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Abstract
In this article, we give sharp bounds on the Hosoya index and theMerrifield–Simmons
index for connected graphs of fixed size.As a consequence,we determine all connected
graphs of any fixed order and size which maximize the Merrifield–Simmons index.
Sharp lower bounds on the Hosoya index are known for graphs of order n and sizem ∈
[n− 1, 2n− 3] ∪

((n−1
2

)
,
(n
2

)]
; while sharp upper bounds were only known for graphs

of order n and size m ≤ n + 2. We give sharp upper bounds on the Hosoya index for
dense graphs withm ≥ (n

2

)−2n/3. Moreover, all extreme graphs are also determined.

Keywords Fibonacci · Hosoya index · Merrifield–Simmons index · Clique · Graph ·
Matching

1 Introduction

We consider simple graphs, namely graphs without loops or multiple edges in this arti-
cle. Let G = (V , E) be a graph. The order of G is |V | and the size of G is |E |. Denote
by Gc the complement of G. For a vertex v ∈ V , we denote by NG(v) (or simply
N (v)) the neighborhood of v in G and the degree of v is |N (v)|. A matching of G is
a set of disjoint edges in G and a stable set of G is a subset of vertices which induces
an edgeless subgraph. The Hosoya index of G, denoted by Z(G), is the number of all
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matchings in G. The Merrifield–Simmons index or Fibonacci number of G, denoted
by F(G), is the number of all stable sets in G; and let c(G) be its complement, i.e., the
number of all cliques in G. For simplicity, we write c(U ) instead of c(G[U ]), where
G[U ] is a subgraph of G induced by a subset U of V . Denote by Kn , Pn , and Sn , a
complete graph, a path, and a star of order n respectively. A graph of order n and size

m is called almost complete if m >
(n−1

2

)
. Let fn = 1√

5

[(
1+√

5
2

)n −
(
1−√

5
2

)n]
be

the nth Fibonacci number throughout.
The Hosoya index was first introduced in 1971 by Hosoya [7] as a molecular-graph

based structure descriptor, which he named topological index. Hosoya showed that
certain physico-chemical properties of alkanes (in particular, their boiling points) are
well correlated with this index. On the other hand, the Merrifield–Simons index intro-
duced by Merrifield and Simmons in 1980s [10,11] is also known as the Fibonacci
number of a graph introduced by Prodinger and Tichy [16] in the literature of math-
ematics. Enlightening connections of these two indices are observed in the literature.
The most direct connection is that for a graph G and its line graph L(G), we have
F(L(G)) = Z(G) by their definitions. Moreover, it is discovered that heuristically
speaking, the graphwithmaximumHosoya index is similar to the graphwithminimum
Merrifield–Simmons index; and the graph with minimum Hosoya index is similar to
the graph with maximum Merrifield–Simmons index. For example, Gutman [6] in
1977 proved that the path is the tree that maximizes the Hosoya index and the star is
the tree that minimizes it; while Prodinger and Tichy [16] in 1982 proved that the path
minimizes the Merrifield–Simmons index and the star maximizes it among all trees of
fixed order. The same pattern also exists in unicyclic graphs and bicyclic graphs, see
[1–5,12,13,15,19,20,22]. However, Liu et al. [8] in 2015 showed that different patterns
appear in tricyclic graphs. Let us summarize the case of trees as a theorem which is
used later on.

Theorem 1 [6,16] Among all trees of order n, the star Sn minimizes the Hosoya index
andmaximizes theMerrifield–Simmons index, while the path Pn maximizes theHosoya
index and minimizes the Merrifield–Simmons index. Moreover, F(Sn) = 2n−1 + 1,
Z(Sn) = n, F(Pn) = fn+2, and Z(Pn) = fn+1.

For simplicity, we call a graph maximizer if it maximizes the corresponding index.
The minimizer is similarly defined. It is clear that c(G) ≥ n +m + 1 for a graph G of
order n and size m. Considering the complement, we have F(G) ≥ (n

2

) + n − m + 1

for m ≥ n2
4 − n

2 with equality if and only if the largest stable set of G has at most two
vertices. On the other hand, Zhao and Liu [23] in 2006 determined the connected graph
of order n and size m that maximizes the Merrifield–Simmons index for m ≤ 2n − 3.
In 2007, Wood [21] gave a sharp upper bound on the Merrifield–Simmons index for
all possible values of m in its complement form. Extending their results, we establish
sharp bounds on these indices for connected graphs of fixed size.

Theorem 2 Let G be a connected graph of size m and let γ = (1+√
1 + 8m)/2. The

following statements hold.

1.
(�γ �+1

2

) − m + 1 ≤ F(G) ≤ 2m + 1. The first equality holds if and only if G is
almost complete and Gc is triangle-free, and the second equality holds if and only
if G is a star.
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Fig. 1 A clique K4 with two arbitrarily inserted edges

Fig. 2 Four types of Gc described in Corollary 1 for n = 6

2. m + 1 ≤ Z(G) ≤ fm+2 = 1√
5

[(
1+√

5
2

)m+2 −
(
1−√

5
2

)m+2
]
. The first equality

holds if and only if G is a star or a triangle, and the second equality holds if and
only if G is a path.

3.
⌈
(
√
m + 1)2

⌉ ≤ c(G) ≤ 2	γ 
 + 2m−(	γ 

2 )(�γ � − 	γ 
). The first equality holds if

and only if G is a triangle-free graph of order �2√m�, and the second equality
holds if and only if G has such a vertex v that G − v is complete or G consists of
a clique and two more arbitrarily inserted edges (see Fig. 1 for example).

As a consequence of Theorem 2, we obtain the following complement form of the
Wood upper bound [21] with all the determined maximizers.

Corollary 1 [21] If G is a connected graph of order n and size m and γ =
1
2

(
1 +

√
1 + 8

[(n
2

) − m
])
, then F(G) ≤ 2	γ 
 +2(

n
2)−m−(	γ 


2 )(�γ �−	γ 
)+n−�γ �
with equality if and only if Gc consists of isolated vertices and one of the following
graphs (see Fig. 2 for example with n = 6):

• a maximizer in Theorem 2 (3),
• a disjoint union of a clique and one clique or two cliques of order two,
• a disjoint union of a clique and a path of length two,
• a disjoint union of a clique with a pendent edge and a clique of order two.

In 2010, Pan and Sun [14] also determined the connected graph of order n and size
m that minimizes the Hosoya index for m ≤ 2n − 3. Again these extreme graphs are
quite similar to those with the largestMerrifield–Simons index in [23]. In 2015, So and
Wang [17] determined the minimizers for m >

(n−1
2

)
in a stronger form. Extending

their results, we give sharp upper bounds on the Hosoya index for dense graphs.

Theorem 3 LetG bea connected graphof order n and sizem. The following statements
hold.

1. If m ≥ (n
2

) − n
2 and M is a matching of size

(n
2

) − m in the complete graph Kn,
then Z(G) ≤ Z(Kn − M) with equality if and only if G is isomorphic to Kn − M.

2. If
(n
2

) − 2n
3 ≤ m <

(n
2

) − n
2 , then Z(G) is maximized by such a graph G that Gc

is a disjoint union of paths of length one or two.
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More extreme results on these two indices for other class of graphs can be found in the
survey [18]. In order to prove our theorems, we need a simple lemma which follows
directly from the definitions.

Lemma 1 If uv is an edge of a graph G, then the following equalities hold:

• c(G) = c(G − v) + c(N (v)) = c(G − uv) + c(N (u) ∩ N (v));
• F(G) = F(G − v) + F(G − N (v)) = F(G − uv) − F(G − N (u) − N (v));
• Z(G) = Z(G − uv) + Z(G − u − v).

Corollary 2 If H be a subgraph of G, then Z(H) ≤ Z(G) with equality if and only if
E(G) = E(H). Moreover, if H is a proper induced subgraph of G, then c(H) < c(G)

and F(H) > F(G).

The proof of Theorem 2 is presented in Sect. 2 and the proofs of Corollary 1 and
Theorem 3 are presented in Sect. 3 respectively.

2 Graphs of fixed size

Proof of Theorem 2 Let n be the order of G. We prove the three items successively.
Item 1. Since G is connected, we have m ≥ n − 1. For m ≥ n, it is obvious that

F(G) ≤ 2m . For m = n − 1, the graph G is a tree. The upper bound follows from
Theorem 1 that F(T ) ≤ 2m+1 for all trees T with equality if and only if T is a star. For
the lower bound, we have F(G) ≥ 1+n+|E(Gc)| = 1+n+(n

2

)−m = (n+1
2

)−m+1.
The desired inequality follows from n ≥ �γ � for m ≤ (n

2

)
. For the equality, it is

necessary and sufficient thatGc is triangle-free andn = �γ �, i.e.,G is almost complete.
Item 2. Note that Z(G) is the Merrifield–Simmons index of the line graph L(G).

Since L(G) is of order m, from the proof of Item 1 we have Z(G) = F(L(G)) ≥
1 + m + |E(L(G)c)| ≥ m + 1 with equality if and only if L(G) is complete, which
for m �= 3 is equivalent to G being a star. For m = 3, the graph G can be either a star
or a triangle. For the upper bound, let G∗ be the maximizer. We claim that every edge
of G∗ is a bridge. Indeed suppose to the contrary that uv is an edge of G∗, but not a
bridge in G∗. Deleting the edge uv and inserting a new vertex x and a new edge vx to
G∗ result in a connected graph G of size m with

Z(G) = Z(G − vx) + Z(G − v − x) = Z(G∗ − uv) + Z(G∗ − v).

Since G∗ − uv is connected, the vertex u must be incident with some other edge
besides uv. It turns out that G∗ − u − v is a proper subgraph of G∗ − v, which with
Corollary 2 and Lemma 1 implies Z(G) > Z(G∗ − uv) + Z(G∗ − u − v) = Z(G∗),
contrary to the maximality of G∗. Thus G∗ is a tree and in fact it is a path with
Z(G∗) = Z(Pm+1) = fm+2 by Theorem 1.

Item 3. First we establish the lower bound on c(G). This is done by showing that
c(G) is minimized by a triangle-free graph. If G has a triangle, say uvw, then deleting
the edge uv and inserting a new vertex x and a new edge vx to G result in a connected
graph H of size m. By Lemma 1, we have
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c(G) = c(G − uv) + c(NG(u) ∩ NG(v))

= c(H − x) + c(NG(u) ∩ NG(v))

= c(H) − c(NH (x)) + c(NG(u) ∩ NG(v)).

Observe that NH (x) = {v} andw ∈ NG(u)∩NG(v). Applying Corollary 2, we obtain
c(NG(u) ∩ NG(v)) ≥ c({w}) = 2 = c(NH (x)) and so c(G) ≥ c(H). Since there
are (strictly) less triangles and more leaves (i.e., vertices of degree one) in H than
in G, one can repeat this process to obtain a triangle-free graph G ′ of size m so that
c(G ′) ≤ c(G). By the Mantel theorem [9], we have

c(G ′) ≥ m + n + 1 ≥ m + �2√m� + 1 =
⌈
(
√
m + 1)2

⌉
. (1)

It is readily verified that any triangle-free graph of order �2√m� and size m attains
the lower bound. Conversely, we claim that each minimizer must be triangle-free of
order �2√m�. By Eq. (1), it is clear that any graph attaining the lower bound is of
order �2√m�. Let G∗ be a minimizer of size m and so |V (G∗)| = �2√m�. It suffices
to show that G∗ is triangle-free. This is trivial for m ≤ 4. For m ≥ 5, suppose to
the contrary that uvw is a triangle in G∗. Since w ∈ NG∗(u) ∩ NG∗(v), we have
c(NG∗(u) ∩ NG∗(v)) ≥ 2 and

⌈
(
√
m + 1)2

⌉
= c(G∗) = c(G∗−uv)+c(NG∗(u)∩NG∗(v)) ≥

⌈
(
√
m−1+1)2

⌉
+2

(2)
which implies �2√m� ≥ �2√m − 1� + 1. Meanwhile, we have the elementary esti-
mation

2
√
m − 2

√
m − 1 = 2√

m + √
m − 1

≤ 2√
5 + 2

< 1

and hence,

⌈
2
√
m

⌉ −
⌈
2
√
m − 1

⌉
≤

⌈
2
√
m − 1 + 1

⌉
−

⌈
2
√
m − 1

⌉
= 1.

Thus the equality holds in Eq. (2), which implies that G∗ − uv is also a minimizer
of size m − 1 and order �2√m − 1�. But this contradicts the fact that G∗ − uv is a
spanning subgraph of G∗ of order �2√m�.

Secondly we show the upper bound. For simplicity, we define a map f : Z+ → Z+
by

f (n) =
{
0, n = 0,
2n, n > 0.

Note that f is convex, i.e., f (u) − f (u − s) ≥ f (v) − f (v − s) for u ≥ v ≥ s.
Denote by γn, rn the unique pair of integers satisfying 0 ≤ rn < γn and n = (

γn
2

)+rn .
With the above notations, let c∗(m) = 2γm + f (rm). For m ≤ 5, the upper bound
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is trivial. Now we assume that m ≥ 6 and γm ≥ 4 and use induction on m. If G
has a cut vertex, say v, then G can be covered by two connected subgraphs, say G1
and G2 with V (G1) ∩ V (G2) = {v} and E(G) = E(G1) ∪ E(G2). Observe that
c(G) = c(G1) + c(G2) − 2. Denote by p and q the sizes of G1 and G2 respectively.
By the induction hypothesis, we have

c(G) ≤ c∗(p) + c∗(q) − 2 = 2γp + 2γq + f (rp) + f (rq) − 2.

Let S(m, p, q) = c∗(m)− c∗(p)− c∗(q)+2 = 2γm + f (rm)−[2γp +2γq + f (rp)+
f (rq) − 2]. It suffices to prove

S ≥ 0 for all m = p + q. (3)

We may assume that rp = rq = 0. In fact, note that γm ≥ max{γp, γq}. If rm ≥ rp,
then by the convexity of f , we have

f (rm) − f (rp) ≥ f (rm − rp) − f (0) = f (rm − rp).

Hence, S(m, p, q) ≥ S(m − rp, p − rp, q). The new remainder term rp−rp turns out
to be 0 and the new γp−rp = γp. If rm < rp, then we obtain from the convexity of f
and the fact rp < γp that

f (rm) − f (rp) ≥ f (rm + γp − rp) − f (γp) = f (rm + γp − rp) − 2γp .

Hence, S(m, p, q) ≥ S(m + γp − rp, p + γp − rp, q). The new remainder term
rp+γp−rp turns out to be 0 again and the new γp+γp−rp = γp + 1 > γp. Applying
the same procedure to q, we reduce to the case where rp = rq = 0. Note that in
this procedure, γp and γq are both nondecreasing. Without loss of generality, we may
assume p ≤ q. If γm ≥ γq + 1, then we have 2γp + 2γq ≤ 2γq+1 ≤ 2γm , thereby
S(m, p, q) ≥ 2 + f (rm) > 0. The remaining case γm = γq is possible only if
rm = p < γq . It follows that S(m, p, q) = 2p − 2γp + 2. By definition, it is evident
that γp ≥ 2. Thus 2p − 2γp + 2 ≥ 0 follows from direct computation for γp = 2 and
from p = γp(γp − 1)/2 ≥ γp(3 − 1)/2 = γp otherwise.

So we can assume that G has no cut vertex. Since m ≤ (n
2

)
, we have γm ≤ n.

If γm = n then G is complete and the upper bound holds trivially. Thus we may
assume γm ≤ n − 1. Now choose a vertex v with minimum degree δ in G. Since
δ ≤ 2m/n < γm(γm + 1)/n ≤ γm , we see δ ≤ γm − 1 and so γm−δ ≥ γm − 1. By
Lemma 1 and the induction hypothesis, we obtain

c(G) = c(G − v) + c(N (v)) ≤ c∗(m − δ) + 2δ. (4)

Now it suffices to prove 2γm−δ + f (rm−δ)+2δ ≤ 2γm + f (rm). For δ ≤ rm , it simplifies
to

f (rm − δ) + f (δ) ≤ f (rm) (5)
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Fig. 3 A clique K4 with a
pendent edge

which follows directly from the convexity of f . For rm < δ ≤ γm − 1, we need to
show

f (γm − 1) − f (γm − 1 − (δ − rm)) ≥ f (δ) − f (rm) (6)

which follows from γm − 1 ≥ δ and once again the convexity of f .
Finally we determine the maximizer G. If G has a cut vertex, then all equalities in

the proof of S(m, p, q) ≥ 0 must be attained. Recall that in the reduction to γp = 2,
the procedure keeps γp nondecreasing. Thus γp ≤ 2 for the original graph G. But by
definition γp ≥ 2, so γp = 2 remains true for G. Consequently we have p = 1 or 2.
As we assumed γm ≥ 4, we see that γq ≥ 3, and γm ≤ γq + 1. If γm = γq + 1, then
we consider the following two cases.

Case 1. p = 1.
In this case, we have

p + q = 1 +
(

γq

2

)
+ rq = m =

(
γq + 1

2

)
+ rm,

which implies that rq = γq + rm − 1. Since rq ≤ γq − 1, we obtain that rm = 0 and
rq = γq − 1.

Case 2. p = 2.
Similarly, the equality p + q = m leads to rq = γq + rm − 2, whence rm = 0,

rq = γq − 2 or rm = 1, rq = γq − 1.
For both cases, it is easy to verify the strict inequality. Consequently γm < γq + 1.

But m > q implies γm ≥ γq , so γq = γm ≥ 4. For rq = 0, the equality in Eq. (3)
holds for both p = 1 and p = 2. For rq ≥ 1, the equality in Eq. (3) becomes 2rq = 2
if p = 1 and 3 · 2rq = 4 if p = 2. The latter one is obviously impossible and the
former one is possible only if p = rq = 1. To conclude, either rq = 0 and by the
induction hypothesis G2 is a clique, or p = rq = 1 and G2 is a clique with a pendent
edge (see Fig. 3). In both cases, the graph G is a clique with one or two arbitrarily
inserted edges.

If G has no cut vertex, then by checking the condition of equalities in Eqs. (4), (5),
and (6), we see that all possible cases are δ = rm , or rm = 2 and δ = 1, or δ = γm −1.
For the first case, by the induction hypothesis, G−v is complete. For the second case,
G − v is a clique with a pendent edge, so G is a clique with two arbitrarily inserted
edges. For the third case, G is complete. ��

3 Graphs of fixed order and size

Proof of Corollary 1 First note that m ≥ n − 1 for G is connected. Let G0 be the
maximizer and assume that F1, F2, . . . , Fk are all the components of order greater
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than one in Gc
0. If k = 1, then by applying Theorem 2 (3), we may construct a graph

H of order n such that Hc consists of isolated vertices and a component F∗
1 of size

m′ = (n
2

) − m with c(F∗
1 ) = c∗(m′), where the function c∗ is defined in the proof of

Theorem 2. Obviously, c(F1) ≤ c(F∗
1 ) and |V (F∗

1 )| ≤ |V (F1)|. Thus the number of
isolated vertices in Hc is no less than that in Gc

0. Combining these two facts we have
F(H) = c(Hc) ≥ c(Gc

0) = F(G0) with equality if and only if F1 is a maximizer in
Theorem 2 (3) as desired.

So we may assume that k ≥ 2. The disjoint union of two graphs G1 and G2 is
G1 ∪G2 = (V (G1)∪ V (G2), E(G1)∪ E(G2)). The adjoin G1 ·G2 is obtained from
G1 andG2 by identifying a vertex ofG1 with a vertex ofG2. The adjoin of two graphs
is not necessarily unique. Let v be the identified vertex in G1 · G2. By Lemma 1, we
have

c(G1 · G2) = c(G1 · G2 − v) + c(N (v))

= c(G1 − v) + c(G2 − v) − 1 + c(NG1(v)) + c(NG2(v)) − 1

= c(G1 − v) + c(NG1(v)) + c(G2 − v) + c(NG2(v)) − 2

= c(G1) + c(G2) − 2 = c(G1 ∪ G2) − 1.

Inductively we may define the adjoin G1 · G2 · · ·Gl of k graphs G1,G2, . . . ,Gl as
the adjoin of the two graphs Gl and G1 · G2 · · ·Gl−1. By induction, it is easy to see
that

c(G1 · G2 · · ·Gl) = c

(
l⋃

i=1

Gi

)
− (l − 1).

Now let H be a graph of order n consisting of the adjoin of F1, . . . , Fk and isolated
vertices. It is easy to check that H has k − 1 more isolated vertices than Gc, thus we
have

c(H) − c(Gc) = c(F1 · F2 · · · Fk) + (k − 1) − c

(
k⋃

i=1

Fi

)
= 0

Replacing G by Hc, we reduce to the case k = 1. The upper bound is now proved. If
the equality holds for k ≥ 2, then H consists of isolated vertices and a large component
F = F1 · F2 · · · Fk , which is a maximizer in Theorem 2 (3). This is possible only if
|E(F)| = (l

2

) + 1 or
(l
2

) + 2 for some l ∈ N by the structure of the maximizer F . In
the former case, F can only be the adjoin of K2 and a clique, both of which cannot be
the adjoin of two connected graphs of order at least two. So k = 2 and Gc consists of
an isolated edge, a clique, and isolated vertices. In the latter case, F can only be the
adjoin of a clique and a path of length two, or K2 and a clique with a pendent edge.
Thus Gc must be the extreme graphs described in the theorem. ��
Lemma 2 Let G be such a graph that Gc has an isolated vertex v and a vertex u with
NGc (u) = {w1, . . . , wk} and k ≥ 2. If H is a graph obtained from G by replacing the
edge vw1 by a new edge uw1, see Fig. 4, then Z(G) < Z(H).
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in Gc in Hc

u

w1w2wk

v u

w1w2wk

v

Fig. 4 The local structures of Gc and Hc in Lemma 2

in Gc in Hc

u

v1v2vk

w1

w2

u

v1v2vk

w1

w2

Fig. 5 The local structures of Gc and Hc in Lemma 4

Proof By Lemma 1, we have Z(G) = Z(G − vw1) + Z(G − v − w1) and Z(H) =
Z(H − uw1) + Z(H − u − w1). Note that G − vw1 = H − uw1. Moreover, we
have Z(G − v − w1) < Z(H − u − w1) since G − v − w1 is a proper subgraph of
H − u − w1 for k ≥ 2. Thus Z(G) < Z(H). ��
Lemma 3 Let G be a graph of order n and size m. If G has no component of order at
most two, then m ≥ 2n/3 with equality if and only if G is a disjoint union of paths of
length two.

Proof Let k be the number of components of G. If G has no component of order at
most two, then k ≤ n/3 and m ≥ n − k ≥ 2n/3 with equality if and only if every
component of G is a path of order three. ��
Lemma 4 Let G be such a graph that Gc has a vertex u with NGc (u) = {v1, . . . , vk},
k ≥ 2 and a component of order 2, say w1w2. If H is a graph obtained from G by
replacing the edge v1w1 by a new edge uv1, see Fig. 5, then Z(G) ≤ Z(H) with
equality if and only if k = 2 and NGc (v2) ⊂ {u, v1}.

Proof Note that G − v1w1 = H − uv1. By Lemma 1, we get

Z(G) − Z(H) = Z(G − v1w1) + Z(G − v1 − w1) − [Z(H − uv1) + Z(H − u − v1)]
= Z(G − v1 − w1) − Z(H − u − v1)

= Z(G − v1 − w1 + uv2) − Z(G − v1 − w1 − u − v2)

−[Z(H − u − v1 + w1w2) − Z(H − u − v1 − w1 − w2)].

Note that G−v1−w1+uv2 is isomorphic to H −u−v1+w1w2−∑k
i=3 viw1 which

is a subgraph of H −u− v1 +w1w2. If k = 2, then the two graphs are identical. Thus
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Z(G − v1 − w1 + uv2) ≤ Z(H − u − v1 + w1w2) with equality if and only if k = 2.
On the other hand, H − u − v1 − w1 − w2 is a subgraph of G − v1 − w1 − u − v2.
The two graphs are isomorphic if and only if the vertex v2 is isolated in Gc − u − v1.
Hence, Z(G − v1 − w1 − u − v2) ≥ Z(H − u − v1 − w1 − w2) with equality if and
only if NGc

1
(v2) ⊂ {u, v1}. Thus Z(G) ≤ Z(H) with equality if and only if k = 2 and

NGc (v2) ⊂ {u, v1}. ��
Lemma 5 Let H be an arbitrary graph and let G(k, l) be such a graph that Gc(k, l) =
H ∪ Pk ∪ Pl . If k ≥ l + 2, then Z(G(k, l)) < Z(G(k − 1, l + 1)).

Proof Denote by u1 an end vertex of Pk with its neighbor u2 in Gc(k, l). Also denote
by v1 an end vertex of Pl+1 with its neighbor v2 in Gc(k − 1, l + 1). Note that
G(k − 1, l + 1) + v1v2 and G(k, l) + u1u2 are isomorphic to each other. Hence,

Z(G(k, l)) − Z(G(k − 1, l + 1)) = Z(G(k, l) + u1u2) − Z(G(k, l) − u1 − u2)

−[Z(G(k − 1, l + 1) + v1v2)

−Z(G(k − 1, l + 1) − v1 − v2)]
= Z(G(k − 1, l − 1)) − Z(G(k − 2, l)).

Consequently, by Corollary 2 we have

Z(G(k, l)) − Z(G(k − 1, l + 1)) = Z(G(k − l, 0)) − Z(G(k − l − 1, 1) < 0,

since G(k − l, 0) is a proper subgraph of G(k − l − 1, 1). ��
Proof of Theorem 3 We prove the two items successively.

Item 1. Let G0 be the maximizer. If m >
(n
2

) − n
2 , then there exists an isolated

vertex in Gc
0 and by Lemma 2, every vertex in Gc

0 is of degree no larger than 1. For
m = (n

2

)− n
2 , if there is an isolated vertex in G

c
0, then G

c
0 has another vertex of degree

more than 1 by the pigeonhole principle, which contradicts Lemma 2. Hence every
vertex of Gc

0 has degree 1. In both cases, we deduce that G0 is isomorphic to Kn − M .
Item 2. Let G1 be the maximizer and m′ = (n

2

) − m. For m <
(n
2

) − n
2 , we have

m′ > n/2 and the complement Gc
1 has a vertex of degree larger than 1. Thus by

Lemma 2, Gc
1 has no isolated vertex. First, whenm

′ < 2n/3, there exists a component
of order 2 in Gc

1 by Lemma 3. In this case, every vertex with degree larger than 1 in
Gc

1 is in a component of K3 or P3 in Gc
1 by Lemma 4. As a consequence, Gc

1 is just a
disjoint union of triangles and paths of order 2 or 3. Denote by a, b, and c, the number
of components of K2, P3, and K3 in Gc

1 respectively. We have 2a + 3b + 3c = n
and a + 2b + 3c = m′. It leads to 3c − a = 3m′ − 2n < 0 and so a > 3c. Suppose
c > 0. We have a > 0. Let xyz be a triangle and uv be an isolated edge in Gc

1 and let
G2 = G1 + xy − vx . It is easily verified that Z(G1) = Z(G2) by Lemma 1. Along
this procedure, pairs of K3 and K2 are converted to P5 and one can finally obtain a
connected triangle-free graph G3 of order n and size m with Z(G3) = Z(G1) and Gc

3
is a disjoint union of paths of order 2, 3, or 5. However, by Lemma 5, Z(G3) can be
enlarged by averaging the length of the paths which contradicts our hypothesis thatG1
is the maximizer. Hence, Gc

1 is just a disjoint union of paths of order 2 or 3. Secondly
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consider m′ = 2n/3. If Gc
1 has a component of order 2, then analogous to the proof

of the previous case one can deduce that Gc
1 is just a disjoint union of paths of order

2 or 3, which contradicts m′ = 2n/3. Thus Gc
1 has no component of order at most 2.

By Lemma 3, in this case Gc
1 only consists of paths of length two. ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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