal, the FPT was broadened to provide fully self-
contained cross-checking. This was accomplished by encompassing two equivalent
and complementary variants of the samePadémethodology. They are termed the causal
FPT(+) (inside the unit circle, |z| < 1) and anti-causal FPT(−) (outside the unit circle,
|z| > 1) estimators, with the “circle” referring to the harmonic complex variable z.
Only the common set of spectral parameters reconstructed by these two versions of
the FPT is accepted as the final output list or line-list. The same applies to the dFPT,
which itself is a yet another check of the outcome of the MRS quantification problem
solved by the non-derivative parametric FPT. The necessary mathematical outlines of
the FPT and dFPT are given in theory section and more fully in Refs. [1,2,5–7,29,30].

To complete our clinically-designed signal processing, two additional crucial ele-
ments were implemented: (i) the exact reconstruction of the true number of resonances
with the ensuing unequivocal retrieval of all the metabolites that are physically present
in the scanned tissue, and (ii) unambiguous signal-noise separation, SNS. Features (i)
and (ii) of the FPT secure that no false (unphysical, spurious) metabolites would be
present in the output list of spectral analysis of the MRS data, nor would any true
(physical, genuine) metabolite be missing. This is of key importance, because the
last thing clinicians would need is a new data analyzer which cannot reliably indicate
whether the information is true or false.

3.10 Benchmarking the FPT

The essence of MR is the introduction of various types of perturbations to gain insight
into the system (i.e. tissue) under study. Based upon the abundant literature on stabil-
ity of systems under external perturbations, Padé-designed response functions were
benchmarked via three rigorous, systematic steps. Step 1 was on noiseless synthesized
(simulated)MRS time signals. This was followed by step 2 on noise-corrupted synthe-
sized time signals. Only after completing steps 1 and 2, could the actual benchmarking
proceed to the final step 3 using experimentally (in vitro or in vivo) encoded MRS
time signals.

We first used simulated MRS time signals that are fully reminiscent of the corre-
sponding encoded data. Our earlier work with noiseless simulated MRS time signals,
similar to the FIDs from several cancerous, benign and normal tissues, showed that
the FPT can reconstruct with machine accuracy all the input spectral parameters for
any set of genuine resonances. In parallel, we performed a number of early studies
on MRS time signals encoded in vivo from volunteers, further demonstrating the full
reliability of the high resolution performance of the FPT [1,2,29–36]. The next crit-
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ical step in benchmarking the FPT for clinical diagnostics within oncology was our
detailed, systematic studies of noise-corrupted time signals. This was still in a con-
trolled setting by using noisy simulated time signals. We also employed FIDs encoded
with phantoms placed in clinical 1.5TMR scanners [37]. In a comprehensive group of
studies [10,38–48], the FPT has been shown to effectively handle MRS time signals
from brain, prostate, ovarian and breast cancer, as well as the FIDs from the corre-
sponding normal and/or benign tissues. Overall, the high resolution of the FPT and its
capability to exactly reconstruct the spectral parameters from which all the metabolite
concentrations are precisely computed was demonstrated for these malignant, benign
and normal tissues over a wide chemical shift region. This encompasses regions where
completely overlapping resonances, including cancer biomarkers, are located.

The clear superiority of the FPT in detailed comparisons with the FFT helps explain
why the FFT has not yielded the long sought added value of MRS needed for can-
cer diagnostics. This is particularly evident regarding clinical decision-making within
oncology. As such, the hoped-for contribution of MRS and MRSI to individualized
cancer care has remained largely unrealized. This is mainly due to inadequate process-
ing ofMRS time signals, i.e. the exclusive reliance upon the FFTwith post-processing
byvariousfitting techniques that are all equivocal by invariably failing to detect someof
true metabolites (via under-fitting) and predicting non-existent ones (via over-fitting).
Irrespective of whether using certain selected lineshapes for the individual peaks or
employing some linear combination of model spectra (synthesized or encoded), all
the existing fitting-based signal processing methods are ambiguous. This fact occurs
because even someminor changes in the input data (e.g. alteration of the initial or start-
ing values of the unknown spectral parameters, imposing various types ofminimization
constraints, etc.) can yield vastly different results of reconstructions, as manifested by
typically huge standard deviations in e.g. the linear combination of model in vitro
spectra (LCModel). As stated earlier, such non-uniqueness evidenced by the instabil-
ity of predictions is a direct manifestation of the ill-posedness of quantification as a
non-linear inverse problem. Mathematical ill-posedness or ill-conditioning refers to
the lack of a continuous dependence of the output on the input data. The FPT has been
successfully applied to quantify MRS data from clinical MR scanners using: (i) time
signals encoded by way of low field strength B0 = 1.5T on the General Electric (GE)
head phantom with several metabolites that are also detected in the human brain [37],
and (ii) FIDs measured in vivo from human brain with the help of stronger (B0 = 4
and B0 = 7T [1,2,30,33,34] as well as weaker (B0 = 1.5T) static magnets [8,9,36,49].

Pattern recognition ofMR spectra from brain, prostate, ovarian and breast cancer, as
well as from benign and normal tissues, with appropriate illustrations (tables, graphs)
can greatly facilitate rapid interpretation in the clinician setting. This is in conjunction
with the quantitative information with maps of metabolite concentrations, as reliably
produced by the FPT. Crucially, with the FPT, a set of cancer biomarkers widely
considered as being diagnostically informative can confidently be identified, together
with their metabolite concentrations. We can mention here a few such biomarkers:
phosphocholine (PC), which often completely underlies other metabolites, lactate
(Lac) reflecting anaerobic glycolysis, as well as β−glucose (β−Glc) for which altered
glucose metabolism is a typical feature of cancer cells (with low levels of glucose
generally seen inmalignancy), also taurine (Tau), a possible indicator of apoptosis, and
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rapidly-decaying myoinositol (m-Ins), which may help distinguish malignant breast
tissues from fibroadenomas, and aid in identifying primary brain tumors and prostate
cancer. Through the FPT, extensive possibilities emerge for multivariate exploration
to find combined metabolite patterns that best characterize various types and grades of
thesemalignancies versus diverse benign pathologies that cause differential diagnostic
dilemmas.

4 Noise as one of the greatest difficulties for MRS in the clinical
setting

Let us begin by noting some of the essential points regarding noise encountered in
MRS.As stated, for a hypothetically ideal encoding, theMRS time signals are expected
from quantum mechanics to be sums of complex-valued attenuated exponentials, as
in (2.1). In practice, of course, no such ideal measurement can ever be carried out.
Nevertheless, since quantum physics predicts precisely this representation for an FID,
it is also necessary to use Eq. (2.1) for non-ideal time signals fromMRS encoding, and
to subsequently devise robust safeguards against various imperfections arising from
themeasurement.Wehave demonstrated hownoise is handled in practicewith the FPT.
We first simulate the hypothetical noiseless situation just described, and that is what
is meant by the controlled setting. This benchmarking approach is well established
in other disciplines, such as engineering: the first test of a model is its validation
on a problem with an exactly known solution [1,2]. In engineering, recovering the
system’s parametrized characteristics from the given input data is known as “reverse
engineering”.

The ideal time signal is equidistantly sampled with the known set of spectral param-
eters {K , ωk, dk} (1 ≤ k ≤ K ), where K is the model order, {ωk} are the complex
frequencies and {dk} are the corresponding complex amplitudes. This constitutes the
noiseless MRS time signal. The mentioned compound noise in an MRS encoding of
FIDs is mimicked by perturbing the noiseless input data {cn} (0 ≤ n ≤ N − 1) with
random Gaussian complex-valued zero-mean white noise {gn} (0 ≤ n ≤ N − 1) of
a prescribed standard deviation σ. When {gn} is added to {cn} to create the data set
{cn + gn} (0 ≤ n ≤ N − 1), the initially known spectral parameters {K , ωk, dk} (1 ≤
k ≤ K ) are subsequently treated as if they were never available. The objective of such
studies is to exactly reconstruct all the physical parameters {K , ωk, dk} (1 ≤ k ≤ K )

by applying the FPT to the noisy time signal {cn + gn} (0 ≤ n ≤ N − 1) of
systematically increased standard deviation σ. In order to more closely conform to
the realistically encoded FIDs, we have varied σ within three orders of magnitude
[10,23,24,47,48].

4.1 The reasons for high resolution and noise suppression within the FPT

As elaborated in detail in Refs. [1,2,30,48], there are several reasons for high reso-
lution and noise suppression in signal processing by the FPT. One is that the ratio
of two polynomials, say PK /QK , for the complex non-linear spectrum in the FPT,
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possesses an extra degree of freedom to cancel noise from the numerator by the noise
in the denominator. In contrast, being a single polynomial, the FFT does not have this
capability and, therefore, by this method, the noise imported directly from the input
time domain data to the frequency spectrum cannot be removed nor suppressed.More-
over, the FPT can simultaneously interpolate as well as extrapolate, and this further
enhances its resolution capacities. By comparison, the FFT lacks both interpolation
and extrapolation. Zero-filling of time signals might eventually improve the formal
appearance of spectral envelopes, but cannot enhance the resolution since the entire
information is already contained in the data points from the FID.

4.2 Signal-noise separation within the FPT

Especially with very closely-overlapping peaks, as is abundantly the case for MRS
spectra from the brain, prostate, breast and the ovary, the number of true metabolites is
always a very small percentage of the total number of resonances generated using the
noise-corrupted time signal {cn + gn} (0 ≤ n ≤ N − 1). The genuine resonances are
often on the order of merely 1% as will be exemplified in this review. Distinguishing
such false, noisy peaks from those that are genuine is a critical problem for accurate
diagnostics. Mathematically, this means that for MRS quantification problems (espe-
cially with noisy time signals) solved without windowing, an over-determined system
of linear equations becomes inevitable in any parametric processor, with the price of
reconstructing many spurious resonances. In the FPT, this problem is solved algorith-
mically by identifying pole-zero confluences [2,50,51]. For a fixedmodel order K , the
FPT generates the unique set of spectral poles and zeros. The zeros of the numerator
polynomial PK correspond to valleys in-between any two adjacent peaks in the same
spectrum, and the system zeros are described thereby. The roots of the denominator
polynomial QK are the system poles and represent the positions (chemical shifts) and
widths of peaks in a spectrum. It is precisely here that the FPTmeets the metabolomics
branch of system theory in biomedicine. Namely, by detecting the system character-
istics through recovery of the parametrized system poles and system zeros, the FPT
carries out metabolic profiling, as a quantitative study of a group of metabolites, pre-
viously known or unknown (unassigned) within or related to a particular metabolic
pathway. The entire information about the generic system (cell, tissue, organism, …)
is contained in the system poles and zeros.

Poles and zeros that coincide, i.e. Froissart doublets [51], are unstable with no con-
vergence in sight (as they wander haphazardly in the complex frequency plane) after
exposition to the slightest perturbation. Hence, this is evidently unphysical informa-
tion. These spurious resonances exhibit noise-like behavior, and need to be identified
as such in order to be removed from the final results of the analysis. On the one hand, in
an attempt to mitigate the detrimental effect of noise inherently present in the encoded
FIDs, it is necessary to resort to over-determination. This latter notion signifies that the
number of linear equations to be solved exceeds the number of the sought, unknown
quantities (solutions). On the other hand, as stated earlier, over-determination itself
produces noise-like information by reconstruction of spurious resonances. The FPT
simultaneously overcomes both these obstacles (in fact, conundrums), by its very form
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of the spectrum as a polynomial ratio PK /QK . Crucially, there is a complementary
set of retrieved poles and zeros that are non-coincident and stable. These are called
physical or genuine.

The mechanism for this signal-noise binning is the SNS concept manifested in a
two-fold way: (a) pole-zero cancellation (in the canonical representation of PK /QK

for spurious resonances, i.e. Froissart doublets) arising from over-determination, and
(b) suppression of noise from the input FID itself by the non-linearity of the rational
response function PK /QK . Elimination of spurious resonances also occurs in the
alternative Heaviside partial fraction representation of the Padé spectrum PK /QK .

Therein, the numerator of each partial fraction contains the amplitude dk, which is
zero for any spurious resonance. So, yet another signature or fingerprint of a spurious
resonance is its zero-valued amplitude. The amplitude is proportional to the pole-zero
difference and, thus, we have dk = 0 for coincident poles and zeros. It is pertinent
to recall that any error, including noise, in two experimentally measured quantities A
and B (or computationally generated with finite precision arithmetic), is often largely
canceled in their quotient A/B. Similar quotients are also encountered in the FPT
spectrum, PK /QK .TheFPTexactly reconstructs the number K bywayof convergence
of the physical information. Namely, when all the fundamental or eigen-parameters
{ωk, dk} in every physical or genuine resonance stabilize, the sought number K is
automatically determined.

In summary, pole-zero cancellation is achieved by gradually increasing the degree
K of the Padé polynomials PK and QK to monitor fluctuations of the reconstructed
spectra until stabilization is attained. Thus, the FPT accompanied by SNS appears as
a multi-pronged strategy for distinguishing false from true content of the investigated
time signals. Overall, we see that the methodology rooted in the FPT provides added
value of utmost importance to the whole metabolomics in system biomedicine. This
bonus is unique to the FPT because of its possibility to discriminate or indeed separate
in a mathematically and clinically reliable manner, the true from the false part of
the extracted information within the examined system. With such a differentiation,
metabolic profiling is enriched via an invaluable complement to data quantification by
a novel design of filtering out the unphysical (spurious, false, incoherent) and retaining
the physical (genuine, true, coherent) information in data evaluation.

Noise is also systematically suppressed in the dFPT albeit by a differentmechanism.
Namely, in the dFPT, we take the derivatives of the analytically available formula for
the non-parametrically reconstructed envelope PK /QK from the non-derivative FPT.
This automatically secures that no noise is invoked by repeated differentiation of
any order. Noise, which is initially transferred from the input time signal to the seed
total shape spectrum PK /QK is systematically suppressed by higher order derivatives
of the starting envelope PK /QK . This is possible because differentiation suppresses
broad background and separates overlapped peaks by narrowing peak widths and
increasing peak heights of physical resonances. In contradistinction, the derivative
fast Fourier transform, dFFT, amplifies noise with increased derivative orders. The
reason for such a severe disadvantage is that, in the dFFT, one first takes the deriva-
tive Dm

ν of exp(−2π iνt) and then applies the FFT to the ensuing product (τn)mcn .
However, the term (τn)m weighs heavily the tail of noisy time signal, cn . Therefore,
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the dFFT drastically deteriorates SNR since noise in enhanced with augmentation of
the differentiation order.

4.3 Two complementary, self-checking and auto-correcting variants of the FPT:
special relevance to SNS

As stated, there are two variants of the FPT, denoted by FPT(+) and FPT(−) defined
inside (|z| < 1) and outside (|z| > 1) the unit circle for the causal and anti-causal
representation, respectively. The spectra in the FPT(±) are the frequency-dependent
polynomial quotients P±

K /Q±
K extracted from a common, truncated Maclaurin series

in powers of z−1 as per (2.2).
The FPT(−) operates with variable z−1 and, hence, it is an accelerator of conver-

gence of the input slowly converging series (2.2) expanded in powers of z−1. In the
presence of higher levels of noise, the pole-zero coincidencemay be close, but not com-
plete. Moreover, some spurious resonances may show near-zero amplitudes (dk ≈ 0),
instead of their expected zero values, dk = 0 [44,48]. This requires the “stability test”
to confidently achieve SNS also at higher noise levels with incomplete pole-zero coin-
cidences. Furthermore, in the FPT(−), there is a mixing of the spurious and genuine
resonances within the same positive imaginary frequency region, Im(ωk) > 0.

The FPT(+) works with variable z, and is designed to numerically perform analyt-
ical continuation of the input series (2.2). As such, from an algorithmic standpoint,
the FPT(+) has a more difficult task because it must induce convergence into a diver-
gent series [1,2,29]. Consequently, in order to converge, the FPT(+) typically requires
more signal points than the FPT(−).However, the FPT(+) achievesmore stringent SNS
than the FPT(−). This occurs because in the FPT(+), the genuine and spurious reso-
nances are located in two separate domains with the positive and negative imaginary
frequencies, Im(ωk) > 0 and Im(ωk) < 0, respectively. Pole-zero coincidences of
spurious resonances have been reported with the FPT(+) to be accurately maintained
at higher noise levels. Whenever this occurs, a denoised spectrum can automatically
be generated [10].

These two variants provide an internal cross-validation within the same Padé
methodology. Upon convergence of the FPT(+) and FPT(−), their reconstructions
are compared, and the final output list is produced from the spectral parameters that
are common to both variants. Since this checking procedure is entirely self-contained,
the results of the FPT(±) need no comparison with any other signal processor for veri-
fication [1,2,34].We have clearly demonstrated the practical usefulness of the outlined
self-contained cross-validation by the two different and equivalent variants, FPT(+)

and FPT(−), through their complementary capabilities to separate genuine signal from
noise. In particular, within the FPT(+) the special property of analytical continuation
by numerical means has been illuminated for successful handling of heavily noise-
corrupted synthesized MRS time signal data [10,23]. These results represent a critical
step towards efficient implementations of in vivoMRS,where there are no known input
spectral parameters with which to check the results of reconstruction. The FPT(+) and
FPT(−) are always employed together for a fully self-contained cross validation, using
different algorithms in numerical computations.
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4.4 Solutions by the FPT to noise-related and other problems with encoded in
vivo MRS time signals

A number of major problems arise with in vivo encoding in MRS, the solutions to
which through Padé-based strategies are described later and with full detail in our
recent publications [8,9,11,49,52–54]. Among the most difficult of these problems are
those related to noise from encoding itself plus from unphysical resonances that arise
in data reconstruction by any processor. Noise-like spikes emerge, and they are often
much larger than the genuine spectral content. A key aspect of the FPT for in vivo
encoded MRS time signals is spectra averaging [9] in which the arithmetic average is
taken of a pre-computed sequence of the retrieved envelopes for varying model order
K . For different values of K , each envelope is computed at the same number of sweep
or running chemical shifts. It is this flexibility of the FPT which enables taking the
arithmetic average of the envelopes for varying K at the same fixed sweep frequency.
Spectra averaging stabilizes the total shape spectra that are otherwise highly sensitive
to model order K . Averaging these envelopes yields a total shape spectrum void of
spikes, that themselves stem from the random, noise-like nature of spurious resonances
with changes in K . Averaging of spectra is not possible in the FFT because Fourier
vectors in the frequency domain are not of the same length for different truncation of
the total acquisition time T = Nτ. Namely, the number of sampling frequencies in an
FFT spectrum is the same as the total number N of the FID points in the time domain.
Thus, by keeping the sampling time τ fixed, truncating T amounts to lowering N and
this, in turn, leads to a smaller number of sticks in an FFT spectrum. Hence, the FFT
spectra at different truncations of T cannot be added together to perform averaging.

Yet another obstacle exists inMR spectra, and that is a still large remnant or residual
part of the giant water resonance after its partial removal during the encoding proce-
dure. Suppression of the giant water resonance, as a highly problematic issue for in
vivo MRS (especially of the brain) is achieved through several Padé-based strategies
[8,9], as will be presented in this review.

Further, within the FPT, we have recently introduced a partitioning procedure to
non-parametrically identify the cancer biomarkers, such as PC which has heretofore
been a hidden component of total choline (tCho) in spectral envelopes [3,4]. Within
the non-parametric FPT, this partitioning procedure can be applied to in vivo encoded
MRS time signals. The purpose of such a pre-processing, as the first-stage application
of the Padé analysis of total shape spectra, would be to quickly visualize whether
the biomarkers of interest are qualitatively detectable (present or absent). If e.g. PC
is present, this would be followed by a detailed quantitative reconstructions of the
Padé-based processing.

Most recently, we have shown that even the non-parametric FPT can retrieve all
the peak parameters without ever attempting to solve explicitly the quantification
problem per se. This is achieved by the dFPT [5–7]. In benchmark computations,
we have demonstrated that high derivatives of total shape spectra coincide with high
derivatives of component shape spectra. This fact and the existence of the relationships
among the peak parameters of the derivative and non-derivative component spectra,
permit exact reconstruction of positions, widths, heights and phases of all physical
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resonances using only total shape spectra computed by the non-parametric dFPT.
Such an achievement is due to the main mathematical features of the dFPT that lead to
the peak width narrowing and the concomitant peak high enhancement with a strong
suppression of the noisy background. Crucially, the dFPT simultaneously solves all
the three major problems in MRS: unequivocal separation of overlapping resonances,
noise elimination and resolution enhancement. Thus far, the dFPT has been illustrated
on synthesized time signals reminiscent of the corresponding FIDs encoded by in vivo
MRS for breast cancer [5–7]. The dFPT is now envisaged to be directly applied to
time signals from in vivo MRS encodings. This powerful approach is anticipated to
contribute to practical improvements for diagnosis and management of breast cancer
and other malignancies.

5 Padé-optimizedMRS for four cancer problems

We have aimed to improve cancer diagnostics on a quantitative molecular basis within
the newly emerging discipline called “molecular imaging”. As noted, molecular imag-
ing is rapidly gaining recognition as a key tool for the realization of more personalized
cancer care. Our goal is the retrieval of key information that is not detected using the
FFT and post processing via fitting and/or peak integrations. Accurate quantification
is needed to determine metabolite concentrations, so that MRS can be better used to
detect and characterize cancers, with clear distinction from non-malignant processes.
We have heretofore focused on four cancers (brain, prostate, breast and ovarian) for
which the added value of early detection through Padé-optimized MRS would have
a major clinical-public health impact. The Padé methodology is also applicable to a
number of other problem areas in oncology, and beyond. The as yet unrealized possi-
bilities ofMRS for improved diagnostics are underscored, particularly early detection,
for a wider range of cancers [54–56].We herein will first briefly highlight some salient
issues regarding the four selected problem areas.

5.1 Diagnostics by MRS: salient highlights on the four cancer problems

5.1.1 Prostate cancer

Prostate cancer is one of the most frequently occurring malignancies and is cited as the
sixth leading cause of cancer deaths among men worldwide [57]. Mortality rates from
prostate cancer have been declining since the late 1980s in Western Europe and North
America [58,59]. This favorable trend is attributed, at least in part, to early detection
using prostate specific antigen (PSA). Data from the U.S. indicate that during this
time period, the percentage of men with distant metastases at initial prostate cancer
diagnosis dramatically decreased [60]. The importance of early detection and treatment
of prostate cancer has been further underscored by longitudinal findings that radical
prostatectomy confers a significant survival advantage compared to “watchfulwaiting”
[61]. On the other hand, active surveillance of “low risk” prostate cancer continues to
be investigated as a potentially viable option [62].
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By providing insight into the metabolic characteristics of prostate tissue, MRS and
MRSI are being increasingly used for many aspects of prostate cancer diagnostics and
management. Among the areas in which MRS and MRSI have been helpful include
distinguishing malignant prostate from benign prostatic hypertrophy (BPH), as well
as high risk from low risk prostate cancer, identifying the optimal site for biopsy,
detecting extracapsular extension, selecting treatment modality as well as timing and
assessing tumor regression versus recurrence after treatment [63–65]. The concentra-
tion ratio between two MR-observable metabolites, Cho at ∼ 3.2 parts per million
(ppm) and citrate (Cit) at∼ 2.5 to 2.7 ppm has been the cornerstone of prostate cancer
detection. Citrate indicates healthy prostate epithelial secretory activity. Choline is a
cell proliferation marker. However, important exceptions are: with metabolic atrophy
due to radiation or hormonal therapy or in stromal prostate, Cit is low without cancer
being present. With BPH, it occurs that Cit can be high despite coexistent malignancy.
Moreover, there is no consensus as to cutoff values of these metabolite concentration
ratios that best identify prostate cancer [66].

Expanded protocols have been developed, e.g. including polyamines (PA)which are
MR-visible metabolites resonating at about 3.1 ppm. Normal healthy prostate contains
high concentrations of PA, whereas with prostate cancer PA levels are low [67,68].
However, assessment of PA in the in vivo MR spectrum has been problematic with the
FFT plus fitting, since PA are broad resonances that overlap with other metabolites.
Overall, limitations in resolution and data interpretation from MRS are recognized
as major challenges in prostate cancer diagnostics, staging and surveillance [69]. In
vitro MRS applied to prostate specimens yields more insight, but abundant multiplets
and closely-overlapping resonances of different metabolites are very troublesome for
quantification. These problems are not solved by the FFT followed by fitting [70].
Therefore, the full potential of molecular imaging throughMRS andMRSI for a more
individualized approach to various dilemmas associated with prostate cancer remains
to be realized. Overall, for MRS time signals encoded in vivo from the prostate, inad-
equate processing by the FFT followed by fitting is a major reason for this unrealized
potential [23].

5.1.2 Breast cancer

Worldwide, breast cancer is themost commonly diagnosedmalignancy amongwomen
and a major cause of death [24]. Improved survival has been consistently attributed to
breast cancer screening, in particular since there are greater chances for early detection,
such that appropriate care can be offered to the patient without undue delay [71,72].

Although having low specificity, mammography is widely employed for breast
cancer diagnostics. As a consequence of this insufficient specificity (false positives),
further examination is often required [73].When breast density is high, as is frequently
the case among younger women, there is also a considerable chance that the mam-
mogram yields a false negative result [42]. Among the standard anatomic imaging
modalities, MRI has the highest sensitivity for breast cancer detection. This advan-
tage of MRI is particularly seen for women at high risk [74,75]. Recall, that another
benefit of MR-based modalities is that they entail no exposure to ionizing radiation.
Although contrast-enhanced MRI is usually very sensitive for detecting breast cancer,
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false negatives can occur for small breast cancers, especially if there is no selective
contrast uptake. The major problem with MRI is poor specificity.

In vivo MRS implemented with the FFT envelopes has the potential to improve the
specificity ofMRI for breast cancer diagnostics [2,76,77]. However, most applications
of FFT-basedMRS for breast cancer diagnostics have assessed only a single composite
peak, namely total choline, tCho. The latter may be increased in benign breast lesions
or lactation, and is often undetected in small cancers [77]. As we recently reviewed
[3], in FFT-based MRS, pooled estimates of sensitivity and specificity vis-à-vis breast
cancer diagnosis are below 90%. Attempts to improve resolution and SNR for MRS
of the breast via higher field scanners [78,79] have not yielded the sought degree of
accuracy in identifying breast cancer. Thus, there are still no sufficiently trustworthy
standards to diagnose a breast lesion as cancerous versus benign thereby.

There is abundant information in closely-overlapping resonances for detecting
breast cancer. The FPT applied to synthesized MRS time signals (noiseless and noise-
corrupted) similar to the corresponding FIDs encoded in vitro from extracted breast
cancer specimens [80] accurately reconstructed the sought biochemical content. This
includes PC, a breast cancer biomarker [81], which very closely overlaps with neigh-
boring peaks [2,41,42,47].

5.1.3 Primary brain tumors

Although primary malignant brain tumors are relatively rare in adults compared to
other cancers, they generate much attention. This is because of the fear associated with
the location, the young age at which these can occur, and the often poor prognosis
[12,37]. In the pediatric population, primary brain tumors are the leading cause of
solid tumor-related morbidity and mortality [82–84].

Molecular imaging through MRS and MRSI has been of seminal importance for
neuro-oncology. There has been a great “explosion” of information in recent years on
MRS andMRSI for primary brain tumor diagnostics, as reviewed inRefs. [2,37,82,85–
87]. Magnetic resonance spectroscopy and MRSI are now among the key modalities
for nearly all aspects of brain tumor diagnostics and management for both the adult
and pediatric populations. This includes initial diagnosis [82], tumor characterization
[85] and grading [88], treatment planning in RT [89], surgical guidance [90], as well
post-therapeutic follow-up [91–93].

Within this framework, the limitations of the FFT and fitting become all the more
striking. Thus, e.g. rather than obtaining accurate quantitative information for at least
25 metabolites, as can readily be achieved by the FPT [2,8,9,31,32,49], much of
neuro-diagnostics through MRS based on the FFT and fitting has been reduced to
a semi-quantitative approach, with concentration ratios of a very small number of
metabolites.With this situation,many diagnostic dilemmas remain. A notable example
is that recurrent primarybrain tumors are quite oftenmisclassified as radiation necrosis,
and vice verse, according to meta-analysis from Refs. [91–93]. Another example of
great importance for PCM is to distinguish non-tumorous cerebral hypoxia/ischemia
from brain tumors. The latter also often contain hypoxic regions that promote genomic
instability and are associated with the invasive/metastatic process [8,9,49].
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5.1.4 Ovarian cancer

The ovary is a small, moving ellipsoid organ with its normal mean volume in adult
females ranging from 6.1 to 1.8 cm3 depending on age. Particularly in early-stage
cancer, the ovary may be only slightly enlarged or of normal size [94]. Cancers in this
tiny organ are the sixth most often occurring malignancy among women throughout
the world. In many parts of the world, including the U.S., Scandinavia and Israel,
ovarian cancer is even more common, and in a number of countries the incidence of
ovarian cancer appears to be increasing [95–98]. Ovarian cancer has a very high case
fatality rate [99]. For example, only in the U.S. over 14000 women die each year from
ovarian cancer [100]. In 2013 alone, about 158000 women worldwide died of ovarian
cancer. Among the risk factors for ovarian cancer is heredity, which accounts for up to
25 % of cases [101–105]. Familial ovarian cancer has been most widely identified in
relation to the hereditary breast and ovarian cancer (HBOC) syndrome, with germline
mutations in BRCA1 and BRCA2 tumor suppressor genes being responsible for the
vast majority of HBOC. Several other gene mutations also appear to be associated
with HBOC or other hereditary ovarian cancers. The Lynch syndrome characterized
by non-polyposis colorectal cancer also includes increased risk of ovarian cancer, as
well as endometrial cancer [102,105]. Non-hereditary risk factors for ovarian cancer
include use of hormone replacement therapy [104,106], unhealthy life-style (smoking,
high-saturated fat diet intake, obesity) [104], late childbirth, nulliparity, endometriosis
[107,108], and possibly exposure to diagnostic ionizing radiation, as well as to talc,
pesticides or herbicides [104,108–110]. Nightshift work may also increase the risk of
ovarian cancer [111], possibly in relation to circadian genes that are highly expressed
in the ovaries, since these genes regulate ovulation.

Early detection of ovarian cancer is an urgent public issue. Ovarian cancer has
an excellent prognosis if found at an early stage [112]. However, due to the lack of
accurate early detection methods, the majority of ovarian cancers are diagnosed late,
which is the main reason for the very high case fatality rate [113,114]. The potential
for in vivo MRS as a method for early ovarian cancer detection has been suggested for
nearly two decades [115,116]. However, especially due to the small size and motion
of this organ, in vivo MRS data processed by the FFT together with fitting have been
greatly hindered by problems of poor resolution and bad SNR [2,117].

• Meta-analysis of in vivo MRS studies on benign and cancerous ovarian lesions
We recently carried out a meta-analysis [52] of the published in vivo MRS inves-

tigations for altogether 134 cancerous, 114 benign and 3 borderline ovarian lesions,
all encoded via clinical (1.5 or 3T) MR scanners. In the reviewed studies, the encoded
FIDs were all analyzed by the FFT followed, in some instances, by post-processing
via fitting. A very small number of peaks were identified, and only Cho at 3.2 ppm
and Lac at 1.3 ppm were significantly more often detected in malignant compared
to benign ovarian lesions. However, based upon detection of Cho alone, 50 benign
lesions would be erroneously categorized as cancerous (false positive), with a positive
predictive value (PPV) of 66%. The 20 malignant ovarian lesions would be incorrectly
considered benign due to lack of Cho detection (false negative), with a negative pre-
dictive value (NPV) of 57.4%. Although Lac provided better PPV and NPV, data were
available for only 25% of the patients. A model with both Lac and Cho, adjusting for
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age and static magnetic field strength B0, with a total of fifty patients, yielded the
best PPV, NPV and overall accuracy. Nevertheless, four of twenty-six patients with
benign ovarian lesions were still erroneously predicted to have ovarian cancer and four
of twenty-four patients with ovarian cancer were wrongly predicted to have benign
lesions. We concluded on the basis of this meta-analysis that in vivo MRS with the
FFT alongside fitting did not adequately distinguish malignant versus non-cancerous
ovarian lesions [52].

• More promising results from in vitro MRS for identifying ovarian cancer
Aswe systematically reviewed inRef. [52], via in vitroMRSutilizingmethods from

analytical chemistry with stronger static magnetic fields, more metabolic insight can
be garnered to identify cancerous versus benign ovarian lesions [118–121]. Moreover,
in human epithelial ovarian carcinoma cell lines compared to normal or immortalized
ovarian epithelial cells, the levels of the MR-visible metabolite and cancer biomarker
PC [81] were three- to eight-fold higher [122]. These findings further motivated our
investigations of how Padé-optimization ofMRS could contribute to improved ovarian
cancer diagnostics. We now proceed to the actual results of Padé-optimized MRS
applied to the four problem areas, starting with prostate cancer diagnostics.

5.2 The FPT applied toMRS time signals associated with normal glandular, normal
stromal and cancerous prostate

As noted,MRSdata from the prostate is a highly demanding signal processing problem
since the spectra are very dense, with abundant multiplets of resonances. The FPT was
first applied to noiseless MRS data similar to in vitro encoding from normal glandular
as well as normal stromal prostate and from prostate cancer [70]. With a very small
fraction of the full signal length, theFPT resolved all the physical resonances, including
multiplets andoverlapping peaks of differentmetabolites, yielding the exactmetabolite
concentrations to distinguish normal from cancerous prostate [2,40].

Recently [23,54], the convergence performance of the FPT was examined in detail
for MRS time signals reminiscent of FIDs encoded in Ref. [70] from prostate can-
cer and from normal glandular as well as normal stromal prostate. In Refs. [23,54],
comparisons were made between Fourier and Padé processing for noise-free and
noise-corrupted MRS time signals from the prostate. In-depth assessment was also
undertaken of how the FPT(+) and FPT(−) handle noise-corrupted MRS data from the
prostate [23].

• Construction of the MRS time signals associated with prostate cancer, normal
glandular and normal stromal prostate

Three FIDs were generated, corresponding to the MRS data encoded for prostate
cancer, normal glandular and normal stromal prostate. This was a sum of K = 27
damped complex exponentials einτωk (1 ≤ k ≤ K ) multiplied by their amplitudes dk .
The time signals from Ref. [70] were recorded at a Larmor frequency of 500 MHz
(static magnetic field strength B0 = 11.7T). Herein, a bandwidth (BW) of 6000 Hz
was used, with sampling time τ = 1/BW. The phases ϕk (1 ≤ k ≤ 27) of dk were
all set to zero, so that dk = |dk |. Note that for the illustrations in Figs. 2 and 3, the
resonances of Lac at 1.330 and at 4.120 ppm, as well as alanine (Ala) at 1.490 ppm and
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Argand plot (a), as Im(ν−

k,X ) versus Re(ν−
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coincidence (symbolized by �) for the spurious resonances and exact agreement of the input and the Padé-
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k | versus chemical shift (b), where
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magnitudes. Converged absorption components generated via the FPT(−) for noise-corrupted MRS time
signal (σ = 0.00514 RMS) corresponding to normal glandular prostate with NP = 1210 (c) and stromal
prostate NP = 1220 (d). The MRS time signals are similar to those encoded in Ref. [70] (color online)
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m-Ins at 4.07 ppm are not shown, since the displayed spectra herein are for the spectral
region of interest (SRI) between 2.45 and 3.75 ppm, where the other 23 resonances
are located [2,23,40].

5.2.1 Comparison of Padé and Fourier processing of MRS time signals from the
prostate

Comparing the resolution performance of the FPT on MRS time signals from the
prostate with that of the FFT is particularly helpful in illustrating why the yield of
MRS as well as MRSI in prostate cancer diagnostics has not yet been sufficiently
reliable to confidently inform clinical decision-making.

Figure 2 shows the results of processing noiseless MRS time signals [23] from
normal glandular prostate and prostate cancer, similar to the corresponding encoded
FIDs reported in Ref. [70]. Therein, we compare the FPT with the discrete Fourier
transform (DFT). Here, the employed partial signal lengths NP = 608, 632, 706 are
not of the composite form 2m (m being a positive integer), and this is the reason for
using the DFT instead of the FFT. As is well-known, in the FFT, the fast Tukey-Cooley
computational algorithm [1] employs the signal length N = 2m (m = 1, 2, 3, . . .),
which reduces the initial huge number multiplications (N 2), for N large, to a much
smaller number (N log2N ) of multiplications. The displayed chemical shift interval is
2.45–3.75 ppm. Shown on panel (a) of Fig. 2 are the DFT envelopes at partial signal
lengths NP = 608, 632 and 706, where the total signal length is N = 1024. Therein,
not only are all these Fourier spectra rudimentary, but a comparison of the green, black
and red curves reveals that at the three different partial signal lengths, the total shape
spectra have changed substantially. Most notably, the height of the creatine (Cr) peak
at around 3.0 ppm has markedly diminished at the longer signal lengths, and the ratio
of heights of the peaks corresponding to Cit, centered at around 2.5 and 2.7 ppm, have
changed, as well. Thus, it is clearly seen that no convergence is achieved through the
DFT for these partial signal lengths.

In sharp contrast, panel (b) of Fig. 2 reveals that at the same partial signal lengths
(NP = 608, 632, 706) within the same chemical shift interval, the FPT-generated
total shape spectra converged (the three lines for the said three values of NP are
indistinguishable). Therein, two Cit doublets centered at about 2.52 ppm (peaks ## 3
and 4) and 2.73 ppm (peaks ## 5 and 6) are clearly seen. Creatine, Cr, at 3.04 ppm
is a thin, smooth peak. There is also a hint of two PA peaks (## 8 and 9) at 3.10 and
3.14 ppm. The Cho peak (# 10) at about 3.2 ppm is well-defined. Serrated structures
(peaks ## 11–14) centered at 3.25 ppm can be observed, and these are followed by
a more rounded peak (# 15), and then scylloinositol (s-Ins) as peak # 16 is clearly
defined at 3.35 ppm. Further, the three triple serrated peaks centered at 3.43 ppm
(peaks ## 17–19), 3.55 ppm (peaks ## 20–22) and 3.64 ppm (peaks ## 23–25) are also
well-delineated and these would correspond to a Tau triplet and two m-Ins triplets,
respectively.

Notwithstanding the clarity of the converged total shape spectra, some uncertainties
still remain. However, these uncertainties are resolved by the converged component
spectra in the FPT. This is seen on panel (c) of Fig. 2 at the partial signal lengths
NP = 608, 632 and 706 for which the three sets of component curves are identical. It
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is confirmed that there are two Cit doublets, with a total of four individual resonances,
and that there is a partial overlap between peaks ## 3 and 4 and between peaks ##
5 and 6. The overlap between the PA peaks ## 8 and 9 is now clearly seen. The
dense region between 3.23 and 3.28 ppm is revealed from the component spectra to
be comprised of five overlapping resonances (## 11–15), including the small PC peak
(# 11), for which there is little or no suggestion from the total shape spectrum. At
the higher chemical shift region, s-Ins (# 16) is unequivocally observed as a single
resonance, also Tau (## 17–19) and the two m-Ins structures (## 20–22) and (## 23–
25) are unquestionably triplets, whose overlapping peaks are well-defined only via
the component shape spectra as reconstructed by parametric analysis provided by the
FPT. The general spectral pattern of the malignant prostate in panel (d) of Fig. 2 differs
noticeably from normal glandular prostate on panel (c). This is particularly seen in the
attenuation of the Cit doublets and the two PA resonances. In prostate cancer, the tCho
components at 3.21–3.24 ppm are prominent. Importantly, PC at 3.23 ppm (peak #
11) is much larger than its immediate neighbors that are Cho (peak # 10) at 3.210 ppm
and glycerophosphocholine (GPC) at 3.24 ppm (peak # 12). The middle components
of the two Tau triplets (peaks ## 14 and 18) are much taller in malignant prostate than
in the normal glandular prostate. The full names of the metabolites are given in the
list of abbreviations for this and subsequent figures.

5.2.2 Padé-based signal-noise separation for MRS time signals from the prostate

Signal-noise separation, SNS, for MRS time signals from the prostate is exceedingly
challenging. As noted, spectra from the prostate are very dense, with numerous multi-
plet resonances and closely overlapping peaks of different metabolites. In the presence
of noise, as encountered in clinical MR scanning, including organ motion in the pelvic
region, this problem becomes daunting. The capabilities of the FPT to reliably dis-
entangle the copious spurious resonances from genuine spectral structures were put
to a most stringent test. A full presentation of the performance of both variants, the
FPT(+) and FPT(−), in handling noise-corrupted MRS time signals similar to those
encoded from the prostate, can be found in Ref. [23]. Therein, using the FPT(±),

the genuine resonances were identified and precisely quantified, despite the inunda-
tion of the reconstructions with spurious content. Signal-noise separation is illustrated
in panels (a) and (b) of Fig. 3 for MRS data of the type of those encoded in Ref.
[70] for normal glandular prostate, with added noise σ = 0.00514 RMS (root mean
square). Here, the partial signal length is NP = 1210, whereas the full signal length
is N = 2048. Panel (a) displays the Argand plot, Im(ν−

k,X ) versus Re(ν−
k,X ), with

X = P and X = Q, for the chemical shift region between 2.45 and 3.70 ppm.
Therein, pole-zero coincidence of every spurious resonance is observed (symbolized
by �). Moreover, all the genuine poles are correctly reconstructed (as indicated by
⊗). Panel (b) of magnitudes |d−

k | (the absolute values of the amplitudes d−
k of all the

genuine resonances) versus chemical shift shows the exact reconstruction (denoted by
⊗). Recall that for zero-valued phase ϕ−

k of d−
k , i.e. for ϕ−

k = 0, we have d−
k = |d−

k |
from the definition d−

k = |d−
k | exp (iϕ−

k ). Notably, the very small magnitudes of PC
(peak # 11) at 3.23 ppm, and one of the Tau triplets (peak # 15) at 3.275 ppm were
accurately reconstructed, as were the retrieved magnitudes of all the other metabo-
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lites in the entire spectrum. The Tau triplet and two m-Ins triplets were also clearly
identified and quantified in the region between 3.33 and 3.63 ppm, despite several
spurious resonances in close proximity. All the spurious resonances are seen to have
zero magnitudes, and are symbolized as open circles (via ◦).

5.2.3 Component spectra retrieved by the FPT using noisy MRS data corresponding
to the prostate

The converged absorption component spectra are also shown in Fig. 3 for the noise-
corrupted time signals (σ = 0.00514 RMS) associated with normal glandular prostate
on panel (c) and normal stromal prostate on panel (d), as generated by the FPT(−) using
the FID sampled at N = 2048. The high resolution of the FPT(−) is evident, in that
convergence was achieved at short partial signal lengths NP = 1210 and NP = 1220
on panels (c) and (d), respectively. For the normal glandular case in panel (c), the
tallest structures are resonances ## 4 and 5 from Cit doublets near 2.5 and 2.75 ppm,
Cr (peak # 7) at ∼ 3.04 ppm and the very narrow Cho resonance # 10 at around
3.21 ppm. The two PA peaks (## 8 and 9) are also well delineated. A very small PC
peak # 11 is observed in the component spectra. Normal stromal prostate, as shown
on Fig. 3(d), also markedly differs from normal glandular prostate. The doublets of
Cit doublets are much smaller, as is the PA doublet. However, unlike prostate cancer,
the components of Cho are also considerably attenuated in normal stromal prostate.

5.2.4 Clinical relevance of prostate MRS data processed by the FPT

In Refs. [23,54], we applied the FPT for the first time to noise-corrupted MRS time
signals from the prostate. The capability of the FPT to handle this difficult quantifica-
tion problem (which has multiplets and other overlapping resonances) with very high
resolution and fidelity has been demonstrated. This provides full confidence to apply
the FPT to in vivo MRS time signals encoded from the prostate, with expectations
of improved diagnostic yield. The information obtained thereby is fully expected to
help clinicians tackle the numerous dilemmas that arise in decision-making during and
after treatment of prostate cancer [23]. There are many benefits of this research for
patients at high risk or afflicted with prostate cancer. Clearly, the anticipated increased
accuracy with which Padé-optimized MRS could identify patients with coexisting
prostate cancer and prostatic hypertrophy versus those with only the benign condition
would be a major benefit for both groups of patients. Confidence that prostate can-
cer is not present would be highly beneficial in that false-positive findings regarding
prostate cancer are well recognized to have adverse effects, including psychological
distress [123]. On the other hand, accurate and timely identification of prostate cancer
is generally considered to be associated with improved prognosis [58,59].

It should also be emphasized that there is a frequent need for volumetric coverage in
prostate cancer diagnostics. Thus, the higher resolution of the FPT for MRS becomes
even more critical forMRSI, since spectroscopic imaging measurements coupled with
3-dimensional spatial resolution must be done within a reasonable total acquisition
time to be clinically useful. Note that the FPT applies directly also to time signals from
MRSI. As mentioned, the difference between MRS and MRSI is in that the former is
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encoded on a single voxel, whereas the latter is the correspondingmulti-voxelmodality
which amounts to volumetric coverage. Recall, that whenever there is a suspicion that
a single voxel is not sufficiently representative of the status of the imaged tissue,MRSI
is used for the corresponding volumetric coverage.

We anticipate further and broader contributions of Padé-optimization of MRS and
MRSI to a more personalized approach for patients at risk or afflicted with prostate
cancer. Distinguishing high from low risk prostate cancer is one of the most critical
challenges. The role of MRS in active surveillance, within the “watchful waiting”
option, has been emphasized [124], with its non-invasiveness being an obvious advan-
tage over biopsy. In order to realize this potential, the precision offered by Padé-based
MRS and MRSI would be a vital contribution.

Optimization of MRS and MRSI through the FPT could also be used to more
confidently identify the best site(s) for prostate biopsy. Pre-surgical staging, radiation
treatment planning, particularly identification of the sites for a boost dose, could be
more precisely determined (target definition), with better sparing of the surrounding
normal tissues. Other applications of MRS and MRSI for prostate cancer, such as
detection of extracapsular extension, selecting treatment modality as well as timing
and assessing tumor regression versus recurrence after treatment [63–65,125] are also
expected to be much more effective with the accuracy provided by the FPT.

5.3 The FPT applied to noisy MRS time signals from breast cancer

Wewill herein summarize the results of our investigations [24,47,54] applying the FPT
to synthesized noise-corrupted MRS time signals, based upon encoded in vitro data
from extracted breast cancer specimens [80]. In Fig. 4, we recapitulate the procedure of
signal processing. The input data are comprised of simulated, noise-corrupted complex
time signals, the real part of which is shown on panel (a). The corresponding imaginary
part (not shown to avoid clutter) is similar. This time signal is associatedwith the breast
cancer specimen.Gaussian randomzero-meanwhite noisewas addedwith the standard
deviation σ = 0.0289 RMS.

Most importantly, it should be noted that metabolic content of this cancerous breast
tissue is all contained within the input MRS time signal. However, this information
cannot be visualized without mapping the time signal into the frequency domain, so
that a spectrum can be constructed. This mapping through mathematical transforms
is permitted, since time and frequency constitute a pair of “conjugate variables”.

5.3.1 Construction of the MRS time signals related to breast cancer

Using Eq. (2.1), we constructed the simulated FID corresponding to the MRS time
signals encoded for breast cancer [80]. The time signal was comprised of K = 9
damped complex exponentials exp (iτωk) multiplied by stationary amplitudes {dk},
with |dk | = Ck/Cref where Ck is the concentration of the k th metabolite and Cref is
the reference concentration, Cref = 0.05 mM/g. The input data for the magnitudes
{|dk |} were derived from the k th median concentrations expressed in μ M/g of wet
weight (ww) of metabolites, as reported in Ref. [80]. Further, in Ref. [80], the MRS
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time signals of length N = 65536 (64 kB) were recorded at a Larmor frequency
νL =600 MHz corresponding to a static magnetic field strength B0 = 14.1T. The
used bandwidth is BW=6 kHz. The linewidths were set to be 0.0008 ppm. The peaks
in the spectrum were Lorentzians. The phases ϕk(1 ≤ k ≤ 9) from generally complex
amplitudes were all set to zero, so that dk = |dk | [24,47,54].

Note that here, in the illustrations, Lac and Ala are not shown, since their resonant
frequencies are 1.332 and 1.471 ppm, respectively, while the spectra in Fig. 4 are
for the SRI between 3.2 and 3.3 ppm, where the other seven metabolites are located
[2,24,41,47].

5.3.2 Comparison of the performance of the FFT and FPT for breast cancer MRS data

Comparing the performance of FFT with the FPT for noise-corrupted data associated
with breast cancer clearly demonstrates the superior resolution capacity of the FPT
relative to the FFT under the same conditions [21,24,45,47]. It is via the FFT that
mapping from the time to the frequency representation is performed automatically in
MR scanners. Consequently, FIDs such as that in panel (a) are not even viewed. In
panel (b) of Fig. 4, the FFT spectrum is shown at the full signal length N = 2048,
where it is comprised of crude peaks and a jagged baseline, from which no diagnostic
conclusion could be drawn.

In panel (c), the converged total shape spectrum is generated via the FPT at NP =
1700 from which six peaks can be identified at their correct chemical shift locations.
Already from the heights of these peaks, substantial information can be extracted
concerning the relative concentrations of several metabolites including some of the
components of tCho. This information is provided by the FPT at a very short signal
length, while the FFT would need a 32 times longer signal (32 × 2048 = 65536,
corresponding to 64 kB) to produce a spectrum such as that from the FPT on panel (c).

The converged envelope shown in panel (c) of Fig. 4 is the most that the FFT could
ever generate at 64 kB, insofar as conditions were optimal, namely high magnetic field
strength, ideal coil design, maximum care taken to properly encode the time signals,
with excellent shimming and other technical aspects. In particular, from the envelopes
due to both the FFT and FPT on panels (b) and (c), respectively, in the chemical shift
region between 3.2 and 3.3 ppm, there is no clue that PC lies therein, i.e. that there
is a PC peak buried under the much larger phosphoethanolamine (PE) resonance, as
shown in the Padé component shape spectra of panel (d).

5.3.3 Signal-noise-separation by the FPT for MRS data from breast cancer

For simulated noiseless data associatedwith breast cancer, as per encoding inRef. [80],
convergence was achieved at a partial signal length NP = 1500, such that some 741
spurious resonances were generated [2,41]. With added random noise of σ = 0.0289
RMS, a bit longer partial signal length was needed (NP = 1700) [24]. Consequently,
therewere 841, i.e. 100more spurious resonances. In order to distinguish these copious
non-physical resonances from the genuine metabolites, all facets of the SNS were
utilized, i.e. pole-zero coincidence, zero amplitude as well as instability with change
in noise level and/or with varying truncations of the total acquisition time, T .
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The SNS process is illustrated in panels (e), (f) and (h) of Fig. 4 for the chemical
shift region between 3.16 and 3.34 ppm. Slightly wider chemical shifts are used in
panels (e), (f) and (h) to display more spurious resonances. In panels (e) and (f) to
obviate clutter, the full width at half maximum (FWHM) is doubled at the location
of PC at 3.220 ppm, with PC denoted as PC*. A question could arise for the near
zero peak height and pole-zero proximity of Cho (peak # 3), but its complete stability
with a tenfold increase in noise level on panel (f) relative to panel (e) firmly indicates
that this is a genuine metabolite. In sharp contrast, the spurious resonances exhibited
not only zero peak heights and pole-zero coincidence, but also marked change in their
FWHMwith the tenfold increase in noise levels by reference to panels (e) and (f). Thus,
stability is key for full confidence in distinguishing true from false resonances. Overall,
through the Padé-based SNS procedure, the genuine metabolites comprising barely
1% of the generated resonances were not only identified, but also exactly quantified.
The latter include the strongly overlapping PE and PC resonances.

5.3.4 The FPT identifies and quantifies phosphocholine as the prime breast cancer
biomarker

The FPT can go beyond tCho, identifying and quantifying the breast cancer biomarker
PC. As shown in Refs. [2,24,41,47], PC was unequivocally identified and its concen-
tration computed exactly through the parametric FPT(+) with the presence of random
noise of σ = 0.0289 RMS. The FPT(+) also accomplished this task for breast data
with 100 times higher noise levels (σ = 2.89 RMS) [24]. Panel (g) of Fig. 4 displays a
metabolite map for the exactly Padé-reconstructed concentrations (as symbolized by
⊗), within the chemical shift region between 3.2 and 3.3 ppm on the abscissa. Here,
the ordinate is metabolite concentration. In addition to the graphic representation via
the symbols of open circles, the corresponding retrieved numerical data are also listed
next to each of the seven metabolites. Therein lie seven genuine metabolites, including
PC which resonates at nearly the same chemical shift (3.220 ppm) as PE (3.221 ppm).

In this analysis, we have considered diagnostically informative metabolites whose
concentrations are exactly computed via the FPT. Besides the breast cancer biomarker
PC, these concentrations also refer to β−Glc [126], Tau (a possible biomarker of
apoptosis) [127] and m-Ins (a rapidly-decaying metabolite that may help identify
fibroadenomas) [42,128], as well as Lac [42]. Padé optimization opens many possibil-
ities for multi-variate exploration to identify metabolite patterns that best characterize
various types and grades of breast cancer and distinguish these from benign breast
pathology that often pose differential diagnostic dilemmas.

5.3.5 Visualization of PC in partitioned envelopes from the non-parametric FPT

Recently,we introduced and tested a newprocedure for visualizing hidden components
of envelopes non-parametrically through the partitioned spectra [3,4]. The pertinent
mathematical features are briefly presented in the theory section. Heretofore, in all the
studies applying the FPT to process MRS data associated with breast cancer, it was
exclusively through parametric processing that the PC resonance could be identified.
As indicated, from an inspection of the absorption total shape spectrum provided by
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the non-parametric FPT, the smooth peak at∼ 3.22 ppm gives no hint whatsoever that
there might be a PC peak beneath the far more abundant PE resonance, as per Fig. 4(c)
and the top panel of Fig. 5.

We have noted that the key advantage of the FPT, as a quotient of two polynomials
PK /QK , is its automatically included polar representation.We thus raised the question
as to whether more information could be gleaned via the non-parametric FPT applied
to MRS time signals than has heretofore been the case. Namely, would it be possible
to further explore the additional degree of freedom via the two polynomials of the
FPT relative to the single polynomial of the FFT vis-à-vis reconstruction of spectral
envelopes alone?

With or without spectra partitioning, the non-parametric analysis through the
FPT(±) is the necessary initial step for processing MRS time signals. This step gener-
ates the expansion coefficients {p±

r } and {q±
s } of the Padé polynomials P±

K and Q±
K ,

respectively. Therefore, the total shape spectra or envelopes P±
K /Q±

K can immedi-
ately be computed at any desired set of the sweep frequencies, not just those from the
Fourier grid, 2πk/T (k = 0, 1, 2, . . . , N −1). The polynomial expansion coefficients
are reconstructed directly from the input time signal {cn}. The non-parametric signal
processing by the FPT(±) requires no polynomial rooting and, thus, no solving of the
MRS quantification problem.

Within the concept of partitioning, the mentioned additional degree of freedom
in the non-parametric complex spectrum PK /QK consists of an alternative way of
computingRe(PK /QK ) and Im(PK /QK ).Conventionally, for dk = |dk |withϕk = 0,
these latter absorption and dispersion spectra are obtained directly from the computer
using the complex-valued entry PK /QK . Alternatively, the analytical expression for
e.g. Re(PK /QK ) can be derived first in the form of two partitioned spectra, AK and
BK . Similarly, the analytical expression for Im(PK /QK ) also contains its own two
partitioned spectra, CK and DK . The sum of the partitioned spectra AK and BK is
the complete absorption spectrum, AK + BK = Re(PK /QK ). Likewise, when the
partitioned spectra CK and DK are added together, the complete dispersion spectrum
CK +DK = Im(PK /QK ) is obtained. Thus, our nomenclature is to call Re(PK /QK )

the complete absorptive envelope when generated by way of the sum AK +BK .By the
same token, Im(PK /QK ) is termed the complete dispersive envelope if it is obtained
from the sum CK + DK . It is the analytical expressions for AK , BK ,CK and DK that
we feed separately into the computer. The ensuing numerical results are graphed to
visualize the partitioned absorption envelopes AK and BK , as well as the partitioned
dispersion envelopes CK and DK . The partitions AK and BK in Re(PK /QK ) as well
asCK and DK in Im(PK /QK ) redistribute the interference effect. It is the interference
of AK and BK in AK + BK that prevents splitting of adjacent overlapping resonances.
In a rearranged interference followed by plotting AK and BK separately, the individual
resonances have a chance to “pop up” and, thus, split apart the compound peaks in
AK +BK .Therefore, we computed the partitioned envelope spectra from AK , BK ,CK

and DK . As a check, the results for the complete absorption partition AK + BK and
the complete dispersion partition CK + DK must be shown to coincide with the
conventional absorption Re(PK /QK ) and the conventional dispersion Im(PK /QK )

envelopes, respectively.
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Figure 5 displays the partitioned and non-partitioned absorption envelopes com-
puted non-parametrically in the FPT(+). All the reconstructions are performed using
a partial signal length NP = 6000 (K = 3000) of the full signal length N = 16384.
This N itself is only a quarter of its encoded counterpart from Ref. [80]. Along the
abscissae of each panel are the input chemical shifts in the spectral region between
3.205 and 3.290 ppm. These are symbolized by circles that are mainly open and shown
in black. The two exceptions with the filled green and magenta circles relate to PC and
PE, respectively. The colored filling is shown only when the PC and PE lineshapes are
peaked practically at their correct locations 3.220 and 3.221 ppm, respectively. This
is the case in panels (b) and (c), where PC and PE are separately visualized, although
both circles are not simultaneously filled. Therein, the PC and PE peaks are centered
almost precisely at 3.220 and 3.221 ppm only on panels (b) and (c), respectively. For
this reason, panels (b) and (c) each have only one filled circle. On panel (b), the PE
peak is slightly shifted to the left from the associated input fundamental frequency
3.221 ppm, and its circle if left unfilled. Similarly, on panel (c), the PC peak is slightly
shifted to the right of its exact location at 3.220 ppm, and the open circle is seen therein.
However, on panel (d), both circles for PC and PE are filled, since therein the entire
partitioned spectra from panels (b) and (c) are displayed together. Panel (b) shows the
partial envelope spectrum for A+

K . Therein, PC and PE are clearly distinguished as
two separate peaks of fairly comparable heights, and the five other resonances are also
identified. Panel (c) exhibits the partitioned envelope spectrum for B+

K . Here, once
again, PC and PE are clearly seen to be two separate, adjacent peaks, with PE being
more prominent than PC.

Further, taurine and β−Glc showmuch smaller peak heights in the partial envelope
spectrum for B+

K compared to that for A+
K . These latter two partial envelope spectra

are displayed jointly in panel (d), with the same color coding as in panels (b) and (c):
green for A+

K and magenta for B+
K . In addition, shown on panel (d) is the summed

envelope A+
K + B+

K , indicated in black, where only a single compound peak PC + PE
can be identified in the interval [3.220, 3.221] ppm. It can be seen on panel (a), that
the complete absorption envelope A+

K + B+
K is indistinguishable from the related non-

partitioned absorption envelope Re(P+
K /Q+

K ), both of which display a symmetrical
and smooth single Lorentzian peak in the range [3.220, 3.221] ppm, without any
indication whatsoever that more than one peak may be present therein.

The most notable feature of the absorption spectra displayed in Fig. 5 is that the
PC and PE peaks appearing in both partitions A+

K and B+
K are so well delineated that

the dips between them descend all the way down to the background or baseline of
zero-valued ordinates. On panel (b), it appears as if A+

K were in need to push PE a bit
upstream in order to place PC at its correct position, 3.220 ppm. Likewise, on panel
(c), it is seen that B+

K acts as if it were necessary to push PC a bit downstream so that
PE could be centered at the corresponding correct location, 3.221 ppm. These slight
dislocations in PE or PC within A+

K or B+
K on panels (b) or (c) are due to the minimal

distance ofmerely 0.001ppmbetween the input chemical shifts of 3.220 and3.221ppm
of PC and PE, respectively. Moreover, such an incremental separation of 0.001 ppm
between the two values of chemical shift, Re(νk), for PC andPE is smaller than the sum
0.0016 ppm of their associated individual values of Im(νk). All the resonances have
the same exceedingly small values for Im(νk) that are Im(νk) = 0.0008 ppm. Given
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that the imaginary frequency Im(νk) is the measure of the breadth of an absorptive
Lorentzian resonance, it is understandable why the individuality of PC and PE is
masked under the combined PC and PE peak on panel (a) of Fig. 5.

Detailed analysis in Refs. [3,4] confirmed the trustworthiness of this partitioning
procedure by reference to the Padé parametric processing. The latter estimation is
the gold standard which not only visually separates the overlapping peaks, but also
performs their exact quantification. These findings have a clear intrinsic significance
for signal processing. At the same time, they possess a practical importance. Namely,
partitioning would be a convenient initial, qualitative “screening” step (in the sense of
pre-processing) to assesswhether or not the cancer biomarker PC is identifiably present
or absent. Subsequently, the retrieval of the physical peak positions, widths, heights
and phases would follow in two totally different, cross-checking ways via parametric
and non-parametric Padé estimations. In the customary parametric FPT for explicitly
solving the quantification problem, one can have a special focus upon those cases
in which PC was identified firstly by non-parametric partitioned envelopes. On the
other hand, the dFPT deals exclusively with non-parametrically computed envelopes,
to which the higher-order derivative transforms are applied, yielding the exact peak
positions, widths, heights and phases of all the genuine resonance. On the basis of the
obtained concordant quantitative results, from these two complementary procedures
(parametric/non-derivative and non-parametric/derivative), it would be important to
apply such a multi-faceted Padé methodology to in vivo data, aimed at validation of
partitioned spectra for breast cancer diagnostics, and beyond.

5.3.6 Exact quantification by non-parametric derivative envelopes in the dFPT

The salient features of the dFPT have been illustrated for noiseless and noisy time
signals reminiscent of data encoded by in vitro MRS from excised breast cancer tissue
[5–7]. In breast tumor diagnostics via MRS reliable identification and quantification
of PC is a very demanding task for any non-parametric signal processor. This occurs
because the PC resonance is completely invisible in customary zeroth-order (m = 0)
derivative envelopes due to the dominant adjacent resonance of phosphoethanolamine,
PE. Recall that the PC-to-PE chemical shift separation is only 0.001 ppm. These
latter two metabolites sharply differ in abundance. Their respective concentrations are
CPC = 0.3 and CPE = 2.25μM/g of wet weight, ww, of the scanned tissue. The
dFPT successfully solves this problem by clearly identifying and quantifying all the
genuine resonances, including that of PC. Thereby, on the same screen, not only is
the PC-PE separation visualized and exactly quantified, but so are the concentrations
of these two metabolites, alongside the corresponding numerical parameters for all
the other molecules. Thus, the higher-order differentiation transform, when used in
conjunction with the dFPT simultaneously achieves resolution enhancement, noise
suppression and exact quantification, despite explicit non-parametric processing of
envelope lineshapes alone (i.e. without solving the quantification problem at all). This
high resolution implies higher specificity of dMRS relative to MRS, which, in itself,
is already more specific than MRI.

These results are illustrated in Figs. 6 and 7 for an extended and narrow frequency
range, respectively. Both Figs. 6 and 7 consider the same noisy time signal (with added
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white noise of σ = 0.0289 RMS) used in Figs. 4 and 5, as generated on the basis
of the corresponding encoded FID from Ref. [80]. The spectral envelopes from non-
parametric, non-derivative FPT in the absorptionmode are shown on panels (a) and (b)
of Fig. 6 in two different frequency intervals, where Lac peak on panel (b) appears as
the largest resonance. On panel (a), all the isolated resonances (Cho at 3.21 ppm, GPC
at 3.23 ppm, β−Glc at 3.25 ppm, Tau at 3.27 ppm and m-Ins at 3.28 ppm) are clearly
resolved and correctly quantified by the FPT. However, the Lorentzian absorption
lineshape (i.e. completely symmetrical) at 3.22 ppm gives no hint that there is a PC
peak underlying PE. Panel (c) is the magnitude of the 6th derivative of the complex
envelope in the dFPT, with a rightward bulge near 3.220 ppm suggesting the presence
of PC. All the singlet resonances are exactly reconstructed and the baseline is flattened,
especially when juxtaposed to panel (a). At two high-order derivatives, m = 24 and
m = 50 on panels (d) and (e), respectively, in addition to all the singlet resonances,
it is observed that also PC and PE are completely resolved and exactly quantified.
The extremely narrow symmetric Lorentzian peaks (from their tips to bottoms) in the
magnitudes of the m th derivative complex envelopes for m = 24 and m = 50 solve a
practical problem encountered with conventional non-derivative (m = 0) lineshapes.
Namely, extended Lorentzian tails mask adjacent and even distant spectral structures
of potentially informative content. This is recognized as the “leakage problem” in
MRS. The high-order derivative envelopes circumvent this problem by nullifying the
tails and exactly determining the peak areas, thus yielding the correct concentrations.

In sharp contrast to the noise suppression achieved by the dFPT, the derivative
fast Fourier transform, dFFT, hugely amplifies noise even at low differentiation order
m, such that all genuine information is lost, as seen on panel (f) in Fig. 6. This is
because the dFFT processes the product of the power function tm with the time signal
c(t), where tm (m = 1, 2, 3, . . .) puts higher weight on the later time signal points,
dominated by noise.

Figure 7 zooms into the region [3.219, 3.222] ppm containing only PE and PC. On
panel (a) of Fig. 7, the non-derivative, non-parametric FPT (m = 0) gives a broad peak
where PC is completely hidden (blue). Here, the components from the parametric FPT
are in red. On panel (e) of Fig. 7, the dashed line displays the 6th derivative envelope
with narrower lineshapes and a rightward bulge corresponding toPC.The full line is the
50th derivative envelope, where PC and PE are fully separated and their peak heights
exactly quantified. Panels (b–d) and (f–h) of Fig. 7 compare the parametric dFPT
(red) and non-parametric dFPT (blue). With increased derivative order m, the non-
parametric dFPT for envelopes exactly reconstructs the components of the parametric
dFPT, as seen for m = 24 and m = 48 on panels (g) and (h), respectively. The peak
signatures (positions, heights, widths) reconstructed by the non-parametric dFPT in
the magnitude mode of any derivative order m > 0 are uniquely related to their
absorptive parametric counterparts from the parametric FPT (m = 0) [6,7]. This is
critical as it permits straightforward interpretation and extraction of peak areas and
associated metabolite concentrations from the dFPT. This demonstrates that in the
controlled setting, the higher order non-parametric dFPT is a stand-alone, streamlined
method for clear display with identification and exact quantification of key metabolic
information, including that for PC [5–7].

123



434 Journal of Mathematical Chemistry (2019) 57:385–464

5.4 Applications of the FPT to MRS time signals from the brain

5.4.1 Initial proof-of-principle studies on brain MRS

Extensive controlled studies [2,31,32,35,129] have been performed applying the FPT
to synthesized MRS time signals typical of those encoded in vivo from the brain of a
healthy volunteer at 1.5T [130]. Therein, the input set of some 100 spectral parameters
(4 real-valued entries per resonance) was reconstructed fromwhich the concentrations
of 25 metabolites were accurately computed. Metabolites were included for which
chemical shifts differed only by 0.001 ppm. It was demonstrated that even the closest
of overlapping resonances can be precisely quantified by the FPT. The SNS procedure
was also effectively carried out through the FPT(+) and FPT(−) on simulated noiseless
and noise-corrupted MRS time signals similar to those encoded from normal human
brain [2,31,32,35,50,51].

In the more recent proof-of-concept study [37], the FPT(+) was applied to MRS
time signals encoded from the standard GE phantom head on a 1.5T MR scanner. Six
among the major metabolites, i.e. NAA, glutamate (Glu), Cr, Cho, m-Ins and Lac that
are also detectable via MRS scans of in vivo human brain were contained in the phan-
tom head. Using the parametric FPT(+), fully accurate quantification was achieved.
We scrutinized the convergence process to verify the stability of the reconstructed
spectral parameters. Through “parameter averaging”, it was shown that the recon-
structed complex-valued fundamental frequencies {ν+

k } and amplitudes {d+
k } were

accurately determined. This was the case even for dense spectral regions, where small
and/or very closely overlapping resonances were located. Such results justified apply-
ing Padé-optimizedMRS to encoded in vivo data within neuro-oncology, as discussed
next.

5.4.2 Padé processing of in vivoMRS time signals encoded from healthy human brain

• High resolution of the FPT in reconstructing total shape spectra
Several of our early investigations applying the FPT were performed on MRS time

signals encoded in vivo [1,2,30,33,34,131]. These initial studies analyzed FIDs from
normal healthy brain, and were carried out on high field MR scanners (4 and 7T).
Comparisons with the FFT revealed a markedly superior performance of the FPT in
generating fully converged total shape spectra [1,2,30,33,34].Notably, theFPT showed
better resolution than the FFT for the same signal length. Moreover, the FPT could
attain the same resolution as the FFT by utilizing twice shorter signals. These findings
were noted to be particularly important for MRSI. Self-contained error analysis was
demonstrated using the two FPT variants, the FPT(+) and FPT(−), whereby their
difference was on the level of background noise [131].

• Practical implementation of SNS using data from a clinical scanner at 1.5T
In a subsequent study carried out on a 1.5T scanner [36], by adding noise to the

already noisy MRS time signal, signal-noise-separation, SNS, was achieved. Namely,
the FID was corrupted by adding random zero-mean 5% Gaussian white noise. Good
statistics were achieved via 50 distinct realizations of this noise by altering the input
seed numbers to the computer generator of random numbers, yielding 50 noisy FIDs
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of the same type, but comprised of different random numbers. When these differ-
ent noisy sets were added to the original MRS time signal, 50 noise-corrupted time
signals were generated. Each FID was subjected to parametric analysis by the FPT,
with reconstruction of 50 sets of frequencies and amplitudes. When the fundamental
frequencies and amplitudes were nearly the same for all the 50 FIDs, this binned the
reconstructions as genuine. Concordantly, all the retrieved unstable spectral param-
eters were associated with spurious resonances. Via this procedure, some 23 stable
resonances were identified from the in vivo encoded MRS time signals [36]. Further
parametric analysis by the FPT has been performed by other investigators on in vivo
encodedMRS data from healthy human brain in Refs. [132–135]. Two of these studies
are PhD Theses [133,134].

5.4.3 The FPT applied to encoded in vivo MRS time signals: pediatric brain tumor and
cerebral asphyxia

More recently, the FPT has been used to process MRS time signals encoded in vivo
on a 1.5T MR scanner from a child with a brainstem glioma [8] and from a child
who had suffered cerebral asphyxia [9,49]. Therein, through the FPT, closely over-
lapping resonances, including cancer biomarkers [8,9,49], were successfully resolved
and quantified. As noted, the choice of these clinical problems is of utmost impor-
tance for PCM. Specifically, this refers to distinguishing non-tumorous cerebral
hypoxia/ischemia from brain tumors, which also often contain hypoxic regions that
promote genomic instability and are associated with the invasive/metastatic process.

At the shortest echo time (TE) for which spectra are most dense, the FPT(−)

resolved the abundant overlapping resonances, including short-lived metabolites such
as m-Ins. By activating protein C kinase, it occurs that m-Ins causes production of
proteolytic enzymes and, therefore, it has been considered to be associated with
brain tumors. Heretofore, however, uncertainties associated with the use of short TEs
have rendered conclusions tenuous concerning the diagnostic significance of m-Ins.
Closely-overlapping resonances were also resolved by the FPT(−), such as NAA, Glu
and N-Acetylaspartylglutamic acid (NAAG) centered near 2.04 ppm, Cr and phos-
phocreatine (PCr) at ∼ 3.0 ppm as well as free Cho and PC at ∼ 3.2 ppm. Thus far,
cancer biomarker PC has not been detected by the FFTwith in vivo protonMRS of the
brain, or elsewhere, as noted, due to close overlap with the neighboring resonances.

• Successful strategies for handling the residual of the giant water resonance
A major problem with MRS data encoded from clinical 1.5T scanners is the

large residual water resonance. We initially introduced an information-preserving
windowing procedure via a step function using the non-parametric FPT to suppress
residual water. A new time signal was generated by inverting the windowed spectrum.
Importantly, the components within the SRI were not affected. Some expected shape
distortions at the edges, outside the SRI, were inconsequential [8]. These findings are
illustrated in Fig. 8, where panels (a) and (b) display the real and imaginary parts,
respectively, of the raw time signal encoded at TE = 136 ms from the patient with a
glioma. This FID was subsequently corrected by the zero-order phase ϕ0 = − 2.2220
rad, where “rad” denotes radian. The water residual is unsuppressed in these FIDs,
such that the wave forms are asymmetrical around the abscissae. The real and imagi-
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Fig. 8 The real (a) and imaginary (b) parts of the FID, {cn}, encoded in vivo on a 1.5T scanner (corrected
for zero-order phase ϕ0 = −2.2220 rad) from a brainstem glioma in a 4 year old patient at TE = 136
ms, with 512 data points. Water residual distorts these wave forms. Real (c) and imaginary (d) parts of
the reconstructed FID with a box window suppression of the water residual. Therein, the wave forms are
regularized and seen as being symmetric around the abscissae. The real part of the complex envelope
reconstructed by the non-parametric FPT(−) (e) from the encoded FID. The real part of the envelope
computed by the non-parametric FPT(−) from the reconstructed FID (f) (color online)
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nary parts of the complex reconstructed FID, {cn}, on panels (c) and (d), respectively,
are seen as being regularized around the abscissae. From these encoded and recon-
structed FIDs, the real part of the total shape spectrum is displayed on panels (e) and
(f), respectively, as generated by the non-parametric FPT(−). In panel (e), the real
part of the total shape spectrum is presented, as reconstructed by the non-parametric
FPT(−) from the FID without suppression of residual water. The total shape spectra
in panels (e) and (f) are identical in the SRI between ∼ 0.5 and 4.0 ppm. At the edges
outside the SRI, some anticipated, but non-essential discrepancies can be observed,
as stated. For further insight, see also panel (c) of Fig. 9, where these two curves are
overlain (green: residual water unsuppressed, blue: residual water suppressed). The
same Padé envelope from panel (f) of Fig. 8 has also been reconstructed by parametric
processing in the FPT(−).

Overall, complete equivalence of the total shape spectra generated non-
parametrically and parametrically in the FPT was confirmed within the SRI. Hav-
ing this confirmation, we subsequently applied the parametric FPT [9] using only the
components with chemical shifts from the SRI chosen to avoid the residual water res-
onance. In this way, computing the parametrically generated envelopes via P+

K /Q+
K

by utilizing the Heaviside partial fraction sum from Eq. (2.19), the water residual
suppression problem could be entirely solved without any windowing.

• Practical importance of suppressing spectral structures around water residual
Whether via the CHEmical Shift Selective (CHESS) pulses, inversion recovery,

”Water suppression through the enhanced T1 effects” (WET), or other techniques
for suppressing water during the encoding, a huge water residual still remains. The
originally giant water resonance (∼ 10000 times larger than any other resonance) is
explained by the fact that tissue contains∼ 70%water.With Fourier-based processing,
the procedure for handling residual water is usually via the HLSVD whereby the
residual water structures are partially suppressed by fitting them to 3–10 unphysical
resonances. As a consequence, theHLSVDprocedure introduces spuriousness into the
spectral analysis. We have now confirmed that the best strategy is via the expounded
parametric FPT. Thereby, the spectral region of interest, SRI, can be chosen to bypass
the giant water resonance, automatically generating spectral envelopes (using only the
components from the SRI) without the need for windowing. This solves yet another
important stumbling block for wider clinical applications of in vivo MRS using the
FPT.

• High resolution of the FPT in reconstructing envelopes and their components
In Fig. 9, we continue with analysis of the processing of the FID encoded from the

patient with a brainstem glioma. Therein we present the real parts of the total shape
spectrum in the frequency window between 0.75 and 4.25 ppm, as reconstructed by
the non-parametric FPT(−) and the FFT on panels (a) and (b), respectively, at TE =
136 ms, employing the full signal length N = 512 with the residual water content
retained.

As is typical of brain tumors, the peak at ∼ 3.2 ppm, corresponding to Cho plus
PC, is notably larger than the peaks centered at ∼ 2.0 ppm, assigned to NAA, and at
∼ 3.0 ppm associated with Cr plus PCr. However, with the FFT, the peaks at ∼ 3.0
and 3.2 ppm are severely blunted, as are most of the structures in the chemical shift
region to the left of the Cho plus PC peak.
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Fig. 9 Shown on (a) and (b) are the real parts of the complex envelopes reconstructed by the non-parametric
FPT(−) and the FFT, respectively, from the encoded, water-unsuppressed FID, as per Fig. 8. On (c), we
display the real parts of the envelopes generated by the non-parametric FPT(−) without residual water
suppression (green curve) and from the reconstructed FID with suppressed water (blue curve). The real part
of the Usual and Ersatz component spectra are on (d) and (e), respectively, computed by the parametric
FPT(−) from the reconstructed FID with residual water suppressed (color online)

123



Journal of Mathematical Chemistry (2019) 57:385–464 439

Besides the superior resolution of the FPT(−) in computing the total shape spectrum,
further insights are provided by the Padé parametric analysis from which the Usual
and Ersatz spectra on panels (d) and (e), respectively, are reconstructed (with residual
water suppressed). In panel (d), the amplitudes {d−

k } are all complex-valuedbecause the
reconstructed amplitude phases {ϕ−

k } are non-zero as are the phases {ϕk} in the encoded
FIDs. Consequently, there is an admixture of absorption and dispersion components,
especially in the spectrally dense region from∼ 3 to∼ 4.3 ppm. The small Lac doublet
at ∼ 1.3 ppm is seen on panels (c) and (d) to be inverted below the baseline (180◦ out
of phase) due to J−coupling.

The Ersatz component spectra are helpful for recognizing closely overlapping reso-
nances, such as Cho and PC at ∼ 3.2 ppm, as well as NAA, NAAG and gamma amino
butyric acid (GABA) at∼ 2.0 ppm and the abundant resonances in the crowded region
from 3.8 to 4.2 ppm. Note, however, that insofar as the phases are non-zero, which is
most often the case, the interference effects must be considered, such that the Usual
components with complex amplitudes should be employed to compute metabolite
concentrations.

• Spectra averaging as a successful strategy for separating signal from noise with
in vivo encoded MRS

For in vivo MRS, large noise-like spikes often appear when model order K is
changed, as noted. We developed an averaging procedure with the aim of regularizing
spectra. The average envelope versus frequency can be viewed as analogous to “sig-
nal averaging” done in the time domain to enhance SNR. Advantageously, however,
spectra averaging can be repeated any number of times due to efficient reconstructions
in the FPT once the encoding has been completed. This is in sharp contrast to sig-
nal averaging, where repetition will lengthen the patients’ examination time, whose
existing length is already one of the main drawbacks in encoding by MRS.

We use a sequence of values of the model order K to produce the 1st average
envelope (by way of the arithmetic average). Via the inverse fast Fourier transform
(IFFT) or the inverse discrete Fourier transform (IDFT), depending on whether N is
2m(m = 0, 1, 2, . . .) or not, the complex average envelope is inverted. A reconstructed
FID is thereby produced, which is then subjected to the FPT to generate the next set of
envelopes for the same sequence of values of K as considered in the previous iteration.

In Fig. 10, the various effects of spectra averaging are illustrated for the FIDs
encoded in vivo on a 1.5T scanner from the pediatric patient who had suffered cerebral
asphyxia [9]. The real and imaginary parts of the encoded FID in panels (a) and (b),
respectively, are asymmetric around the abscissae due to the large residual water
peak. The phase correction of the encoded FID is ϕ0 = 1.7499 rad. Panels (c) and
(d) display the real and imaginary parts, respectively, of the FID created by the IFFT-
based inversion of the complex 1st average envelope. In the reconstructed time signal,
the phase correction ϕ0 = 1.7499 rad of the encoded FID is preserved. The residual
water resonance at 4.61 ppm is above the SRI, and thus has been excluded from the
reconstructed FID. Consequently, there is full regularization of the FIDs on panels (c)
and (d), i.e. they are now symmetrical around the abscissae, as was the case in panels
(c) and (d) of Fig. 8. In panel (e), the first set of iterates is displayed, with the real
parts of 31 Usual envelopes Re(P+

K /Q+
K )U for K = 385, 386, . . . , 415 from the FID
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Fig. 10 The real (a) and imaginary (b) parts of the FID, {cn}, encoded in vivo on a 1.5T scanner (corrected
for zero-order phase ϕ0 = 1.7499 rad at TE = 272 ms, with 512 data point) from the parietal temporal brain
region in an 18 month old patient with cerebral asphyxia. Water residual distorts these wave forms. The real
(c) and imaginary (d) parts of the FID are given by the inverted complex 1st average envelope in the SRI
between 0.75 and 4.5 ppm. The resonance frequency of water is at 4.61 ppm and is excluded from the SRI.
Therein, both parts of the FID reconstructed by the parametric FPT(+) are regularized, and symmetrically
distributed around the abscissae. The real parts Re(P+

K /Q+
K )U of 31 Usual complex envelopes plotted

on (e) for K = 385(1)415 from the FID depicted in (a) and (b). Numerous spikes are observed. The
associated 31 complex envelopes Re(P+

K /Q+
K )U are averaged and denoted by Re(FPT(+))UAv whose real

part is displayed on (f) (color online)
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encoded with 512 data points and subsequently doubled in its length by zero-filling
once to N = 1024. Large noise-like spikes are seen therein. Note, that the explicit
writing, e.g. K = 385, 386, . . . , 415 is abbreviated in Fig. 10 as K = 385(1)415,
where (1) in between Kmin = 385 and Kmax = 415 indicates the increment 
K
for K .

A “clean” spectrum is generated by taking the arithmetic average of these 31
envelopes with the result denoted by Re{FPT(+)

K }UAv. This is shown in panel (f) of
Fig. 10. The stable structures remain in this average spectrum, whereas the spikes are
markedly diminished or have almost disappeared.

In Fig. 11, signal-noise separation, SNS, is shown to be successfully achieved
via iterative spectra averaging for the MRS time signals encoded in vivo from the
pediatric patient with cerebral asphyxia. In the component spectra, the peak heights
are displayed on panels (a) and (b) for the Usual and Ersatz lineshapes, as per Eqs.
(2.21) and (2.20), respectively. Panel (c) shows pole-zero coincidences, through the
FPT(+) from the FID generated by the inverted complex 12th average envelope. This
panel is the Argand plot, as Im(ν+

k,Q) versus Re(ν+
k,Q). Blue open circles and red dots

represent the poles and zeros, respectively. For spurious resonances these symbols
coincide (Froissart doublets), and are located in the negative imaginary frequency
region below the abscissa (horizontal green line). The genuine poles and zeros lie in
the positive imaginary frequency region above the abscissa and are non-coincident,
albeit sometimes close to each other. The pole-zero coincidences lead to annihilation
of the amplitudes for spurious resonances, as shown in themagnitude plot on panel (d).

In Ref. [9], with successive iterations, there was further suppression of spuri-
ous spectral structures. Besides the total shape spectra, all four Padé-reconstructed
spectral parameters for each genuine resonance displayed progressively diminished
fluctuations with consecutive iterations, until the spectral parameters were completely
stabilized to the level of variances consistent with data stochasticity. At that point, full
convergence was robustly achieved [9].

Figure 12 displays the convergence of the reconstructions of the spectral parameters
from the FIDs given by the complex inverted 10th, 11th and 12th average envelopes.
These reconstructions are also for in vivo encodedMRS time signals from the pediatric
patient with cerebral asphyxia. For all the results, including Argand plots on panel (a),
magnitude plots on panel (b), phase plots on panel (c) and Ersatz components with
peak heights versus chemical shifts on panel (d), convergence has been attained. In
this convergence, the deviations are exceedingly small, to within the realm of data
stochasticity. In other words, there is nearly complete concordance among the 10th,
11th and 12th reconstructions of the spectral parameters, which are each color coded,
but coincide so closely that all the structures appear to be blue (the last plotted curve
is blue). This is especially remarkable for very weak resonances (seen between 3.2
and 3.4 ppm), indicating that precise quantification of very low levels of PC can be
achieved.

Spectra averaging (performed iteratively or only once) reduces the unphysical, non-
coherent portion of the extracted information coming from many sources (noise from
the encoding, round-off errors in computation, unstable resonances, etc.). These ran-
dom errors are considerably diminished via the stabilized quotient P+

K /Q+
K , through
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the unique coupling of averaging of Padé spectra and the form of the rational response
function of the examined system to external perturbations [11]. As stated earlier,
spectra averaging cannot be done in the FFT for different values of NP, since Fourier
vectors in the frequency domain are not of equal length for various truncation levels
of the total acquisition time T [9].

All told, through the iterative averaging procedure, exceedingly small variances
were obtained for the four Padé-reconstructed parameters for genuine resonances, once
convergence was achieved. Via the parametric FPT, the spectral region of interest was
chosen to bypass the large residual water resonance, automatically generating spectral
envelopes without the need for windowing. This now fully validated methodology
can generate denoised spectra and accurate spectral parameters for in vivo MRS data
encoded within neuro-diagnostics. Therefore, this type of mathematical optimization
through the FPT can be successfully applied to MRS time signals encoded in vivo
from brain tumors using standard clinical scanners at 1.5 or 3T. Improved diagnostic
yield of MRS within neuro-oncology is anticipated thereby.

5.5 Applications of the FPT to MRS time signals from the ovary

5.5.1 Initial proof-of-concept studies for ovary MRS

We began with studies of noise-controlled MRS time signals from the ovary [2,10,
38,39,43,44]. The FPT was first applied to synthesized noiseless FIDs associated
with MRS data for benign and cancerous ovarian cyst fluid of the kind similar to in
vitro encoded from Ref. [118], where some 12 resonances have been assigned to the
known metabolites. The FPT resolved all the 12 input resonances with only 64 time
signal points, and exactly computed the relatedmetabolite concentrations [2,38,39]. In
contrast, with 64 time signal points, the FFT generated rough, uninformative spectra.
Strikingly, the FFT required 32768 signal points for convergence of envelopes. These
results confirmed the high resolving power of the FPT.With increasing levels of added
noise, the FPTwas shown to resolve and accurately quantify all the 12 input resonances
associated with MRS data from Ref. [118] for non-cancerous and malignant ovarian
cyst fluid [10,43,44]. From these and the earlier described proof-of-principle studies
on other tissues, in addition to the promising results of the FPT applied to in vivo
MRS of the brain, it was deemed that Padé-optimized in vivo MRS should also be
implemented where the added value would likely be the greatest. One such problem
area is ovarian cancer diagnostics, where, as discussed, the need for an effective in
vivo MRS-based screening method has been underscored for many years [115,116],
but thus far this hope has remained largely unrealized.

5.5.2 The FPT applied to in vivo MRS time signals encoded from the ovary

The first step for the FPT applied to in vivo MRS time signals encoded from the
ovary was to compare its resolution capability with that of the FFT. The encoded FID
time signal of total length N = 1024 are from a patient with an enlarged left ovary
as detected on transvaginal ultrasound [136]. Subsequent histopathologic analysis
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indicated that this was a borderline serous cystic ovarian lesion. In Ref. [52], the non-
parametric FPT gave better resolved total shape spectra than the FFT when applied to
MRS time signals encoded in vivo on a 3T scanner at TE = 30 ms from the borderline
serous cystic ovarian tumor. The spectra averaging procedure was then applied to these
FIDs from the ovary.

As seen on Fig. 13(a), noise-like spikes appear in the display of the real parts
of 6 complex envelopes reconstructed non-parametrically by the FPT(+) at partial
signal lengths NP = 1150, 1170, . . . , 1250 corresponding to the model orders K =
575(10)625. These spectra are shown with color-coding as black (K = 575), green
(K = 585), cyan (K = 595), red (K = 605),magenta (K = 615) andblue (K = 625).
Here, all the values of NP are larger than the total FID length, N = 1024.The additional
data for NP − N are the time signal points with zero-valued amplitudes. A magenta-
coded spike at ∼ 3.3 ppm is a noticeable structure, with many other pronounced
spikes interspersed throughout the SRI of 0.75–3.75 ppm. Arithmetic averaging of the
6 complex envelopes yields the average complex envelope, the real part of which is
displayed in Fig. 13(b). The noisy spikes are greatly attenuated therein such that only
genuine peaks are visible. The largest peaks are N-acetylneuraminic acid (acNeu) at
2.06 ppm and NAA at 2.03 ppm. Numerous other resonances are also seen.

We proceed beyond shape estimation of envelopes to component spectra generated
from the fundamental frequencies and amplitudes reconstructed by the FPT(+). The
complex average envelope is inverted to generate a new MRS complex time signal
to which the FPT is applied. For processing this latter reconstructed FID, the partial
signal lengths used were, as above, NP = 1150, 1170, . . . , 1250 associated with the
model orders K = 575(10)625. The real parts of the Usual complex mode, as per Eq.
(2.21), are shown on panel (c) of Fig. 13. Strikingly, nearly full convergence to the
level of data stochasticity was attained throughout the SRI. Thus, most of the Usual
components appear entirely as blue (the last plotted curve for K = 625 is in blue). The
only exception is at about 3.4 ppm, where magenta color is seen to top the up-going
peaks, and a smaller green down-going peak (a dip) can be noticed. Next, in panel (d)
of Fig. 13, the real parts of the Ersatz component spectra are displayed, by reference to
Eq. (2.20), helping to visualize overlap of closely-lying or hidden resonances. Almost
complete convergence to the level of data stochasticity was also attained throughout
the SRI for these Ersatz components that mainly appear as blue, except for around
3.4 ppm, where a pronounced magenta-coded up-going resonance is observed to top
the peaks. Within the depicted SRI, remarkably, over 90 peaks are seen with Ersatz
component spectra in Fig. 13(d).

• Spectra averaging and extrapolation for processing in vivo MRS time signals
encoded from the ovary

In Ref. [11], we examined the role of spectra averaging in conjunction with Padé-
based extrapolation. Therein, the spectra were computed at sweep frequencies whose
number considerably exceeds the number of data points in the encoded time signal.
The study [11] was also carried out directly on the in vivo MRS time signals encoded
from the ovary. The complex average envelope was then inverted to yield a new com-
plex time signal which is longer than the encoded data. The Padé-extrapolated time
signal is then quantified for a sequence of model orders K to monitor convergence of
the reconstructed parameters. It was then demonstrated that spectra averaging together
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Fig. 13 The real parts of 6 usual envelopes Re(P+
K /Q+

K ) are shown on (a) for the SRI = [0.75, 3.75] ppm

in the FPT(+) at K = 575(10)625 using the FID encoded in vivo on a 3T MR scanner from a borderline
serous cystic ovarian lesion [136], with color-coding: black (K = 575), green (K = 585), cyan (K = 595),
red (K = 605), magenta (K = 615) and blue (K = 625). Here, numerous prominent noise-like spikes are
seen. On (b), the corresponding 6 complex envelopes are averaged and the result of the real part is denoted
as Re{FPT(+)}UAv in which noisy spikes are either greatly reduced or disappeared altogether. The FID from

the IDFT-based inversion of the complex average envelope is subjected to the FPT(+) to generate the Usual
and Ersatz component spectra for the 6 model orders K on (c) and (d), respectively (color online)
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with Padé-based extrapolation yieldedmore sharply delineated pole-zero coincidences
compared to the case without averaging and extrapolation, thereby improving signal-
noise separation, SNS, and also signal-noise ratios, SNR. This detailed comparison
of the results for Padé reconstruction was carried out for six FIDs with the same
model orders K generated without averaging and without extrapolation. Variances
are visibly reduced for the reconstructed parameters (complex frequencies and com-
plex amplitudes) when spectra averaging and extrapolation were performed. Another
very important practical finding from Ref. [11] was that a single averaging combined
with extrapolation appeared to be entirely sufficient to attain convergence of spectral
parameters coherent with averaging through multiple iterations.

Comparisons along these lines are presently made in Figs. 14 and 15. In Fig. 14, the
encoded data are employed directly by the FPT(+) without averaging or extrapolation.
Panel (a) shows the real parts of 6 complex envelopes generated non-parametrically
by the FPT(+) for K = 575(10)625 from the encoded FID, as in panel (a) of Fig. 13.
Panel (b) of Fig. 14 displays the Argand plot as Im(ν+

k,Q) versus Re(ν+
k,Q) for the 6 sets

of complex frequencies generated by the parametric FPT(+) applied to the encoded
FID for K = 575(10)625 and displayed with the same color coding as the envelopes.
The 6 FIDs differ from each other only in the number of added zeros. Notably, the
color of each imaginary frequency, Im(ν+

k,Q), at a specified chemical shift, Re(ν+
k,Q),

can quite often be identified. In panel (c) for magnitudes {|d+
k |} versus chemical shift,

significant spread is also observed, particularly in the regions around 1.3, 2.1, 3.4
and 3.6 ppm. Phases {ϕ+

k } versus chemical shift are presented on panel (d) where
throughout the SRI, the 6 sets of spectral parameters exhibit noticeable discrepancies.

The findings of Fig. 14 are sharply contrasted with those in Fig. 15, where the con-
vergence of the spectral parameters is illustrated for 6 model orders K = 575(10)625
when spectra averaging and extrapolation are carried out. On panel (a), the real part
of the complex average envelope, as in Fig 13(b), is shown once again. The corre-
sponding complex average envelope is inverted to create a new complex FID which
is longer than the encoded data. This latter, extrapolated FID is then quantified for
K = 575(10)625 to assess convergence of the reconstructed parameters. Panel (b)
of Fig. 15 displays the Argand plot as Im(ν+

k,Q) versus Re(ν+
k,Q) for the 6 sets of

complex frequencies in the interval K = 575(10)625 with color coding as in Figs. 13
and 14. Except for extremely few instances, at about 1.2, 3.4 and 3.6 ppm showing
minor deviations, there is complete agreement among the 6 sets of reconstructed com-
plex frequencies. For the plot of magnitudes {|d+

k |} versus chemical shift depicted in
panel (c) of Fig. 15, apart from very slight variations at around 1.2, 3.4 and 3.6 ppm,
concordant with panel (b), agreement among the 6 sets of reconstructed magnitudes
is complete. In panel (d), the plot of phases {ϕ+

k } versus chemical shift also shows
complete agreement among the 6 sets of reconstructed phases, except for minimal
variations at ∼ 1.2, 3.4 and 3.6 ppm.

• Examination of spectral poles and zeros as the key to stability
In a recent work [53], applying the FPT to in vivo MRS time signals encoded from

the ovary, we examined the essential features of the response function, namely both
the spectral poles as well as the zeros, as the key to stability of the system to exter-
nal perturbations. Noise was separated from signal by reliance upon the multi-level
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Fig. 14 The real parts of 6 Usual envelopes Re(P+
K /Q+

K )U are presented on (a) at K = 575(10)625. The
FIDs used on (a), containing 2 parts via 1024 encoded time signal points and 2K−1024 zeros (2K ≥ 1150),
are quantified by the FPT(+) at K = 575(10)625 to yield the Argand plot (b) as Im(ν+

k,Q) versus Re(ν+
k,Q),
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Color coding is the same as in Fig. 13 (color online)
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Fig. 15 The envelope {FPT(+)}UAv at K = 575(10)625, whose real part is shown on (a) is inverted via the

IDFT producing an FID, which is quantified by the FPT(+) at K = 575(10)625 to give the Argand plot (b)
as Im(ν+

k,Q) versus Re(ν+
k,Q), the magnitude plot (c) as |d+

k | versus chemical shift, and the phase plot (d)

as ϕ+
k versus chemical shift. Convergence to the level of data stochasticity is attained for all these spectral

parameters. Color coding is the same as in Fig. 14 (color online)
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signature of Froissart doublets (pole-zero confluence). Note that due to the special
form of the rational polynomials for the Padé spectra, stabilization via pole-zero can-
cellation is a very unique feature of the FPT. Our focus was upon eliminating the
over-sensitivity to alterations in model order K , through systematic examination of
poles and zeros, as well as Padé-reconstructed spectral parameters and component
shape spectra. This comprehensive examination of convergence of all variables under
study includes further investigation of the role of spectra averaging and time signal
extrapolation.

On panel (a) of Fig. 16, the 6 sets of genuine poles plotted as Im(ν+
k,Q) versus

Re(ν+
k,Q) in the Argand diagrams, generated by the FPT(+) using the encoded FID at

K = 575(10)625, show noticeable spread. In contrast, the 6 sets of physical poles,
visualized through Im(ν+

k,Q) versus Re(ν+
k,Q) utilizing the reconstructed FID, have

converged (to the level of stochasticity) on panel (b). Analogous findings are seen
for the physical zeros. Thus, on panel (c), the 6 sets of genuine zeros, shown as
Im(ν+

k,P ) versus Re(ν+
k,P ) in the Argand diagrams employing the encoded FID at

K = 575(10)625, are noticeably dispersed. On the other hand, on panel (d), there is
almost complete agreement among the 6 sets of genuine zeros seen through Im(ν+

k,P )

versus Re(ν+
k,P ) due to the FPT(+) applied to the reconstructed FID.

Overall, it was demonstrated in Ref. [53] that for the reconstructed poles and zeros,
as well as for magnitudes and phases, spectra averaging and Padé-based extrapolation
of time signals are essential for checking the stability of the system and for the accurate
reconstruction of resonances. Full convergence was achieved when spectra averaging
and extrapolation were applied together. Spectra averaging and extrapolation were
also shown to be needed to obtain stabilized results to the level of data stochasticity
for the Usual and Ersatz component spectra for the 6 model orders. Without spectra
averaging and extrapolation, there were noticeable variances for the 6 model orders
with regard to all the variables under study. This scrutiny and the ensuing results have
important implications for firmly establishing the robustness of quantification by the
FPT, applied directly toMRS time signals encoded in vivo from the ovary. The outlined
systematics of spectra averaging and time signal extrapolation, carried out one after
the other, is a practical and expedient solution to the most important obstacle for all
parametricmethods. This obstacle is amarked instability of reconstructions to changes
in model order K . Our procedure of spectra averaging and time signal extrapolation
was suggested and implemented in the FPT [53], but can also be applied to any other
parametric estimator. Nevertheless, the advantage of the FPT over the other existing
parametricmethods is in themost accurate quantification and time signal extrapolation
based on Padé rational polynomials.

5.5.3 A twofold damper on early ovarian cancer detection by MRS

In Ref. [137], we sought to reach a wider audience, in particular, clinicians, dissemi-
nating the key results applying the FPT forMRS time signals encoded in vivo from the
ovary. We introduced the term “FPT-MRS” to more succinctly denote Padé-optimized
in vivo MRS. Here, optimization encompasses both data analysis and data acquisi-
tion. Our emphasis was on the added diagnostic value of FPT-MRS for early ovarian
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Fig. 16 Genuine poles as Im(ν+
k,Q) versus Re(ν+

k,Q) are on (a) generated by the FPT(+) applied to the

encoded FID at K = 575(10)625. Genuine poles Im(ν+
k,Q) versus Re(ν+

k,Q) are on (b) predicted by the

FPT(+) using the reconstructed FID at K = 575(10)625. Genuine zeros Im(ν+
k,P ) versus Re(ν+

k,P ) are on

(c) due to the FPT(+) employing the encoded FID at K = 575(10)625. Genuine zeros Im(ν+
k,P ) versus

Re(ν+
k,P ) are on (d) obtained by the FPT(+) with the reconstructed FID at K = 575(10)625. Color coding

is the same as in Fig. 15 (color online)
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cancer detection. Note, parenthetically, that it is not unusual to add the name of a sig-
nal processor to a spectroscopy modality, like FPT-MRS. This is customary when the
given processor not only performs data evaluation, but also guides the encoding, i.e.
measurements. Another example is Fourier transform ion cyclotron resonance mass
spectrometry (FT-ICRMS) [138].

There are several chemical shift regions for which these insights are the most
salient. Around 1.3 ppm, the component spectra are seen to clarify the overlap among
lipid (Lip), threonine (Thr), Lac and other resonances. These insights may help resolve
uncertainty as to whether or not the presence of Lip is helpful for distinguishing benign
from cancerous lesions. Although Lip at 1.3 ppm was more often identified in malig-
nant lesions, this difference was not statistically significant in our meta-analysis [52].
Conversely, Lac also resonating at 1.3 ppm was found in Ref. [52] to be significantly
associated with cancerous as opposed to benign ovarian lesions, but data regarding
Lac were sparse. The key to clarification is to perform Padé-based quantification using
a short TE, as done in the presently reviewed publications from our studies. Thereby,
Lip, Lac, and other metabolites around 1.3 ppm, can be reliably identified and quan-
tified. In the chemical shift region around 2.0 ppm, there have also been uncertainties
that obscure interpretation of MR spectra from the ovary. Via Padé reconstructions,
the two resonances between 2.0 and 2.1 ppm corresponding to NAA and acNeu were
unambiguously distinguished, such that we may now be able to ascertain the actual
significance of NAA versus acNeu for distinguishing cancerous from benign ovarian
lesions. Not only was Cho at 3.2 ppm identified and its peak parameters reconstructed
via the FPT, but also PC and GPCwere detected from in vivoMRS of the ovary for the
first time. The genuine nature of these two resonances was confirmed by their positive
imaginary frequencies, lack of pole-zero coincidence and non-zero, albeit small, mag-
nitudes. Yet another confirmation of the physical nature of these two resonances was
stability of their spectral parameters. Since PC is identified as an indicator of malig-
nant transformation [81,122], possibly mediated, at least in part, by a loss of the tumor
suppressor p53 function [139], it becomes now feasible via the FPT to non-invasively
assess this biomarker for ovarian cancer diagnostics. In Ref. [137], we illuminated the
two-fold obstacle with ovarian MRS related to both measurements and interpretation.
First, it is difficult to encode good quality MRS time signals from a small, moving
organ such as ovaries. Second, the noisy encoded time signals are conventionally ana-
lyzed and interpreted with the exclusive reliance upon the ambiguous processing by
the FFT and fitting. As a repercussion, such a double difficulty has put a damper on
efforts to explore MRS for early ovarian cancer detection.

Consequently, the MR community has not prioritized this problem area. We under-
scored that the results applying FPT-MRS to the ovary strongly indicate that this
situation can and should change. There is now justification to further apply FPT-MRS
for early ovarian cancer detection and better identification of benign ovarian lesions.
The goal of effective in vivoMRS-based screening for ovarian cancer, the potential for
which has been highlighted for nearly two decades [115,116], as stated, could thereby
become a reality.
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6 Discussion

In detailed studies, Padé-optimized MRS has been fully validated within the in vivo
setting for applications to tumorous tissue.Anessential innovation is spectra averaging,
with the help of which, for the very first time, key cancer biomarkers (most notably
PC) have been identified and quantified through in vivo MRS [8,9,11,49,52–54,137].
Even greater precision in quantifying these biomarkers is achieved when Padé-based
extrapolation is combined with spectra averaging, and then applied to in vivo MRS
time signals encoded from tumorous tissue [11].

Our recent work [3,4] indicates that this process can be markedly streamlined
by first qualitatively identifying these otherwise hidden cancer biomarkers through
partitioning of the spectral envelopes non-parametrically. In what follows, we are
going to present some further considerations on this development.

The passage from the time to the frequency representation is information preserving.
Thus, it has been customary in the MRS literature to argue, when e.g. PC is not
seen in an FFT total shape spectrum, that this metabolite should be absent from the
corresponding FID, as well. Such reasoning is misleading since, in fact, PC can be one
of the constituents of an FID, and still be invisible on the FFT envelope, or any other
envelope, for that matter. This is evidenced in e.g. Fig. 4(c) for breast cancer. Therein,
the total shape spectrum in the FPT does not show any trace of PC which is, however,
present in the corresponding component spectra in Fig. 4(d). This is in concordance
with the synthesized input FID, which, by design, contains the PC metabolite.

The intriguing question which emerges from here is: could PC somehow be visual-
ized on an envelope reconstructed non-parametrically, i.e. by shape estimation alone?
The answer is in the affirmative, as shown in Fig. 5 and in Refs. [3,4], within the FPT.
The way in which this can be achieved is provided by first understanding the reason
behind the appearance of PC and PE as a single peak in a total shape spectrum com-
puted either parametrically or non-parametrically. It is the interference or interaction
between PC and PE that causes these two adjacent metabolites (separated by a mere
0.001 ppm) to blend together into a single resonance. Thus, by intercepting the pro-
cess of this interference before its completion, it might be possible to disentangle PC
and PE without recourse to quantification, i.e. by relying solely upon non-parametric
estimation. The said interception comes naturally in the Padé complex-valued total
shape spectrum PK /QK ,where the analytical expression from absorption and disper-
sion each contains two unique partitions. Each partitioned envelope exhibits a reduced
interference effect. It is such an interference reduction which splits PC and PE apart
all the way down to the background baseline level in the envelopes, as seen in Fig. 5.

Here, it could be asked: Why would this phenomenon matter, given that the para-
metric FPT can reconstruct the component spectra and, thus, exactly separate PC
from PE? It matters because of both the intrinsic and practical clinical reasons. As to
the intrinsic reason, partitioned spectra provide a procedure by way of mathematical
physics to weaken a strong coupling of the overlapping resonances. This weakening
unfolds the hidden spectral structures masked by the intact, complete interference
effect. Regarding the practical reasons, the power of partitioning is in its uniqueness
and expedience, since the hidden resonance(s) can be visualized as soon as the polyno-
mials PK and QK are extracted from the input time signals. This should be compared
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to the parametric estimation requiring a number of additional steps through polyno-
mial rooting, signal-noise separation, SNS, assessing pole-zero coincidence (Froissart
doublets), etc.

Clinically, partitioned spectra are useful for the initial, qualitative insight into the
existence of e.g. PC in an envelope. Namely, prior to learning about the concentration
of PC, by way of quantification, the radiologist would like to know whether PC is
present at all. If PC is visualized in the partitioned envelope, then the next step could
be to zoom around PC in a narrow SRI and perform a local quantification explicitly
by the parametric FPT and/or implicitly by the non-parametric dFPT. This stepwise
approach to spectra is deemed practical because it begins with a more familiar shape
estimation, but with a bonus of partitioning which can visualize separation of tightly
overlapping resonances. Such a strategy is reminiscent of the radiologist’s approach
to the passage from MRI to MRS. Namely, when a suspicious lesion is observed on
MRI, further investigation is often needed due to the inadequate specificity of MRI.
Employing MRS can help gain insight into the metabolic features of the suspicious
lesion, thereby assisting in the differential diagnostic procedure [17].

Overall, these developments are possible because of the mathematical capabilities
associated with the FPT and dFPT. Neither spectra averaging, nor extrapolation, nor
quantification are possiblewith the FFT.This is due to themathematical structure of the
FFT: no extrapolation nor interpolation features, limiting to the equidistant Fourier grid
frequencies, no spectra averaging due to different numbers N/M of the FFT sticks for
the varying truncation levelM of the full FID length, N , providing only non-parametric
analysis, etc. Instead of the FFT, the critical step to realize the potential of molecular
imaging through MR, is to apply Padé-optimization to in vivo MRS, which we denote
by “FPT-MRS” as a compact acronym. Software upgrades with unbiased quantifying
signal processing by the FPT are indispensable for achieving these long-sought goals
of MRS [48,137].

The FPT has been applied by several research groups within various areas of MR
methodologies [132–135,140–142]. It is hoped that this reviewwill motivate the use of
the FPT bymanymore researchers withinMR community and far beyond across inter-
disciplinary fields. In fact, our Padé-based signal processing has already found many
applications in different research branches in science and technology. Some examples
are in acousticswith time signals corresponding to the so-called room impulse response
(RIR) [143], or in recurrence spectra of multi-electron atoms in an electric field [144],
or in leak location and leak area determination in water, oil and gas pipelines [145].

The non-parametric derivative fast Padé transform, dFPT [5–7], is of prime impor-
tance because it can disentangle spectrally crowded regions, by splitting apart closely
packed peaks. Hidden resonances, even those that are very weak, are not only visu-
alized but also exactly quantified, despite performing shape estimation alone. This
streamlinedmethodologywould allow clear quantified visualization of the entireMRS
information, including concentrations of all the diagnostically-relevant metabolites.
Such a new modality called derivative magnetic resonance spectroscopy (dMRS) is
poised to become a standard, reliable and practical part of the diagnostic armamen-
tarium for cancer and other pathologies. In order to realize this potential, it would
be extremely important to widely apply dFPT to quantify phosphocholine as well as
other cancer biomarkers heretofore undetected in vivo. This is especially important at
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short echo times, TE, due to increased overlap with other resonances that have not yet
decayed. These include isoleucine (Iso) and valine (Val), resonating at 1.02 and 1.04
ppm, respectively, lipid, Lip and lactate, Lac, at ∼ 1.3 ppm, alanine, Ala, overlapping
with other resonances at ∼ 1.5 ppm, lysine (Lys), closely overlapping with several
other metabolites between 1.67-1.78 ppm, taurine, Tau, overlapping with myoinositol,
m-Ins, Cho and glucose, Glc, between 3.3 and 3.4 ppm, etc. [56,118,120,121,127].
For FFT-based in vivo MRS, longer TEs are generally used to ease interpretation of
the computed sparser, simpler spectra with, however, much information lost due to
decay of short-lived resonances representing metabolites [9].

Both the FPT and dFPT process the same original time signal points {cn}. In the
dFPT, the derivatives of orderm are taken on the analytical expression for the conven-
tional Padé spectrum, RK (z) = PK (z)/QK (z). Therefore, the spectrum in the dFPT
is also an analytical formula given by G(m) = Dm

ν RK (z), where Dν = d/dν is the
differentiation operator with respect to linear frequency ν. This is the reason for which
no additional noise is introduced by Dν . As per Ref. [5], normalization in the dFPT
is performed, so that the increased peak heights on derivative spectra for m > 0 can
still be plotted on the same graphs with the non-derivative envelopes (m = 0). This
normalization to a reference peak e.g. Lac in the example from Fig. 6(b) requires that
the Padé-reconstructed spectral envelopes have converged with respect to model order
m for both m = 0 and m > 0.

In the dFPT, for the higher-order derivative envelopes, the reconstructed peak posi-
tions do not alter, whereas simultaneously, the peak widths decrease and the peak
heights increase. These latter two trends for m > 0 are concomitant, such that their
product can reconstruct the peak parameters of the absorption mode of the non-
derivative (m = 0) version of the FPT. Here, emphasis is placed on high derivative
orders ofmagnitude spectra, which are strictly positive-definite and thus do not require
any phase correction. These are, therefore, the most straightforward for clinical inter-
pretation and extraction of metabolite concentrations.

In Refs. [5–7], we proceed beyond traditionally conceived shape estimators inMRS
to show that there is a way of making non-parametric processors intrinsically quanti-
tative. This is possible in the dFPT by accurate reconstruction of the position, width,
height and phase of each component peak of all physical resonances without solving
the quantification problem. The ensuing derivative magnetic resonance spectroscopy,
dMRS,moves this research forward by providing unambiguously interpretable spectra
for clinicians with all needed quantitative information readily at hand. Our most recent
results [7] suggest that this will be the stand-alone signal processing strategy of choice
for cancer diagnostics within MRS. Being computationally fast, with robust noise
suppression, the high-resolution dFPT is fully ready to be implemented in clinical
MR scanners. With this, the long sought hope of clinicians would at last be realized:
to visualize the entire MRS information by seeing directly on the screen the clearly
disentangled overlapping peaks and then inspecting the displayed concentrations of
all the diagnostically relevant metabolites. This vision would enable the entry of MRS
as a standard, clinically reliable part of the diagnostic armamentarium for cancer and
other pathologies.

A key consideration, as discussed, is that a single voxel in MRS may not be
representative of the scanned tissue. Multi-voxels are then employed for volumetric
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coverage through magnetic resonance spectroscopic imaging, MRSI [16]. Typically,
however, SNR is deteriorated in MRSI relative to MRS. Moreover, MRSI is more
time-consuming and analysis of the encoded data is computationally more demanding
because MRSI is tasked with reconstructing and interpreting thousands of spectra to
extract the diagnostically relevant information. Via MRSI the chemical specificity of
MRS is joined with the spatial localization techniques of MRI to yield multiple MRS
time signals. We anticipate that this efficient strategy by way of derivatives of total
shape spectra via the dFPT would be particularly appropriate for putting molecular
imaging through MRSI into practice. This would yield the derivative magnetic res-
onance spectroscopic imaging (dMRSI). As stated, the FIDs from MRSI are of the
same type as from MRS and, thus, can be processed by the dFPT. Moreover, MRI
itself would greatly benefit from the derivative transform in conjunction with dFPT.
The resulting high-order derivative magnetic resonance imaging (dMRI) may well
reduce noise and make the images simultaneously sharper and brighter, as we plan to
investigate.

Attempts have been made to use higher field scanners aimed at improving SNR
in MRS and MRSI for cancer diagnostics. These attempts were motivated by insuffi-
cient accuracy of Fourier-based in vivo MRS and MRSI with clinical (1.5 or 3T) MR
scanners for identifying cancers and distinguishing these from benign lesions. Higher
field scanners have, thus far, not provided the anticipated improved cancer detection
[78,79]. Furthermore, the huge costs would preclude such an approach for widespread
applications. In sharp contrast, via dFPT-based dMRS and dMRSI, improved SNR is
achieved together with narrowing of the linewidths yielding separation of overlapping
peaks. This results in improved resolution. Such a powerful and efficient approach is
anticipated to be applicable on standard clinical scanners (1.5 T), offering the further
benefit of cost-effectiveness. Overall, the dFPT simultaneously solves the two stum-
bling blocks of MRS and MRSI, by enhancing resolution and improving SNR with
shorter encoded data.

7 Conclusions

We review the fast Padé transform, FPT, for magnetic resonance spectroscopy, MRS,
in personalized cancer medicine, PCM. The present main focus is on early malignant
transformations within molecular levels of the examined human tissue of brain, breast,
prostate and ovary. Their timelier detection is likely to significantly reduce the fatality
rates.

Mathematics can come to the rescue through clinically reliable signal processing
of proven validity for MRS time signals encoded from patients. This is critical to an
adequate analysis and interpretation of MRS data prior to the diagnosis of eventual
pathologies.

Over the years, it has been demonstrated that the FPT can fully be trusted in achiev-
ing the long soughtmathematical optimization ofMRS. Through robust computational
algorithms with self-checking (causal vs anti-causal estimates) and auto-correcting
(pole-zero cancellations), this powerful signal processor gives ultimately the most
accurate molecular content of the MRS-scanned tissue. This content is entirely quan-
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titative providing the diagnostically relevant information onmetabolite concentrations,
chemical shifts (environment of resonating nuclei bound to differentmolecules), relax-
ation times (notably different for benign and tumorous lesions), etc.

It has been established that the FPT can provide this needed quantification by para-
metric estimation signal processing reconstructing the exact positions, widths and
phases of the peaks/resonances of all the metabolite molecules that are physically
present in the investigated tissue. What has begun to emerge very recently, however,
was the possibility to retrieve all the mentioned quantitative data in MRS by shape
estimation of envelopes alone. This is provided by the derivative fast Padé trans-
form, dFPT, which then gives birth to derivative magnetic resonance spectroscopy,
dMRS. The novelty brought by the dFPT is the use of higher-order derivatives of
non-parametric Padé-based envelopes (total shape spectra) to exactly reconstruct all
their physical components with their peak positions, widths, heights and phases. In
particular, each peak height is proportional to the abundance of resonating nuclei, or
equivalently, to the concentrations of molecules assigned to the known metabolites
according to their recovered chemical shifts.

We have benchmarked the dFPT on noise-corrupted synthesizedMRS time signals,
reminiscent of the corresponding encoded in vitro data. The outcome is very encour-
aging since the dFPT works as per theory by extracting the trustworthy and stable
quantitative results. This strongly motivates the further applications of the dFPT to
encoded MRS time signals, both in vitro and in vivo. We are currently pursuing this
task and the results shall be reported shortly.
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56. K. Belkić, Inter-disciplinarity of MR and future perspectives with a focus on screening. In:Magnetic
Resonance Imaging and Spectroscopy, Comprehensive Biomedical Physics, vol. 3, Dž. Belkić, K.
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