ORIGINAL PAPER

The Hosoya index and the Merrifield-Simmons index

Yufeng Huang ${ }^{1} \cdot$ Lingsheng Shi 2. Xingyu Xu ${ }^{1}$

Received: 9 November 2017 / Accepted: 19 July 2018 / Published online: 24 July 2018
© The Author(s) 2018

Abstract

In this article, we give sharp bounds on the Hosoya index and the Merrifield-Simmons index for connected graphs of fixed size. As a consequence, we determine all connected graphs of any fixed order and size which maximize the Merrifield-Simmons index. Sharp lower bounds on the Hosoya index are known for graphs of order n and size $m \in$ $[n-1,2 n-3] \cup\left(\binom{n-1}{2},\binom{n}{2}\right]$; while sharp upper bounds were only known for graphs of order n and size $m \leq n+2$. We give sharp upper bounds on the Hosoya index for dense graphs with $m \geq\binom{ n}{2}-2 n / 3$. Moreover, all extreme graphs are also determined.

Keywords Fibonacci • Hosoya index • Merrifield-Simmons index • Clique • Graph • Matching

1 Introduction

We consider simple graphs, namely graphs without loops or multiple edges in this article. Let $G=(V, E)$ be a graph. The order of G is $|V|$ and the size of G is $|E|$. Denote by G^{c} the complement of G. For a vertex $v \in V$, we denote by $N_{G}(v)$ (or simply $N(v)$) the neighborhood of v in G and the degree of v is $|N(v)|$. A matching of G is a set of disjoint edges in G and a stable set of G is a subset of vertices which induces an edgeless subgraph. The Hosoya index of G, denoted by $Z(G)$, is the number of all

Project 1712 T0193 supported by Tsinghua Student Research Training. L. Shi: Project 11771246 supported by National Natural Science Foundation of China.

Lingsheng Shi
lshi@math.tsinghua.edu.cn
Yufeng Huang
huang-yf15@mails.tsinghua.edu.cn
Xingyu Xu
xy-xu15@mails.tsinghua.edu.cn
1 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
2 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
matchings in G. The Merrifield-Simmons index or Fibonacci number of G, denoted by $F(G)$, is the number of all stable sets in G; and let $c(G)$ be its complement, i.e., the number of all cliques in G. For simplicity, we write $c(U)$ instead of $c(G[U])$, where $G[U]$ is a subgraph of G induced by a subset U of V. Denote by K_{n}, P_{n}, and S_{n}, a complete graph, a path, and a star of order n respectively. A graph of order n and size m is called almost complete if $m>\binom{n-1}{2}$. Let $f_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]$ be the nth Fibonacci number throughout.

The Hosoya index was first introduced in 1971 by Hosoya [7] as a molecular-graph based structure descriptor, which he named topological index. Hosoya showed that certain physico-chemical properties of alkanes (in particular, their boiling points) are well correlated with this index. On the other hand, the Merrifield-Simons index introduced by Merrifield and Simmons in 1980s [10,11] is also known as the Fibonacci number of a graph introduced by Prodinger and Tichy [16] in the literature of mathematics. Enlightening connections of these two indices are observed in the literature. The most direct connection is that for a graph G and its line graph $L(G)$, we have $F(L(G))=Z(G)$ by their definitions. Moreover, it is discovered that heuristically speaking, the graph with maximum Hosoya index is similar to the graph with minimum Merrifield-Simmons index; and the graph with minimum Hosoya index is similar to the graph with maximum Merrifield-Simmons index. For example, Gutman [6] in 1977 proved that the path is the tree that maximizes the Hosoya index and the star is the tree that minimizes it; while Prodinger and Tichy [16] in 1982 proved that the path minimizes the Merrifield-Simmons index and the star maximizes it among all trees of fixed order. The same pattern also exists in unicyclic graphs and bicyclic graphs, see [$1-5,12,13,15,19,20,22]$. However, Liu et al. [8] in 2015 showed that different patterns appear in tricyclic graphs. Let us summarize the case of trees as a theorem which is used later on.

Theorem $1[6,16]$ Among all trees of order n, the star S_{n} minimizes the Hosoya index and maximizes the Merrifield-Simmons index, while the path P_{n} maximizes the Hosoya index and minimizes the Merrifield-Simmons index. Moreover, $F\left(S_{n}\right)=2^{n-1}+1$, $Z\left(S_{n}\right)=n, F\left(P_{n}\right)=f_{n+2}$, and $Z\left(P_{n}\right)=f_{n+1}$.
For simplicity, we call a graph maximizer if it maximizes the corresponding index. The minimizer is similarly defined. It is clear that $c(G) \geq n+m+1$ for a graph G of order n and size m. Considering the complement, we have $F(G) \geq\binom{ n}{2}+n-m+1$ for $m \geq \frac{n^{2}}{4}-\frac{n}{2}$ with equality if and only if the largest stable set of G has at most two vertices. On the other hand, Zhao and Liu [23] in 2006 determined the connected graph of order n and size m that maximizes the Merrifield-Simmons index for $m \leq 2 n-3$. In 2007, Wood [21] gave a sharp upper bound on the Merrifield-Simmons index for all possible values of m in its complement form. Extending their results, we establish sharp bounds on these indices for connected graphs of fixed size.
Theorem 2 Let G be a connected graph of size m and let $\gamma=(1+\sqrt{1+8 m}) / 2$. The following statements hold.

1. $(\underset{2}{\lceil\gamma\rceil+1})-m+1 \leq F(G) \leq 2^{m}+1$. The first equality holds if and only if G is almost complete and G^{c} is triangle-free, and the second equality holds if and only if G is a star.

Fig. 1 A clique K_{4} with two arbitrarily inserted edges

Fig. 2 Four types of G^{c} described in Corollary 1 for $n=6$
2. $m+1 \leq Z(G) \leq f_{m+2}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{m+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{m+2}\right]$. The first equality holds if and only if G is a star or a triangle, and the second equality holds if and only if G is a path.
3. $\left\lceil(\sqrt{m}+1)^{2}\right\rceil \leq c(G) \leq 2^{\lfloor\gamma\rfloor}+2^{m-\binom{\lfloor\gamma\rfloor}{ 2}}(\lceil\gamma\rceil-\lfloor\gamma\rfloor)$. The first equality holds if and only if G is a triangle-free graph of order $\lceil 2 \sqrt{m}\rceil$, and the second equality holds if and only if G has such a vertex v that $G-v$ is complete or G consists of a clique and two more arbitrarily inserted edges (see Fig. 1 for example).

As a consequence of Theorem 2, we obtain the following complement form of the Wood upper bound [21] with all the determined maximizers.

Corollary 1 [21] If G is a connected graph of order n and size m and $\gamma=$ $\frac{1}{2}\left(1+\sqrt{1+8\left[\binom{n}{2}-m\right]}\right)$, then $F(G) \leq 2^{\lfloor\gamma\rfloor}+2^{\binom{n}{2}-m-\binom{\lfloor\gamma\rfloor}{ 2}}(\lceil\gamma\rceil-\lfloor\gamma\rfloor)+n-\lceil\gamma\rceil$ with equality if and only if G^{c} consists of isolated vertices and one of the following graphs (see Fig. 2 for example with $n=6$):

- a maximizer in Theorem 2 (3),
- a disjoint union of a clique and one clique or two cliques of order two,
- a disjoint union of a clique and a path of length two,
- a disjoint union of a clique with a pendent edge and a clique of order two.

In 2010, Pan and Sun [14] also determined the connected graph of order n and size m that minimizes the Hosoya index for $m \leq 2 n-3$. Again these extreme graphs are quite similar to those with the largest Merrifield-Simons index in [23]. In 2015, So and Wang [17] determined the minimizers for $m>\binom{n-1}{2}$ in a stronger form. Extending their results, we give sharp upper bounds on the Hosoya index for dense graphs.

Theorem 3 Let G be a connected graph of ordern and size m. The following statements hold.

1. If $m \geq\binom{ n}{2}-\frac{n}{2}$ and M is a matching of size $\binom{n}{2}-m$ in the complete graph K_{n}, then $Z(G) \leq Z\left(K_{n}-M\right)$ with equality if and only if G is isomorphic to $K_{n}-M$.
2. If $\binom{n}{2}-\frac{2 n}{3} \leq m<\binom{n}{2}-\frac{n}{2}$, then $Z(G)$ is maximized by such a graph G that G^{c} is a disjoint union of paths of length one or two.

More extreme results on these two indices for other class of graphs can be found in the survey [18]. In order to prove our theorems, we need a simple lemma which follows directly from the definitions.

Lemma 1 If uv is an edge of a graph G, then the following equalities hold:

- $c(G)=c(G-v)+c(N(v))=c(G-u v)+c(N(u) \cap N(v))$;
- $F(G)=F(G-v)+F(G-N(v))=F(G-u v)-F(G-N(u)-N(v))$;
- $Z(G)=Z(G-u v)+Z(G-u-v)$.

Corollary 2 If H be a subgraph of G, then $Z(H) \leq Z(G)$ with equality if and only if $E(G)=E(H)$. Moreover, if H is a proper induced subgraph of G, then $c(H)<c(G)$ and $F(H)>F(G)$.

The proof of Theorem 2 is presented in Sect. 2 and the proofs of Corollary 1 and Theorem 3 are presented in Sect. 3 respectively.

2 Graphs of fixed size

Proof of Theorem 2 Let n be the order of G. We prove the three items successively.
Item 1 . Since G is connected, we have $m \geq n-1$. For $m \geq n$, it is obvious that $F(G) \leq 2^{m}$. For $m=n-1$, the graph G is a tree. The upper bound follows from Theorem 1 that $F(T) \leq 2^{m}+1$ for all trees T with equality if and only if T is a star. For the lower bound, we have $F(G) \geq 1+n+\left|E\left(G^{c}\right)\right|=1+n+\binom{n}{2}-m=\binom{n+1}{2}-m+1$. The desired inequality follows from $n \geq\lceil\gamma\rceil$ for $m \leq\binom{ n}{2}$. For the equality, it is necessary and sufficient that G^{c} is triangle-free and $n=\lceil\gamma\rceil$, i.e., G is almost complete.

Item 2. Note that $Z(G)$ is the Merrifield-Simmons index of the line graph $L(G)$. Since $L(G)$ is of order m, from the proof of Item 1 we have $Z(G)=F(L(G)) \geq$ $1+m+\left|E\left(L(G)^{c}\right)\right| \geq m+1$ with equality if and only if $L(G)$ is complete, which for $m \neq 3$ is equivalent to G being a star. For $m=3$, the graph G can be either a star or a triangle. For the upper bound, let G^{*} be the maximizer. We claim that every edge of G^{*} is a bridge. Indeed suppose to the contrary that $u v$ is an edge of G^{*}, but not a bridge in G^{*}. Deleting the edge $u v$ and inserting a new vertex x and a new edge $v x$ to G^{*} result in a connected graph G of size m with

$$
Z(G)=Z(G-v x)+Z(G-v-x)=Z\left(G^{*}-u v\right)+Z\left(G^{*}-v\right) .
$$

Since $G^{*}-u v$ is connected, the vertex u must be incident with some other edge besides $u v$. It turns out that $G^{*}-u-v$ is a proper subgraph of $G^{*}-v$, which with Corollary 2 and Lemma 1 implies $Z(G)>Z\left(G^{*}-u v\right)+Z\left(G^{*}-u-v\right)=Z\left(G^{*}\right)$, contrary to the maximality of G^{*}. Thus G^{*} is a tree and in fact it is a path with $Z\left(G^{*}\right)=Z\left(P_{m+1}\right)=f_{m+2}$ by Theorem 1 .

Item 3. First we establish the lower bound on $c(G)$. This is done by showing that $c(G)$ is minimized by a triangle-free graph. If G has a triangle, say $u v w$, then deleting the edge $u v$ and inserting a new vertex x and a new edge $v x$ to G result in a connected graph H of size m. By Lemma 1, we have

$$
\begin{aligned}
c(G) & =c(G-u v)+c\left(N_{G}(u) \cap N_{G}(v)\right) \\
& =c(H-x)+c\left(N_{G}(u) \cap N_{G}(v)\right) \\
& =c(H)-c\left(N_{H}(x)\right)+c\left(N_{G}(u) \cap N_{G}(v)\right) .
\end{aligned}
$$

Observe that $N_{H}(x)=\{v\}$ and $w \in N_{G}(u) \cap N_{G}(v)$. Applying Corollary 2, we obtain $c\left(N_{G}(u) \cap N_{G}(v)\right) \geq c(\{w\})=2=c\left(N_{H}(x)\right)$ and so $c(G) \geq c(H)$. Since there are (strictly) less triangles and more leaves (i.e., vertices of degree one) in H than in G, one can repeat this process to obtain a triangle-free graph G^{\prime} of size m so that $c\left(G^{\prime}\right) \leq c(G)$. By the Mantel theorem [9], we have

$$
\begin{equation*}
c\left(G^{\prime}\right) \geq m+n+1 \geq m+\lceil 2 \sqrt{m}\rceil+1=\left\lceil(\sqrt{m}+1)^{2}\right\rceil \tag{1}
\end{equation*}
$$

It is readily verified that any triangle-free graph of order $\lceil 2 \sqrt{m}\rceil$ and size m attains the lower bound. Conversely, we claim that each minimizer must be triangle-free of order $\lceil 2 \sqrt{m}\rceil$. By Eq. (1), it is clear that any graph attaining the lower bound is of order $\lceil 2 \sqrt{m}\rceil$. Let G^{*} be a minimizer of size m and so $\left|V\left(G^{*}\right)\right|=\lceil 2 \sqrt{m}\rceil$. It suffices to show that G^{*} is triangle-free. This is trivial for $m \leq 4$. For $m \geq 5$, suppose to the contrary that $u v w$ is a triangle in G^{*}. Since $w \in N_{G^{*}}(u) \cap N_{G^{*}}(v)$, we have $c\left(N_{G^{*}}(u) \cap N_{G^{*}}(v)\right) \geq 2$ and

$$
\begin{equation*}
\left\lceil(\sqrt{m}+1)^{2}\right\rceil=c\left(G^{*}\right)=c\left(G^{*}-u v\right)+c\left(N_{G^{*}}(u) \cap N_{G^{*}}(v)\right) \geq\left\lceil(\sqrt{m-1}+1)^{2}\right\rceil+2 \tag{2}
\end{equation*}
$$

which implies $\lceil 2 \sqrt{m}\rceil \geq\lceil 2 \sqrt{m-1}\rceil+1$. Meanwhile, we have the elementary estimation

$$
2 \sqrt{m}-2 \sqrt{m-1}=\frac{2}{\sqrt{m}+\sqrt{m-1}} \leq \frac{2}{\sqrt{5}+2}<1
$$

and hence,

$$
\lceil 2 \sqrt{m}\rceil-\lceil 2 \sqrt{m-1}\rceil \leq\lceil 2 \sqrt{m-1}+1\rceil-\lceil 2 \sqrt{m-1}\rceil=1 .
$$

Thus the equality holds in Eq. (2), which implies that $G^{*}-u v$ is also a minimizer of size $m-1$ and order $\lceil 2 \sqrt{m-1}\rceil$. But this contradicts the fact that $G^{*}-u v$ is a spanning subgraph of G^{*} of order $\lceil 2 \sqrt{m}\rceil$.

Secondly we show the upper bound. For simplicity, we define a map $f: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$ by

$$
f(n)= \begin{cases}0, & n=0 \\ 2^{n}, & n>0 .\end{cases}
$$

Note that f is convex, i.e., $f(u)-f(u-s) \geq f(v)-f(v-s)$ for $u \geq v \geq s$. Denote by γ_{n}, r_{n} the unique pair of integers satisfying $0 \leq r_{n}<\gamma_{n}$ and $n=\binom{\gamma_{n}}{2}+r_{n}$. With the above notations, let $c^{*}(m)=2^{\gamma_{m}}+f\left(r_{m}\right)$. For $m \leq 5$, the upper bound
is trivial. Now we assume that $m \geq 6$ and $\gamma_{m} \geq 4$ and use induction on m. If G has a cut vertex, say v, then G can be covered by two connected subgraphs, say G_{1} and G_{2} with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{v\}$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. Observe that $c(G)=c\left(G_{1}\right)+c\left(G_{2}\right)-2$. Denote by p and q the sizes of G_{1} and G_{2} respectively. By the induction hypothesis, we have

$$
c(G) \leq c^{*}(p)+c^{*}(q)-2=2^{\gamma_{p}}+2^{\gamma_{q}}+f\left(r_{p}\right)+f\left(r_{q}\right)-2 .
$$

Let $S(m, p, q)=c^{*}(m)-c^{*}(p)-c^{*}(q)+2=2^{\gamma_{m}}+f\left(r_{m}\right)-\left[2^{\gamma_{p}}+2^{\gamma_{q}}+f\left(r_{p}\right)+\right.$ $\left.f\left(r_{q}\right)-2\right]$. It suffices to prove

$$
\begin{equation*}
S \geq 0 \text { for all } m=p+q . \tag{3}
\end{equation*}
$$

We may assume that $r_{p}=r_{q}=0$. In fact, note that $\gamma_{m} \geq \max \left\{\gamma_{p}, \gamma_{q}\right\}$. If $r_{m} \geq r_{p}$, then by the convexity of f, we have

$$
f\left(r_{m}\right)-f\left(r_{p}\right) \geq f\left(r_{m}-r_{p}\right)-f(0)=f\left(r_{m}-r_{p}\right)
$$

Hence, $S(m, p, q) \geq S\left(m-r_{p}, p-r_{p}, q\right)$. The new remainder term $r_{p-r_{p}}$ turns out to be 0 and the new $\gamma_{p-r_{p}}=\gamma_{p}$. If $r_{m}<r_{p}$, then we obtain from the convexity of f and the fact $r_{p}<\gamma_{p}$ that

$$
f\left(r_{m}\right)-f\left(r_{p}\right) \geq f\left(r_{m}+\gamma_{p}-r_{p}\right)-f\left(\gamma_{p}\right)=f\left(r_{m}+\gamma_{p}-r_{p}\right)-2^{\gamma_{p}}
$$

Hence, $S(m, p, q) \geq S\left(m+\gamma_{p}-r_{p}, p+\gamma_{p}-r_{p}, q\right)$. The new remainder term $r_{p+\gamma_{p}-r_{p}}$ turns out to be 0 again and the new $\gamma_{p+\gamma_{p}-r_{p}}=\gamma_{p}+1>\gamma_{p}$. Applying the same procedure to q, we reduce to the case where $r_{p}=r_{q}=0$. Note that in this procedure, γ_{p} and γ_{q} are both nondecreasing. Without loss of generality, we may assume $p \leq q$. If $\gamma_{m} \geq \gamma_{q}+1$, then we have $2^{\gamma_{p}}+2^{\gamma_{q}} \leq 2^{\gamma_{q}+1} \leq 2^{\gamma_{m}}$, thereby $S(m, p, q) \geq 2+f\left(r_{m}\right)>0$. The remaining case $\gamma_{m}=\gamma_{q}$ is possible only if $r_{m}=p<\gamma_{q}$. It follows that $S(m, p, q)=2^{p}-2^{\gamma_{p}}+2$. By definition, it is evident that $\gamma_{p} \geq 2$. Thus $2^{p}-2^{\gamma_{p}}+2 \geq 0$ follows from direct computation for $\gamma_{p}=2$ and from $p=\gamma_{p}\left(\gamma_{p}-1\right) / 2 \geq \gamma_{p}(3-1) / 2=\gamma_{p}$ otherwise.

So we can assume that G has no cut vertex. Since $m \leq\binom{ n}{2}$, we have $\gamma_{m} \leq n$. If $\gamma_{m}=n$ then G is complete and the upper bound holds trivially. Thus we may assume $\gamma_{m} \leq n-1$. Now choose a vertex v with minimum degree δ in G. Since $\delta \leq 2 m / n<\gamma_{m}\left(\gamma_{m}+1\right) / n \leq \gamma_{m}$, we see $\delta \leq \gamma_{m}-1$ and so $\gamma_{m-\delta} \geq \gamma_{m}-1$. By Lemma 1 and the induction hypothesis, we obtain

$$
\begin{equation*}
c(G)=c(G-v)+c(N(v)) \leq c^{*}(m-\delta)+2^{\delta} . \tag{4}
\end{equation*}
$$

Now it suffices to prove $2^{\gamma_{m-\delta}}+f\left(r_{m-\delta}\right)+2^{\delta} \leq 2^{\gamma_{m}}+f\left(r_{m}\right)$. For $\delta \leq r_{m}$, it simplifies to

$$
\begin{equation*}
f\left(r_{m}-\delta\right)+f(\delta) \leq f\left(r_{m}\right) \tag{5}
\end{equation*}
$$

Fig. 3 A clique K_{4} with a
pendent edge

which follows directly from the convexity of f. For $r_{m}<\delta \leq \gamma_{m}-1$, we need to show

$$
\begin{equation*}
f\left(\gamma_{m}-1\right)-f\left(\gamma_{m}-1-\left(\delta-r_{m}\right)\right) \geq f(\delta)-f\left(r_{m}\right) \tag{6}
\end{equation*}
$$

which follows from $\gamma_{m}-1 \geq \delta$ and once again the convexity of f.
Finally we determine the maximizer G. If G has a cut vertex, then all equalities in the proof of $S(m, p, q) \geq 0$ must be attained. Recall that in the reduction to $\gamma_{p}=2$, the procedure keeps γ_{p} nondecreasing. Thus $\gamma_{p} \leq 2$ for the original graph G. But by definition $\gamma_{p} \geq 2$, so $\gamma_{p}=2$ remains true for G. Consequently we have $p=1$ or 2 . As we assumed $\gamma_{m} \geq 4$, we see that $\gamma_{q} \geq 3$, and $\gamma_{m} \leq \gamma_{q}+1$. If $\gamma_{m}=\gamma_{q}+1$, then we consider the following two cases.

Case 1. $p=1$.
In this case, we have

$$
p+q=1+\binom{\gamma_{q}}{2}+r_{q}=m=\binom{\gamma_{q}+1}{2}+r_{m}
$$

which implies that $r_{q}=\gamma_{q}+r_{m}-1$. Since $r_{q} \leq \gamma_{q}-1$, we obtain that $r_{m}=0$ and $r_{q}=\gamma_{q}-1$.
Case 2. $p=2$.
Similarly, the equality $p+q=m$ leads to $r_{q}=\gamma_{q}+r_{m}-2$, whence $r_{m}=0$, $r_{q}=\gamma_{q}-2$ or $r_{m}=1, r_{q}=\gamma_{q}-1$.

For both cases, it is easy to verify the strict inequality. Consequently $\gamma_{m}<\gamma_{q}+1$. But $m>q$ implies $\gamma_{m} \geq \gamma_{q}$, so $\gamma_{q}=\gamma_{m} \geq 4$. For $r_{q}=0$, the equality in Eq. (3) holds for both $p=1$ and $p=2$. For $r_{q} \geq 1$, the equality in Eq. (3) becomes $2^{r_{q}}=2$ if $p=1$ and $3 \cdot 2^{r_{q}}=4$ if $p=2$. The latter one is obviously impossible and the former one is possible only if $p=r_{q}=1$. To conclude, either $r_{q}=0$ and by the induction hypothesis G_{2} is a clique, or $p=r_{q}=1$ and G_{2} is a clique with a pendent edge (see Fig. 3). In both cases, the graph G is a clique with one or two arbitrarily inserted edges.

If G has no cut vertex, then by checking the condition of equalities in Eqs. (4), (5), and (6), we see that all possible cases are $\delta=r_{m}$, or $r_{m}=2$ and $\delta=1$, or $\delta=\gamma_{m}-1$. For the first case, by the induction hypothesis, $G-v$ is complete. For the second case, $G-v$ is a clique with a pendent edge, so G is a clique with two arbitrarily inserted edges. For the third case, G is complete.

3 Graphs of fixed order and size

Proof of Corollary 1 First note that $m \geq n-1$ for G is connected. Let G_{0} be the maximizer and assume that $F_{1}, F_{2}, \ldots, F_{k}$ are all the components of order greater
than one in G_{0}^{c}. If $k=1$, then by applying Theorem 2 (3), we may construct a graph H of order n such that H^{c} consists of isolated vertices and a component F_{1}^{*} of size $m^{\prime}=\binom{n}{2}-m$ with $c\left(F_{1}^{*}\right)=c^{*}\left(m^{\prime}\right)$, where the function c^{*} is defined in the proof of Theorem 2. Obviously, $c\left(F_{1}\right) \leq c\left(F_{1}^{*}\right)$ and $\left|V\left(F_{1}^{*}\right)\right| \leq\left|V\left(F_{1}\right)\right|$. Thus the number of isolated vertices in H^{c} is no less than that in G_{0}^{c}. Combining these two facts we have $F(H)=c\left(H^{c}\right) \geq c\left(G_{0}^{c}\right)=F\left(G_{0}\right)$ with equality if and only if F_{1} is a maximizer in Theorem 2 (3) as desired.

So we may assume that $k \geq 2$. The disjoint union of two graphs G_{1} and G_{2} is $G_{1} \cup G_{2}=\left(V\left(G_{1}\right) \cup V\left(G_{2}\right), E\left(G_{1}\right) \cup E\left(G_{2}\right)\right)$. The adjoin $G_{1} \cdot G_{2}$ is obtained from G_{1} and G_{2} by identifying a vertex of G_{1} with a vertex of G_{2}. The adjoin of two graphs is not necessarily unique. Let v be the identified vertex in $G_{1} \cdot G_{2}$. By Lemma 1, we have

$$
\begin{aligned}
c\left(G_{1} \cdot G_{2}\right) & =c\left(G_{1} \cdot G_{2}-v\right)+c(N(v)) \\
& =c\left(G_{1}-v\right)+c\left(G_{2}-v\right)-1+c\left(N_{G_{1}}(v)\right)+c\left(N_{G_{2}}(v)\right)-1 \\
& =c\left(G_{1}-v\right)+c\left(N_{G_{1}}(v)\right)+c\left(G_{2}-v\right)+c\left(N_{G_{2}}(v)\right)-2 \\
& =c\left(G_{1}\right)+c\left(G_{2}\right)-2=c\left(G_{1} \cup G_{2}\right)-1 .
\end{aligned}
$$

Inductively we may define the adjoin $G_{1} \cdot G_{2} \cdots G_{l}$ of k graphs $G_{1}, G_{2}, \ldots, G_{l}$ as the adjoin of the two graphs G_{l} and $G_{1} \cdot G_{2} \cdots G_{l-1}$. By induction, it is easy to see that

$$
c\left(G_{1} \cdot G_{2} \cdots G_{l}\right)=c\left(\bigcup_{i=1}^{l} G_{i}\right)-(l-1) .
$$

Now let H be a graph of order n consisting of the adjoin of F_{1}, \ldots, F_{k} and isolated vertices. It is easy to check that H has $k-1$ more isolated vertices than G^{c}, thus we have

$$
c(H)-c\left(G^{c}\right)=c\left(F_{1} \cdot F_{2} \cdots F_{k}\right)+(k-1)-c\left(\bigcup_{i=1}^{k} F_{i}\right)=0
$$

Replacing G by H^{c}, we reduce to the case $k=1$. The upper bound is now proved. If the equality holds for $k \geq 2$, then H consists of isolated vertices and a large component $F=F_{1} \cdot F_{2} \cdots F_{k}$, which is a maximizer in Theorem $2(3)$. This is possible only if $|E(F)|=\binom{l}{2}+1$ or $\binom{l}{2}+2$ for some $l \in \mathbb{N}$ by the structure of the maximizer F. In the former case, F can only be the adjoin of K_{2} and a clique, both of which cannot be the adjoin of two connected graphs of order at least two. So $k=2$ and G^{c} consists of an isolated edge, a clique, and isolated vertices. In the latter case, F can only be the adjoin of a clique and a path of length two, or K_{2} and a clique with a pendent edge. Thus G^{c} must be the extreme graphs described in the theorem.

Lemma 2 Let G be such a graph that G^{c} has an isolated vertex v and a vertex u with $N_{G^{c}}(u)=\left\{w_{1}, \ldots, w_{k}\right\}$ and $k \geq 2$. If H is a graph obtained from G by replacing the edge $v w_{1}$ by a new edge $u w_{1}$, see Fig. 4, then $Z(G)<Z(H)$.

Fig. 4 The local structures of G^{c} and H^{c} in Lemma 2

in G^{c}

$Z\left(G-v_{1}-w_{1}+u v_{2}\right) \leq Z\left(H-u-v_{1}+w_{1} w_{2}\right)$ with equality if and only if $k=2$. On the other hand, $H-u-v_{1}-w_{1}-w_{2}$ is a subgraph of $G-v_{1}-w_{1}-u-v_{2}$. The two graphs are isomorphic if and only if the vertex v_{2} is isolated in $G^{c}-u-v_{1}$. Hence, $Z\left(G-v_{1}-w_{1}-u-v_{2}\right) \geq Z\left(H-u-v_{1}-w_{1}-w_{2}\right)$ with equality if and only if $N_{G_{1}^{c}}\left(v_{2}\right) \subset\left\{u, v_{1}\right\}$. Thus $Z(G) \leq Z(H)$ with equality if and only if $k=2$ and $N_{G^{c}}\left(v_{2}\right) \subset\left\{u, v_{1}\right\}$.

Lemma 5 Let H be an arbitrary graph and let $G(k, l)$ be such a graph that $G^{c}(k, l)=$ $H \cup P_{k} \cup P_{l}$. If $k \geq l+2$, then $Z(G(k, l))<Z(G(k-1, l+1))$.

Proof Denote by u_{1} an end vertex of P_{k} with its neighbor u_{2} in $G^{c}(k, l)$. Also denote by v_{1} an end vertex of P_{l+1} with its neighbor v_{2} in $G^{c}(k-1, l+1)$. Note that $G(k-1, l+1)+v_{1} v_{2}$ and $G(k, l)+u_{1} u_{2}$ are isomorphic to each other. Hence,

$$
\begin{aligned}
Z(G(k, l))-Z(G(k-1, l+1))= & Z\left(G(k, l)+u_{1} u_{2}\right)-Z\left(G(k, l)-u_{1}-u_{2}\right) \\
& -\left[Z\left(G(k-1, l+1)+v_{1} v_{2}\right)\right. \\
& \left.-Z\left(G(k-1, l+1)-v_{1}-v_{2}\right)\right] \\
= & Z(G(k-1, l-1))-Z(G(k-2, l)) .
\end{aligned}
$$

Consequently, by Corollary 2 we have

$$
Z(G(k, l))-Z(G(k-1, l+1))=Z(G(k-l, 0))-Z(G(k-l-1,1)<0,
$$

since $G(k-l, 0)$ is a proper subgraph of $G(k-l-1,1)$.
Proof of Theorem 3 We prove the two items successively.
Item 1 . Let G_{0} be the maximizer. If $m>\binom{n}{2}-\frac{n}{2}$, then there exists an isolated vertex in G_{0}^{c} and by Lemma 2, every vertex in G_{0}^{c} is of degree no larger than 1. For $m=\binom{n}{2}-\frac{n}{2}$, if there is an isolated vertex in G_{0}^{c}, then G_{0}^{c} has another vertex of degree more than 1 by the pigeonhole principle, which contradicts Lemma 2. Hence every vertex of G_{0}^{c} has degree 1 . In both cases, we deduce that G_{0} is isomorphic to $K_{n}-M$.

Item 2. Let G_{1} be the maximizer and $m^{\prime}=\binom{n}{2}-m$. For $m<\binom{n}{2}-\frac{n}{2}$, we have $m^{\prime}>n / 2$ and the complement G_{1}^{c} has a vertex of degree larger than 1 . Thus by Lemma 2, G_{1}^{c} has no isolated vertex. First, when $m^{\prime}<2 n / 3$, there exists a component of order 2 in G_{1}^{c} by Lemma 3. In this case, every vertex with degree larger than 1 in G_{1}^{c} is in a component of K_{3} or P_{3} in G_{1}^{c} by Lemma 4. As a consequence, G_{1}^{c} is just a disjoint union of triangles and paths of order 2 or 3 . Denote by a, b, and c, the number of components of K_{2}, P_{3}, and K_{3} in G_{1}^{c} respectively. We have $2 a+3 b+3 c=n$ and $a+2 b+3 c=m^{\prime}$. It leads to $3 c-a=3 m^{\prime}-2 n<0$ and so $a>3 c$. Suppose $c>0$. We have $a>0$. Let $x y z$ be a triangle and $u v$ be an isolated edge in G_{1}^{c} and let $G_{2}=G_{1}+x y-v x$. It is easily verified that $Z\left(G_{1}\right)=Z\left(G_{2}\right)$ by Lemma 1. Along this procedure, pairs of K_{3} and K_{2} are converted to P_{5} and one can finally obtain a connected triangle-free graph G_{3} of order n and size m with $Z\left(G_{3}\right)=Z\left(G_{1}\right)$ and G_{3}^{c} is a disjoint union of paths of order 2,3 , or 5 . However, by Lemma $5, Z\left(G_{3}\right)$ can be enlarged by averaging the length of the paths which contradicts our hypothesis that G_{1} is the maximizer. Hence, G_{1}^{c} is just a disjoint union of paths of order 2 or 3 . Secondly
consider $m^{\prime}=2 n / 3$. If G_{1}^{c} has a component of order 2, then analogous to the proof of the previous case one can deduce that G_{1}^{c} is just a disjoint union of paths of order 2 or 3 , which contradicts $m^{\prime}=2 n / 3$. Thus G_{1}^{c} has no component of order at most 2 . By Lemma 3, in this case G_{1}^{c} only consists of paths of length two.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. H. Deng, The largest Hosoya index of $(n, n+1)$-graphs. Comput. Math. Appl. 56(10), 2499-2506 (2008)
2. H. Deng, The smallest Hosoya index in ($n, n+1$)-graphs. J. Math. Chem. 43(1), 119-133 (2008)
3. H. Deng, The smallest Merrifield-Simmons index of $(n, n+1)$-graphs. Math. Comput. Model. 49(1-2), 320-326 (2009)
4. H. Deng, S. Chen, The extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index. MATCH Commun. Math. Comput. Chem. 59(1), 171-190 (2008)
5. H. Deng, S. Chen, J. Zhang, The Merrifield-Simmons index in $(n, n+1)$-graphs. J. Math. Chem. 43(1), 75-91 (2008)
6. I. Gutman, Acyclic systems with extremal Hückel π-electron energy. Theor. Chim. Acta 45, 79-87 (1977)
7. H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 44, 2322-2339 (1971)
8. Y. Liu, W. Zhuang, Z. Liang, Largest Hosoya index and smallest Merrifield-Simmons index in tricyclic graphs. MATCH Commun. Math. Comput. Chem. 73, 195-224 (2015)
9. W. Mantel, Problem 28: solution by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff. Wisk. Opgaven 10, 60-61 (1907)
10. R.E. Merrifield, H.E. Simmons, The structure of molecular topological spaces. Theor. Chim. Acta 55, 55-75 (1980)
11. R.E. Merrifield, H.E. Simmons, Topological Methods in Chemistry (Wiley, New York, 1989)
12. J. Ou, On extremal unicyclic molecular graphs with maximal Hosoya index. Discrete Appl. Math. 157(2), 391-397 (2009)
13. J. Ou, On extremal unicyclic molecular graphs with prescribed girth and minimal Hosoya index. J. Math. Chem. 42(3), 423-432 (2007)
14. X. Pan, Z. Sun, The (n, m)-graphs of minimum Hosoya index. MATCH Commun. Math. Comput. Chem. 64, 811-820 (2010)
15. A.S. Pedersen, P.D. Vestergaard, The number of independent sets in unicyclic graphs. Discrete Appl. Math. 152(1-3), 246-256 (2005)
16. H. Prodinger, R.F. Tichy, Fibonacci numbers of graphs. Fibonacci Quart. 20(1), 16-21 (1982)
17. W. So, W.-H. Wang, Finding the least element of the ordering of graphs with respect to their matching numbers. MATCH Commun. Math. Comput. Chem. 73, 225-238 (2015)
18. S. Wagner, I. Gutman, Maxima and minima of the Hosoya index and the Merrifield-Simmons index, a survey of results and techniques. Acta Appl. Math. 112, 323-346 (2010)
19. B. Wang, C. Ye, H. Zhao, Extremal unicyclic graphs with respect to Merrifield-Simmons index. MATCH Commun. Math. Comput. Chem. 59(1), 203-216 (2008)
20. H. Wang, H. Hua, Unicycle graphs with extremal Merrifield-Simmons index. J. Math. Chem. 43(1), 202-209 (2008)
21. D.R. Wood, On the maximum number of cliques in a graph. Graphs Comb. 23(3), 337-352 (2007)
22. Y. Ye, X.-F. Pan, H. Liu, Ordering unicyclic graphs with respect to Hosoya indices and MerrifieldSimmons indices. MATCH Commun. Math. Comput. Chem. 59(1), 191-202 (2008)
23. H. Zhao, R. Liu, On the Merrifield-Simmons index of graphs. MATCH Commun. Math. Comput. Chem. 56(3), 617-624 (2006)
