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Abstract
Recently, the Euler T and Lambert W transcendental functions found useful applica-
tions in cellular radiobiology. Specifically, these functions appeared in mathematical
modeling of cell survival after irradiation using the formalism of chemical kinetics.
An example is a mechanistic inclusion of cell repair through enzyme catalysis in the
Michaelis–Menten formalism, where the concentration of radiation lesions is given
by the Lambert function. This function also appears in cell surviving fractions in an
alternative aspect of chemical kinetics when lesion repair is carried out by the so-called
pool repair molecules without passing through enzyme catalysis. Moreover, even with
no reference to chemical kinetics at all, both the Lambert and Euler functions emerge
in the framework of the cell repair dynamics described by delayed differential equa-
tions. The Euler function is also encountered within the cell blocking mechanism of
damage repair in analogy with the counting coincidence correction for the dead time
of the radiation detecting instruments. Presently, we analyze the overall usefulness of
the Lambert and Euler functions in radiotherapy with a goal of motivating a further
exploration of this analytical methodology in mechanistic radiobiological models for
cell survival. The main reason for pursuing this pathway is in its unified mechanistic
concept of cell surviving fractions valid at all doses from low through intermediate to
high radiation exposures. With this advance, no artificial cut-off doses are needed any
longer for empirical connections of the intermediate and high dose regimens in mathe-
maticalmodelings. This is particularly important in radiotherapy because the clinically
most frequently used linear–quadratic model is inadequate at high doses. High doses
are of main relevance to stereotactic radiotherapy for treatment of localized tumors
by efficaciously administering relatively large doses per fraction in a small number
of fractions within only a few days. Such a non-conventional treatment schedule is
advantageous both for the patient and hospitals’ cost effectiveness, especially rela-
tive to conventional radiotherapy, which uses small doses (2Gy) per fraction within a
month long period.
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1 Introduction

In the present work, we review the recent advances in the field of radiobiological
models [1–3] (2014, 2015). The main emphasis is placed onto survival of cells after
exposure to radiation. This research theme, especially when implemented by non-
conventional fractionated treatments with high doses, the stereotactic radiotherapy,
is of direct relevance to radiotherapy in cancer medicine [4–13] (1951–2012). The
reason is that eradication of cancerous cells is of utmost importance to the oncologist
for fuller control of the disease and, ultimately, cure of patients with cancer.

Themost frequently employed radiobiologicalmodel for conventional radiotherapy
(2Gy per fraction), called the linear–quadratic (LQ) model [14–23] (1938–2013) is
inappropriate for stereotactic radiotherapy [24,25] (2008, 2009). This occurs because
at large values of dose D, the LQ model gives the quadratic (D2) dependence of
the dose-effect relation, instead of the correct, linear (D) behavior. Such a failure
prompted researchers to use e.g. the Heaviside step function to link the low-dose LQ
model with the proper linear high-dose asymptote of the dose-effect curve. One of
such combinations is called the linear–quadratic-linear (LQL) model [26–36] (2004–
2009). In the LQL model, the dose-effect curve is a discontinuous function of D
at a cut-off (or a transition dose) DT. Moreover, the LQL has no mechanistic basis
similarly to the LQ model [21]. Further, the LQL model doubles the number of the
adjustable parameters relative to the LQ model (4 vs. 2). This is one of the reasons
for using certain alternatives as continuous, universal, cell survival curves that would
be adequate at all doses and, thus, applicable to stereotactic radiotherapy, as well
There exists a number of radiobiological models that can give such curves [37–53]
(1963–2014).

We shall place the principal emphasis on the radiobiological models that use the
Euler T and Lambert W functions for descriptions of cell repair within the system of
coupled differential equations from chemical kinetics. Two such models based upon
different repair mechanisms are the integrated Michaelis–Menten (IMM) [1] and the
pool repair Lambert (PRL) [2] models. They both give the continuous cell surviving
fractions at all doses, and predict the required asymptotes at small and large doses. As
such they are optimal for dose planning systems in conventional and non-conventional
radiotherapy at small and large doses per fraction, respectively. In the IMM and PRL
models, the corresponding systems of the kinetic equations for the concentrations
of radiation lesions, that yield the dose-effect curves, have previously been reduced
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to a linear-logarithmic [54,55] (1971, 1991), and a linear-exponential [56] (1972)
transcendental equation.

However, the authors of Refs. [54–56] have not solved these latter equations by
analytical means. Further, it has repeatedly been asserted [54,57,58] (1985, 1988) that
such transcendental equations have no explicit, closed form solutions. It was not until
recently [1,2] (2014) that the pertinent analytical solutions have been derived in terms
of the LambertW function. This is how the IMMand PRL radiobiologicalmodels have
emerged to advantageously facilitate both the analytical analyses and computations
of dose–response curves covering smoothly all doses. These mechanistic models are
computationally attractive because they each have only three radiobiologically inter-
pretable parameters. Moreover, the open source codes, libraries and packages for the
Lambert W function can efficiently be employed with either high or unlimited accu-
racy.

The passage from low to high linear dose regions through the intermediate shoul-
dered part of the dose-effect curve from the IMM and PRL models is automatically
secured by the built-in Lambert W function. This feature alone, in sharp contrast to
Refs. [26–36], obviates the need for introducing a superficial transition dose DT to
force the logarithmic surviving fractions to exhibit linear dose behavior at high doses
in an attempt to superficially enable an extension of the LQ model to stereotactic
radiotherapy.

The plan of this presentation is as follows. In Sects. 2–8, we address, from an alge-
braic perspective, several issues relevant to the properties of the Euler T and Lambert
W functions. Subsequently, in Sect. 9, we analyze the selected applications of these
functions to radiobiological chemical kinetics with the focus on repair mechanisms for
descriptions of the cell response to the imparted radiation. Section 10 deals with the
numerical results for these representative illustrations concentrating especially on the
relative performance of the LQ and IMM models. Finally, the conclusions regarding
these applications are given in Sect. 11.

2 General usefulness of the LambertW and Euler T functions

The Lambert W [59,60] (1758, 1770) and Euler T [61,62] (1777, 1783) functions are
multi-valued inverses of (generally) complex linear-exponential functions of complex
variables. For W , the corresponding direct function is y = xex , so that x = W (y).
For T , we have y = xe−x and, thus, x = T (y). The relationship T (y) = −W (−y)
shows that neither function is even (symmetric) nor odd (anti-symmetric). Earlier,
these functions have undergone several developmental stages through the articles of
many authors, includingWright in the 1950s [63–65] (1949–1959), Siewert et al. in the
1970s [66–79] (1972–1979), Corless et al. in the 1990s [80–85] (1993–1999), Scott
et al. [86,87] (1993), Schnell and Mendoza [88] (1997), Goudar et al. [89] (1999), etc.

Judging upon the abundant literature, prior to the first survey by Corless et al. [83]
(1996) on this subject area, and after the recent reviews by Nastou et al. [90] (2016),
Barsan [91] (2018) and an international workshop [92] (2016), a further significant
progress is expected also in the future. This prospect is feasible thanks to a number
of algorithms, libraries, packages (both numerical and symbolic) for computations
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of the W and T functions in several programing languages (Fortran, C++, Matlab,
Maple, Macsyma, Mathematica). Precision accuracy of the results ranges from high
to unlimited, as provided by the codes of Fritsch et al. [93] (1973), Barry et al. [94]
(1995), Bailey et al. [95,96] (2002, 2005), Gautschi [97,98] (2011), Veberič [99]
(2012), Jeffrey et al. [100] (2015), Johansson [101] (2017), Adler [102] (2017), etc.
Advantageously, some of the programs are available as open source codes.

The continued interest in the W and T functions across inter-disciplinary research
is due to the fact that they are the exact, explicit, analytical solutions tomany problems.
The variety of the applications of these functions is dizzying in vastly different fields
(mathematics, physics, chemistry, biology, medicine, ecology, sociology, education,
agriculture, technology, engineering, etc). An extended and systematized (application-
wise) bibliography, partially covering all the mentioned areas can be found in Ref.
[103] (2018).

3 Direct functions and inverse functions

3.1 Direct functions

The increasing and decreasing exponentials ex and e−x , respectively, pre-multiplied
by monomial x are frequently used in mathematical modeling of various phenomena
in biomedicine or ecology for species growth or decline, respectively:

y = xex , (3.1)

y = xe−x . (3.2)

Among the myriad of applications of functions of types (3.1) and (3.2), we could
mention e.g. the Ricker model [104]:

y = bxe−ax , (3.3)

where a and b are positive constants. TheRickermodel (3.3) for studies on populations
of various species, including humans, is frequently used in ecology and environmental
research [104]. The curve for y, as a function of the independent variable x, begins
to grow linearly as y ∼ bx for small x with the slope b, reaches its maximum at
x = 1/a and ends up by falling off exponentially via y ∼ e−ax at large values of x .
Such a curve can describe the relationship between the size of the parental stock of
some species (x) and the number of recruits or off-springs (y).

The validity of the Ricker model rests upon the assumption that, per capita, the
ability to produce off-springs, i.e. fecundity, decreases exponentially with population
density x . This is one possible mechanistic interpretation of the Ricker model within
the context of population growth. In some other realms, the same function y = bxe−ax

could be interpreted as a phenomenological model for a dependent variable which
first starts at zero, then increases to attain its peak value and finally afterward declines
gradually back to zero.
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3.2 Inverse functions

Despite their widespread usefulness in applications, the simple functions (3.1) and
(3.2) do not have their special names nor symbols in the mathematical literature. In
contradistinction, however, the inverse functions (xex )(−1) and (xe−x )(−1) of xex and
xe−x have their widely accepted names, suggested by Corless et al. [80,83], as the
Lambert W (x) and the Euler T (x) functions, respectively:

W (x) = (
xex

)(−1)
, (3.4)

T (x) = (
xe−x)(−1)

. (3.5)

We see from (3.4) and (3.5) that functions W (x) and T (x) are related to each other
as:

W (−x) = −T (x). (3.6)

This shows that neither the Lambert W (x) nor the Euler T (x) function is even (sym-
metric) nor odd (antisymmetric).

3.3 Information-preserving and information-losingmappings

Finding inverses (xex )(−1) and (xe−x )(−1) could be meaningful only if the underlying
mappings are injective. A function F(x) is injective (one-to-one correspondence)
whenever the relation F(x1) = F(x2) implies x1 = x2 and if, additionally, for x1 �=
x2, we have F(x1) �= F(x2) :

F(x1) = F(x2) ⇐⇒ x1 = x2
F(x1) �= F(x2) ⇐⇒ x1 �= x2

}
. (3.7)

In other words, F(x)would be injective if it maps a distinct object into another distinct
object. It is said that an injective function preserves distinctiveness because it never
maps distinct elements from its domain of definition to the same element of its image
(co-domain), i.e. the relation F(x1) = F(x2) is excluded for x1 �= x2. An injective
function is information-preserving, whereas a non-injective function is information-
losing. Non-injection cannot be reversed to become injection, since it is impossible to
obtain an information-preserving function from an information-losing function. Thus,
strictly speaking a non-injective function f (x) is not invertable, i.e. it has no inverse
in the sense that F (−1)(x) does not exist. In such a case, we may speak of a pseudo- or
quasi-inverse function F (−1)(x) as a multi-valued function. However, a multi-valued
function F(x) is not a proper or true function, since two or infinitely many values of
F(x) could be assigned to a single variable x .

This situation could be salvaged by separating different images F(x) for the
same x into distinct branches {F0(x), F±1(x), F±2(x), . . . } with each Fk(x) (k =
0,± 1,± 2, . . . ) being a single-valued function, and where k is the branch counting
index. Then f (x) is the union of all (possibly infinitely many) branches from the set
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{F0(x), F±1(x), F±2(x), . . . }. When both the dependent (F(x)) and independent (x)
variables are real, the injective function F(x) can easily be visualized as the curve
which is never crossed (intersected) more than once by any horizontal line (parallel
with the abscissa x). This is called the horizontal test. For example, some horizontal
lines could be chosen in such a way that they do not cross the functions xex and xe−x

plotted versus x . Therefore, these two latter functions are not injective and, hence,
the related inverse (reverse) functions (xex )(−1) and (xe−x )(−1) cannot uniquely be
defined. Nevertheless, we can still speak of (xex )(−1) and (xe−x )(−1) as being multi-
valued functions (with specified branches).

4 The Euler T(x) function

4.1 Inverse functions by reversion of theMacLaurin series

We shall first find the inverse (xe−x )(−1) of function xe−x from (3.2). The result
was already mentioned in (3.5) by reference to the Euler T (x) function via T (x) =
(xe−x )(−1). This will be established here by using the reversion of the MacLaurin
power series expansion. To encompass both functions xex and xe−x from (3.1) and
(3.2), we will employ a slightly more general function of the type:

y = xe−ax , (4.1)

where the constant a can be positive or negative. Finding the inverse function
(xe−ax )(−1) amounts to obtaining all the real and complex roots x of the transcenden-
tal equation y = xe−ax , where y is known and a is any given general constant (real
or complex). Transcendental equations are alternatively called functional equations.
Employing the MacLaurin series for e−ax , we have:

y =
∞∑

n=0

cnx
n, cn = (−a)n

n! . (4.2)

By reversion of this series, we will express x as an expansion in powers of y via:

x =
∞∑

n=1

bn y
n, bn = 1

n! x
(n)
0 , (4.3)

where x (n)
0 ≡ {x (n)}x=0 is the nth derivative of x with respect to y taken at x = 0 with

the standard notation:

x (n) ≡ dnx

dyn
. (4.4)

A recursion for calculating x (n) can be derived by first expressing x (n) as (d/dy)x (n−1)

and then using the chain rule for the derivative d/dy via (d/dy) = (d/dx)/(dy/dx) =
[1/y(1)](d/dx) where y(1) = dy/dx . This yields the sought recursion for x (n) :
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x (n) = 1

y(1)

d

dx
x (n−1). (4.5)

Denoting the nth derivative of y with respect to x by y(n) :

y(n) ≡ dn y

dxn
, (4.6)

and employing (4.1), we obtain the closed formula for y(n) for any n :

y(n) = (−a)n−1(n − ax)e−ax . (4.7)

Using this expression in (4.4), the first few explicit derivatives x (n) can easily be found:

x (1) = eax

1 − ax
,

x (2) = (2a − a2x)
e2ax

(1 − ax)3
,

x (3) = (9a2 − 8a3x + 2a4x2)
e3ax

(1 − ax)5
,

x (4) = (64a3 − 79a4x + 36a5x2 − 6a6x3)
e4ax

(1 − ax)7
, (4.8)

which yields x (1)
0 = 1, x (2)

0 = 2a, x (3)
0 = 9a2 and x (4)

0 = 64a3, so that:

b1 = 1, b2 = 2a

2! , b3 = (3a)2

3! , b4 = (4a)3

4! . (4.9)

This permits deduction of the general expansion coefficient bn for any n (0 ≤ n ≤ ∞)

in the form:

bn = (na)n−1

n! . (4.10)

Therefore, all the roots of Eq. (4.1) are given by the MacLaurin series:

x =
∞∑

n=1

(na)n−1

n! yn, (4.11)

which is equivalent to:

x = 1

a

{ ∞∑

n=1

(n)n−1

n! (ay)n
}

. (4.12)
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Here, the term in the curly brackets is identified as the Euler T (ay) function and, thus,
it follows from (4.11) that:

x = 1

a
T (ay), (4.13)

with the definition

T (y) ≡
∞∑

n=1

nn−1

n! yn

= y + y2 + 3

2
y3 + 8

3
y4 + 125

24
y5 + 54

5
y6 + 16807

720
y7 + · · · . (4.14)

4.2 Inverse functions by the Lagrange formula

As an alternative to Sect. 4.1, we shall use here the Lagrange inversion theorem. To
this end, we assume that we are given a dependence between x and y in the implicit
form:

f (x) = y, (4.15)

where f is the known function which is analytic at a point x = a where
[(d/dx) f (x)]x=a �= 0. Then, the Lagrange theorem yields the inverse function
f (−1) ≡ g with:

x = g(y), (4.16)

where g is analytic at the point b ≡ f (a). The functional form of g(y) is given by its
Taylor series expansion in powers of y − b :

g(y) = a +
∞∑

n=1

{
dn−1

dxn−1

(
x − a

f (x) − b

)n}

x=a

(y − b)n

n! . (4.17)

In the special case a = 0 = b, it is seen that (4.17) becomes the corresponding
MacLaurin series:

g(y) =
∞∑

n=1

{
dn−1

dxn−1

(
x

f (x)

)n}

x=0

yn

n! . (4.18)

If we choose f (x) to be of the form (4.1) via f (x) = xe−ax , then for x/ f (x) = eax

it follows:

g(y) =
∞∑

n=1

{
dn−1

dxn−1 e
nax
}

x=0

yn

n! . (4.19)
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The (n − 1) st derivative of enax with respect to x is equal to (an)n−1enax which
becomes (an)n−1 at x = 0. Inserting this result into (4.19) and accounting for (4.16),
we finally obtain:

g(y) = x =
∞∑

n=1

(an)n−1

n! yn, (4.20)

in agreement with (4.11). This, in turn, yields:

g(y) = x = 1

a
T (ay), (4.21)

which coincides with (4.13). Overall, the two different methods, i.e. reversion of the
MacLaurin series, and the Lagrange inversion formula give the same result via (4.13)
and (4.21), respectively.

4.3 The d’Alambert test ratio for the convergence radius

In order to establish convergence of the series (4.11), we rewrite it as:

x =
∞∑

n=1

Cn, Cn = (na)n−1

n! yn, (4.22)

and apply the d’Alambert ratio test. According to this test:

lim
n→∞

∣∣∣∣
Cn+1

Cn

∣∣∣∣ = q, (4.23)

the series (4.22) is absolutely convergent provided that q < 1. We calculate:

q = lim
n→∞

∣∣
∣∣
Cn+1

Cn

∣∣
∣∣ = lim

n→∞

∣∣
∣∣

n

n + 1

(
1 + 1

n

)n

ay

∣∣
∣∣ = e |ay| ,

where by definition, limn→∞(1 + 1/n)n = e (e ≈ 2.71828). Hence, the radius ρc of
convergence of series (4.11) is equal to 1/(e|a|) :

|y| < ρc, ρc = 1

e|a| ≈ 0.36787

|a| . (4.24)

Thus, the expansion (4.11) is valid in the disc of radius ρc where ρc = {y : |y| <

1/(e|a|)} :

x =
∞∑

n=1

(na)n−1

n! yn, Convergence radius : ρc =
{
y : |y| <

1

e|a|
}

. (4.25)
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In fact, the convergence radius ρc can be enlarged to become ρ̃c, which includes the
point |y| = 1/(e|a|). This can be shown as follows. Substituting 1/(ea) for y into
Cn ≡ Cn(y), we shall have Cn(1/{ea}) = (an)n−1e−n/n! where n! can be replaced
by the leading term of the Stirling series [105] via n! = √

2πnn+1/2e−n[1+1/(12n)+
1/(288n2) + · · · ] to give Cn ≈ an−1/(

√
2πn3/2). This specifies (4.11) as:

x ≈
∞∑

n=1

C̃n, C̃n = an−1

√
2πn3/2

for y = 1

ea
. (4.26)

Note that for a = 1 this series is proportional to the Riemann zeta function∑∞
n=1 n

−3/2 = ζ(3/2) ≈ 2.612, so that x ≈ (2π)−1/2∑∞
n=1 n

−3/2 ≈ 2.612/
√
2π ≈

1.042. The ratio test on the series in (4.26) implies:

q̃ = lim
n→∞

∣∣
∣∣∣
C̃n+1

C̃n

∣∣
∣∣∣
= 1√

2π
lim
n→∞

∣∣
∣∣∣
a

(
1 + 1

n

)3/2
∣∣
∣∣∣
= |a|√

2π
. (4.27)

Therefore, the series (4.26) converges absolutely for q̃ < 1with the convergence radius
equal to (1/|a|)√2π. This implies that the series (4.11) is well defined at y = 1/(ea)

and, therefore, the new convergence radius ρ̃c of this series is larger than ρc from
(4.25), i.e. ρ̃c > ρc :

x =
∞∑

n=1

(na)n−1

n! yn, Convergence radius : ρ̃c =
{
y : |y| ≤ 1

e|a|
}

. (4.28)

4.4 Definitions of the Euler T function in terms of the linear-exponential and
linear-logarithmic forms with no recourse to any series

We saw that the inverse (xe−ax )(−1) of function y = xe−ax is equal to (1/a)T (ay).
Likewise, the inverse (bxe−ax )(−1) of a slightly more general function given by the
Ricker model y = bxe−ax from (3.3), rewritten as (a/b)y = axe−ax , is deduced as:

(
bxe−ax)(−1) = 1

a
T
(a
b
y
)

. (4.29)

For the simpler case a = 1 = b encountered in (3.2), the relation (4.29) becomes:

(
xe−x)(−1) = T (x) =

∞∑

n=1

nn−1 x
n

n! , (4.30)

as announced in (3.5). In enumerative combinatorics [106,107], the Euler T (x) func-
tion is used frequently under the name ’the tree function’ (or the rooted tree function),
with the alternative notation R(x), which is written as:
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R(x) =
∞∑

n=1

r(n)
xn

n! , r(n) ≡ nn−1, R(x) = T (x). (4.31)

Here, the term r(n) ≡ nn−1 represents the number of the so-called rooted trees on n
vertices. A set whose every connected component is a rooted tree is called a forest of
rooted trees (or a rooted forest, or a planted forest). If pk(n) denotes the total number
of planted forests with k components on the vertex set {n}, then the factor r(n) from
(4.31) is given by r(n) = p1(n) [107].

The power series expansion (4.14) is only one of the representations of the Euler T
function. Another, more generic definition of the T function can be established with
no reference whatsoever to any power series expansion. To this end, we start from
the fact that for a known y, the solution of the transcendental equation y = xe−x is
x = T (y) :

y = xe−x ∴ x = T (y). (4.32)

Here, a simple replacement of x by T (y) permits re-writing (4.32) as:

y = T (y)e−T (y). (4.33)

This relation can serve as another definition of theEuler T (y) functionwith no recourse
to power series expansions. An alternative defining relation for T (y) can be introduced
by taking the natural (Naperian) logarithm of both sides of Eq. (4.33) for real y :

ln T (y) − T (y) = ln y. (4.34)

5 The LambertW(x) function

For a given y, the solution of the transcendental equation y = xex is x = W (y) :

y = xex ∴ x = W (y). (5.1)

Therefore, if we substitute W (y) for x into the growth function y = xex from (3.1),
it would follow:

y = W (y)eW (y). (5.2)

This is one of the general defining relations of the Lambert W (y) function. Further,
with the natural logarithm taken of both sides of Eq. (5.2), an equivalent definitions
of the Lambert W function can be deduced as:

lnW (y) + W (y) = ln y. (5.3)
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According to (3.6) and (4.14), it is possible to write the power series representation of
the Lambert W (y) function in the form:

W (y) ≡
∞∑

n=1

(−n)n−1

n! yn

= y − y2 + 3

2
y3 − 8

3
y4 + 125

24
y5 − 54

5
y6 + 16807

720
y7 − · · · . (5.4)

Comparing the Euler T (y) and the Lambert W (y) functions from (4.14) and (5.4),
respectively, the following general relationship is found for any y :

T (y) = −W (−y). (5.5)

This is known already from the definitions (3.4) and (3.5) of the inverses of the growth
and decline functions, respectively, as stated in (3.6). The same connection (5.5) is
also implied by (4.33) and (5.2) or by (4.34) and (5.3).

5.1 Two branchesW0 andW−1 of themulti-valued LambertW function

As we saw, the Lambert W function, conceived through the relation x = W (y)
from (5.1), is the multi-valued solution of the implicit, transcendental equation
y = xex . The multi-valuedness of W , as indicated by writing Wk instead of W with
k = 0,± 1,± 2, . . . , stems from its multiple branches that correspond to multiple
roots of Eq. (5.1). In particular, W0(x) is the principal branch of W (x). For real x,
from the whole set {Wk(x)} (k = 0,± 1,± 2,± 3, . . . ) of the solutions of Eq. (5.1),
only W0(x) and W−1(x) are real and single-valued functions.

All the other branches {Wk(x)} (k = 1,± 2,± 3, . . . ) are complex and multi-
valued irrespective of whether x is real or complex. Moreover, W0(x) and W−1(x)
are real-valued only in certain restricted x-intervals. Specifically, the real values of
the single-valued W0(x) function are located in the interval x ∈ [−1/e,+∞). On the
other hand, the real, single-valued functionW−1(x) lies in the interval x ∈ [−1/e, 0).
Outside the said intervals, these two branches of W (x) are complex-valued even for
real x . In other words, if we relax the restriction to real-valuedness of W (x), the
domain of the definition of both W0(x) and W−1(x) could be extended to encompass
the whole real axis x . However, real-valuedness of W (x) is not the only criterion for
obtaining the unique real roots of Eq. (5.1). This is the case because W (x) has two
values for every x ∈ [−1/e, 0], except for the branch point at x = −1/e, where:

W0(−1/e) = 1 = W−1(−1/e). (5.6)

Moreover, near the essential singularity x = −1/e, we have:

W0(x) ≈x→−1/e − 1 + u

W−1(x) ≈x→−1/e − 1 − u

}

, (5.7)
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with

u = √
2(1 + ex). (5.8)

Thus, to secure uniqueness of the real solution x of Eq. (5.1) for x ≥ −1/e, the
function W (x) must be split into two branches each of which is single-valued. This is
achieved by subdividing the imagesW (x) into two setsW (x) ≥ −1 andW (x) ≤ −1 :

W (x) =
{
W0(x) , W (x) ≥ −1

W−1(x) , W (x) ≤ −1,
(5.9)

or equivalently

W (x) =
{
W0(x) , x ∈ [−1/e,+∞)

W−1(x) , x ∈ [−1/e, 0]. (5.10)

Using the relationship −W (−x) = T (x) from (3.6) or (5.5), we can also deduce a
similar specification for the two branches T0(x) and T−1(x) of the Euler T function
function:

T (x) =
{
T0(x) , T (x) ≤ 1

T−1(x) , T (x) ≥ 1.
(5.11)

Most applications of the Lambert function employ the branches W0(x),W−1(x) and
W1(x) [83,93,97,98,108,109]. We shall also analyze the T and W functions with
the particular arguments xe−x and xex , respectively, namely Tk(xe−x ) and Wk(xex ).
Generally, these special values of the T and W functions are not equal to x and,
therefore, they are denoted by T̃k and W̃k, respectively:

T̃k ≡ Tk(xe
−x ), (5.12)

W̃k ≡ Wk(xe
x ). (5.13)

5.2 The first derivative of the LambertW(x) function

Application of the operator d/dx to both sides of Eq. (5.2) yields the following rule
for the first derivative of the Lambert W function:

dW (x)

dx
= e−W (x)

1 + W (x)
, x �= −1

e
. (5.14)

As seen, function W (x) is not differentiable at x = −1/e due to singularity
W ′(−1/e) = ∞ of W ′(x) ≡ dW (x)/dx . By contrast, according to (5.6), functions
W0(x) and W−1(x) are well defined at the essential singularity point, x = −1/e, at
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which W0(−1/e) = W−1(−1/e) = 1. Using the definition (5.2) to replace e−W (x) by
x−1W (x) in (5.3), the following equivalent expression is obtained for the derivative:

dW (x)

dx
= W (x)

x {1 + W (x)} , x �= 0, x �= −1

e
. (5.15)

The higher-order derivatives (d/dx)nW (x) can be generated from (5.14) in terms of
the Eulerian polynomials of the second kind [80].

5.3 Indefinite integral of the LambertW(x) function

It is also possible to readily calculate certain indefinite integrals (i.e. the so-called
primitive functions) containing W (x), such as:

I ≡
∫

W (x)dx . (5.16)

Here, in view of the defining relation (5.2), we change the integration variable from x
to W (x) according to:

x = W (x)eW (x) ∴ dx = {1 + W (x)} eW (x)dW (x). (5.17)

This maps (5.16) into an elementary integral in which W (x) becomes the integration
variable:

I =
∫

W (x) {1 + W (x)} eW (x)dW (x), (5.18)

so that

I = x

{
W (x) − 1 + 1

W (x)

}
+ CI , x �= 0, (5.19)

where CI is the integration constant. Similarly, employing (5.17), it is also easy to
obtain the primitive function J of the integrand (1/x)W (x) :

J ≡
∫

W (x)

x
dx . (5.20)

Thus, referring again to (5.2) in the form (1/x)W (x) = e−W (x), and taking into
account (5.17), we have from (5.20):

J =
∫

{1 + W (x)} dW (x) = W (x) + 1

2
W 2(x) + CJ , (5.21)

with CJ being the constant of integration. With the same variable change and its
differential from (5.17),manyother indefinite integrals

∫
dx f (x,W (x)) could likewise
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be analytically calculatedwith the integrand f (x,W (x)) containing various functional
forms of x and W (x) [80].

5.4 Definite integral of the LambertW(x) function

A number of definite integrals has also been considered in the literature. For example,
Gautschi [97,98] has recently studied the following integrals with the real-valued
integrands:

IG ≡
∞∫

1

x−β{T0(xe−x )}αdx, (5.22)

JG ≡
1∫

0

x−β{T−1(xe
−x )}αdx, (5.23)

where α > 0 and β real for IG, whereas α > −1 and β < 1 for JG. Both integrals
IG and JG are difficult because of the singularities of their integrands at the upper and
lower integration limits, respectively. They have been evaluated with an efficient and
highly accurate algorithm using the non-standard Gaussian numerical quadratures.
Gautschi’s programs in matlab, as his open source codes, are available at the web site
from Ref. [98].

5.5 A first-order non-linear differential equation for the LambertW(x) function

An alternative interpretation of Eq. (5.15) is possible by multiplying it with x(1+W ).

The result is the following fundamental first-order ordinary non-linear differential
equation satisfied by the Lambert W function:

x [1 + W (x)]
dW (x)

dx
= W (x), x �= 0, x �= −1

e
. (5.24)

The formulae (5.14)–(5.24) remain valid when real x is replaced by a complex inde-
pendent variable z.

6 Compositional inverse for general functions

6.1 Single-valued inverses

The expressions (4.33) and (5.2) are the consequence of the existence of the so-called
compositional inverses [107]. A given function F(x), defined by its formal power
series with zero constant term (a0 = 0) :
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F(x) = a0 + a1x + a2x
2 + · · · = a1x + a2x

2 + · · · =
∞∑

n=1

anx
n, a0 = 0,

(6.1)

has a series G(x) for its unique compositional inverse, as denoted by F (−1)(x) ≡
G(x), with the property:

F(G(x)) = G(F(x)) = x ∴ G(x) = F (−1)(x), (6.2)

if and only if

a1 �= 0. (6.3)

Since G(x) is the inverse of F(x) via G(x) = F (−1)(x), we can equivalently re-write
the relation G(F(x)) = x from (6.2) as:

F (−1)(x)(F(x)) = x, (6.4)

or in the same vein

F(F (−1)(x)) = x . (6.5)

Suppose that a series for G(x) given by:

G(x) = b0 + b1x + b2x
2 + · · · = b1x + b2x

2 + · · · =
∞∑

n=1

bnx
n, b0 = 0,

(6.6)

satisfies the relation F(G(x)) = x or G(F(x)) = x from (6.2). From this assumption,
and for a1 �= 0, it should follow that the unique inverse F (−1)(x) exists in the form of
G(x) via G(x) = F (−1)(x). The coefficients {bn} (n = 1, 2, 3, . . . ) are unknown, but
can be determined by substitution of series (6.6) for G(x) into series (6.1) for F(x)
and placing the ensuing result into the condition F(G(x)) = x, thus yielding:

a1(b1x + b2x
2 + b3x

3 · · · ) + a2(b1x + b2x
2 + · · · )2 + a3(b1x + · · · )3 + · · · = x .

(6.7)

When the coefficients of the like powers on both sides of this equation are equated, an
infinite system of coupled non-linear equations is deduced:

a1b1 = 1
a1b2 + a2b21 = 0

a1b3 + 2a2b1b2 + a3b31 = 0
...

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (6.8)
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The exact solutions of this system of equations are obtained by progressing succes-
sively from the first equation downwards. Thus, the unique solution for b1 of the first
equation is derived as b1 = 1/a1 provided that a1 �= 0. Inserting this expression
for b1 into the second equation from the system (6.8) leads to the unique solution
b2 = −a2/a31 if and only if a1 �= 0. Continuing this procedure, it follows:

b1 = 1

a1

b2 = −a2
a31

b3 = 2
a22
a51

− a3
a41

...

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇐⇒ a1 �= 0. (6.9)

To show that G(x) is unique, we suppose that in addition to the pair F(G(x)) = x
and G(F(x)) = x, there also exists another pair F(G(x)) = x and H(F(x)) =
x . However, replacing x by G(x) in H(F(x)) = x gives G(x) = H(F(G(x))).
Thus, if in the rhs of the latter equation, we insert F(G(x)) = x, it follows G(x) =
H(F(G(x))) = H(x). Therefore, H(x) = G(x) which proves the uniqueness of
G(x) = F (−1)(x).

As an example, regarding the Euler tree function T (x), we can find the com-
positional inverse of some functions made up from T (x), e.g. the rational function
T (x)/[1 − T (x)]. To proceed, we first notice that the function T (x)/{1 − T (x)} is
the composition of T (x) and x/(1 − x). On the one hand, as per (3.5) , the inverse
(xe−x )−1 of xe−x is T (x) and, likewise, the inverse (T (x))(−1) of T (x) is xe−x :

{T (x)}(−1) = xe−x . (6.10)

Further, from the function y = x/(1−x),we can extract x as x = y/(1+ y),meaning
that the function x/(1 + x) is the inverse function of x/(1 − x) :

(
x

1 − x

)(−1)

= x

1 + x
. (6.11)

Therefore, the compositional inverse of T (x)/{1 − T (x)} is {x/(1 + x)} exp(−{x/
(1 + x)}) :

{
T (x)

1 − T (x)

}(−1)

= x

1 + x
e−x/(1+x). (6.12)

6.2 Multi-valued inverses

The analysis from 6.1 is valid only if G(x), as the inverse of F(x), is a single-valued
function. IfG(x) is amulti-valued function, F(x)would not have its inverse. For exam-
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ple, double-valuedness, which gives the same dependent variable G for two different
independent variables, i.e. G(x1) = G(x2) for x1 �= x2, would violate injectiveness
(3.7) with the resulting non-existence of G(x), as the inverse of F(x). To rescue this
situation and redeem G(x) by transforming it to a true function, which would never
have the same value for two different values of the independent variable x, we need to
impose the condition of single-valuedness ontoG(x).This can be achieved by restrict-
ing the definition of G(x) to a limited set of values of x, rather than including all of
them. In the case of a double-valuedG(x), therewill be only two such restricted ranges
of x in each of which G(x) could be single-valued. In this way, both components of
G(x), in their respective domains of x,would gain the meaning of a genuine function.

The components Gk(x) of G(x) represent different branches, where k is the
branch counting index, which conventionally takes on any integer value (k =
0,± 1,± 2, . . . ). Overall, a multi-valued function G(x) can be regularized by intro-
duction of a sequence (possibly infinite) of single-valued branches Gk(x) (k =
0,± 1,± 2, . . . ). In other words, the function F(x) will not have the unique inverse,
but nevertheless could possessmanywell-defined inverses as different branches. How-
ever, such circumstances change the meaning of the compositional inverses in (6.2),
such that e.g. the relationGk(F(x)) = x could still be valid, but only for certain values
of x,whereas for some other x,we could have Gk(F(x)) �= x . This will be illustrated
in Sect. 7 with the examples of F(x) chosen to be the functions xex and xe−x from
(3.1) and (3.2), the multi-valued inverses of which are given by the LambertW (x) and
Euler T (x) functions (3.4) and (3.5), respectively.

7 Compositional inverses Tk(xe−x) andWk(xex) for k = 0 and k = −1

7.1 A key link between a branch choice and the independent variable domain

In order to specify the general analysis from Sect. 6.2, we shall now apply the notion
of a compositional inverse to the Euler T and Lambert W functions. Since the Euler
function T (y) is the solution x of the transcendental equation (4.32), we can replace
y by xe−x in T (y) = x and write:

T (xe−x ) = x . (7.1)

Similarly, because the Lambert function W (y) is the solution x of the transcendental
equation (5.1), substitution of y by xex in W (y) = x would yield:

W (xex ) = x . (7.2)

This brief derivation of the relations (7.1) and (7.2) is formally correct. However,
since T and W are multi-valued functions, a proper validation of (7.1) and (7.2) can
be secured only after a specific branch has been selected. More precisely, a mere
branch selection would be able to confirm or disprove (7.1) and (7.2), as we shall
now demonstrate. Moreover, a branch choice would automatically determine the x-
intervals for which the relations (7.1) and (7.2) are correct or wrong. As such, caution
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has to be exercised as to a tempting, but otherwise incorrect conclusion that e.g. the
two most important compositional inverses Tk(xe−x ) = x and Wk(xex ) = x from
(7.1) and (7.2) could be valid without the need to specify the domains for x . Recall
that the general compositional inverse Gk(F(x)) = x from (6.2) is not valid either for
a multiple-valued inverse Gk(x) = F (−1)(x) for every x .

Similar validity limitations also apply to functions xex and xe−x from (3.1) and
(3.2), because they possess infinitely many inverses Wk(x) and Tk(x) for different
branches k (k = 0,± 1,± 2, . . . ). Given that most applications are concerned with
real-valued Euler T (x) and Lambert W (x) functions for real x, we will specify the
validity criteria that are applicable to the two branches k = 0 and k = −1 for both
Tk(x) andWk(x). In order to determine for which x the compositional inverse (7.1) is
valid, we apply the mapping T on both sides of equation y = xe−x from (4.32) and
use the definitions in (5.11) to identify T0 and T−1, so that:

T (xe−x ) = T (y) =
{
T0(y) , T (y) ≤ 1

T−1(y), T (y) ≥ 1.
(7.3)

Therefore, the relationship T (xe−x ) = T (y) from (7.3)would become T0(xe−x ) = x,
only if x, taken here to be T0(y), is less than or equal to unity, x = T0(y) ≤ 1. In other
words, if x is going to be T0(y), in order to be able to transform T0(xe−x ) = T0(y)
into T0(xe−x ) = x, we must have x ≤ 1. This occurs because, by the definition, we
have that T0(y) ≤ 1, as per (5.11). In contrast to this, however, for the complementary
interval x > 1,wewould have T0(xe−x ) = T̃0 �= x,where T̃0 is the result of an explicit
computation of T0(X) from the appropriate representation of T0(X), as dictated by the
given X , which itself is determined by the value of x through the relation X = xe−x .

Hence, for the branch T0, the compositional inverse (7.1) is not valid in a general case
with no restriction imposed on x . Rather it is applicable only to x ≤ 1, whereas for
the complementary domain x > 1, we have T0(xe−x ) �= x :

T0(xe
−x ) =

{
x , x ≤ 1

T̃0, x > 1,
T̃0 �= x . (7.4)

In other words, while the relation T0(xe−x ) = x holds true for x ≤ 1, it must be
replaced by T0(xe−x ) = T̃0 for x > 1, where T̃0 �= x . Similarly, the alternative
path T−1(xe−x ) = T−1(y) from (7.3) would simplify to T−1(xe−x ) = x only if
x = T−1(y) ≥ 1, for otherwise T−1(xe−x ) = T̃−1 �= x if x = T−1(y) < 1. The
meaning of T̃−1 is analogous to T̃0. Here, in order to have T−1(xe−x ) = x, instead of
T−1(xe−x ) = T−1(y), which amounts to the condition x = T−1(y), we must impose
the restriction x ≥ 1 since, by definition, T−1(y) ≥ 1 as seen in (5.11). Thus, we
have:

T−1(xe
−x ) =

{
x , x ≥ 1

T̃−1, x < 1,
T̃−1 �= x . (7.5)
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This can equivalently bewritten as T0(xe−x ) = x only for x ∈ [0, 1] and T−1(xe−x ) =
x only for x ∈ [1,∞), in accordance with Ref. [83,97].

A reasoning, entirely analogous to that for T (x), can also be applied to W (x) to
establish the restrictions on (7.2) for the corresponding compositional inversesW0(x)
and W−1(x) with the help of the defining relation (5.9) of these two latter branches.
Alternatively, and more directly, we can use the relationship W (x) = −T (−x) from
(3.6) to immediately write the compositional inverses for W0(x) and W−1(x) based
upon (7.4) and (7.5), respectively. Therefore, if e.g. in T0(xe−x ) = x, valid for x ≤ 1,
as per (7.4), we replace x by−x and use (3.6), wewould obtain the relationW0(xex ) =
x, valid for −x ≤ 1 (or equivalently, for x ≥ −1). Applying a similar rationale to the
branches T−1 and W−1, we can deduce that the equation W−1(xex ) = x is valid only
for x ≤ −1.However, if these conditions for x are not fulfilled, thenWk(xex )must be
computed explicitly from the pertinent formulae for the Lambert functions with the
outcome W̃k which is different from x . In this way, we can arrive at the expressions
for the compositional inverses W0(xex ) and W−1(xex ) in the following forms:

W0(xe
x ) =

{
x , x ≥ −1

W̃0, x < −1,
W̃0 �= x, (7.6)

and

W−1(xe
x ) =

{
x , x ≤ −1

W̃−1, x > −1,
W̃−1 �= x . (7.7)

Recall that quantities T̃k �= x and W̃k �= x, that were first introduced in (5.12) and
(5.13), as the abbreviated notations for the values of functions Tk(xe−x ) andWk(xex ),
must be computed from the appropriate formulae of Tk(xm) and Wk(xp) taken at
arguments xm = xe−x and xp = xex , respectively.

Overall, from the onset of this sub-section we correctly (albeit formally) derived
(7.1) and (7.2), as the compositional inverses. We say ’formally’ because, when we
started addressing this matter, the mentioned derivation has not specified the possible
ranges for x . Yet, such an establishment of the results for T (xe−x ) and W (xex ) via
(7.1) and (7.2), respectively, is not universally valid for every x . The reason is rooted
in the multi-valuedness of T andW through the existence of infinitely many branches
Tk(x) and Wk(x) (k = 0,±,± 2, . . . ).

However, a simplification occurs for real x in T (x) and W (x). In this case, a
mere choice of the only two possible values for the branch counter k (k = 0 and
k = −1) suffices to determine the interval of x where the compositional inverses
(7.1) and (7.2) exist. Hence, e.g. the choice k = 0 automatically determines that the
relation T0(xe−x ) = x is valid for x ≤ 1 because of the existence of the inequality
T0(xe−x ) ≤ 1, or more generally, T0(X) ≤ 1 for any X for which T0(X) is defined.
The relation T0(xe−x ) ≤ 1 follows from the definition T (x) = T0(x) for T (x) ≤ 1,
as per (5.11). In the same vein, selection of the branch counting index k = −1 yields
T−1(xe−x ) = x for x > 1 due to T−1(xe−x ) > 1, or T−1(X) > 1 for any X from the
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domain of definition T−1(X).The inequality T−1(xe−x ) > 1 stems from the definition
T (x) = T−1(x) for T (x) > 1, which is in (5.11).

Whenever for the given branch index k, the mentioned restrictions on x are not
fulfilled, the compositional inverse does not exist and instead the relation Tk(xe−x ) =
T̃k is obtained with T̃k �= x (k = 0,−1). This is the content of (7.4) and (7.5). These
considerations would automatically yield the corresponding expressions (7.6) and
(7.7) for the Lambert function Wk(xex ) with k = 0 and k = −1 when replacing x by
−x and using the relation W (X) = −T (−X) from (3.6).

7.2 Explicit proof of the compositional inverse for the Lambert function

Here, we will show how formally the sum (4.14) and (5.4) can be carried out alge-
braically for a special case y = xe−x and y = xex , respectively:

T (xe−x ) =
∞∑

n=1

nn−1

n! (xe−x )n, (7.8)

W (xex ) =
∞∑

n=1

(−n)n−1

n! (xex )n . (7.9)

To this end, we first insert the MacLaurin series for the exponential in the function
T (xe−x ), which for brevity, we denote by x ′ :

x ′ ≡ T (xe−x ), (7.10)

so that

x =
∞∑

n=1

nn−1

n! (xe−x )n

=
{ ∞∑

n=1

nn−1

n! xn
}{ ∞∑

�=0

(−nx)�

�!

}

=
∞∑

n=1

∞∑

�=0

(−1)�
xn+�

n!�! n
n+�−1

=
∞∑

k=1

xk

k!
k∑

m=1

(−1)k−m k!
m!(k − m)!m

k−1

=
∞∑

k=1

xk

k!

{
k∑

m=1

(−1)k−m
(
k
m

)
mk−1

}

.
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Thus, we can express x ′ as:

x ′ =
∞∑

k=1

xk

k! Ik, (7.11)

where

Ik =
k∑

m=1

(−1)k−m
(
k
m

)
mk−1,

(
k
m

)
= k!

m!(k − m)! . (7.12)

The sum over m in (7.12) can be extended to encompass m = 0 by adding and
subtracting the term {(−1)k−mmk−1}m=0, which has the following values:

{(−1)k−mmk−1}m=0 = (−1)k0k−1 =
{

−1, k = 1

0, k ≥ 2,
(7.13)

where 0n = 0 for n > 0 (n non-negative integer) and 00 ≡ 1. Thus, it follows:

Ik =
k∑

m=0

{
(−1)k−m

(
k
m

)
mk−1 − (−1)k0k−1

}

=
k∑

m=0

{
(−1)k−m

(
k
m

)
mk−1 + δk,1

}
, (7.14)

where the term (−1)k0k−1 from (7.13) is equivalently written as the Kronecker δ

symbol, (−1)k0k−1 = −δk,1 with:

δk,k′ =
{
1, k = k′

0, k �= k′.
(7.15)

The Kronecker term in (7.14) is independent of the summation index m, so that:

Ik = δk,1 + Jk, (7.16)

where

Jk =
k∑

m=0

(−1)k−m
(
k
m

)
mk−1. (7.17)
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For k = 1, the explicit calculation shows that:

J1 =
1∑

m=0

(−1)1−m
(
1
m

)
m0 = −

(
1
0

)
+
(
1
1

)
= −1 + 1 = 0,

∴ J1 = 0. (7.18)

We insert (7.16) into (7.11) to write:

x ′ = x + x ′′, (7.19)

with

x ′′ =
∞∑

k=2

xk

k! Jk, (7.20)

where the result (7.18) is used. To analyze the sum over m in Jk from (7.17) for any
k, we introduce the first difference operator 	̂ for an arbitrary function f (n) by the
standard definition:

	̂ f (n) = f (n + 1) − f (n)

= Ê f (n) − Ê f (n − 1), (7.21)

where Ê is the shift operator [107]

Ê f (n) = f (n + 1). (7.22)

As is clear from (7.21), the operators 	̂ and Ê are connected by:

	̂ = Ê − 1̂, (7.23)

where 1̂ is the unity operator, 1̂ f (n) = f (n). The k th power of the operator Ê is very
simple, since the repeated use of the definition (7.22) produces merely the scaling
from n to n + k in f (n) :

Êk f (n) = f (n + k). (7.24)

By contrast, the k th power of the operator 	̂ is more complicated. Nevertheless, the
explicit formula for 	̂k f (n) can be derived as follows. If the application of the 	̂

operator on f (n) is performed k times, the k th difference operator 	̂k would become
available by the iteration:

	̂k f (n) = 	̂
{
	̂k−1 f (n)

}
= 	̂k−1 {	̂ f (n)

}
, (7.25)
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or equivalently, by way of (7.23)

	̂k f (n) = (
Ê − 1̂

)k
f (n). (7.26)

We see that the action of 	̂k on f (n) is not as direct as in the case of Êk . The reason
is in the fact that the rhs of (7.26) contains the binomial operator (̂E − 1̂)k, instead
of having only Êk from (7.24). The meaning of the k th power of the operator Ê − 1̂
is provided by the operator Leibniz binomial formula, which has the same form as its
scalar counterpart:

(a + b)k =
k∑

m=0

(
k
m

)
ambk−m, (7.27)

so that

	̂k f (n) = (
Ê − 1̂

)k
f (n)

=
k∑

m=0

(
k
m

)
(−1)k−m Êm f (n),

whereweused the relations Êm(−̂1)k−m f (n) = Êm(−1)k−m f (n) = (−1)k−m Ê f (n).

Here, the term Êm f (n) is recognized as f (n + m) according to (7.24), so that:

	̂k f (n) =
k∑

m=0

(
k
m

)
(−1)k−m f (n + m). (7.28)

This compact formula for 	̂k f (n) is explicit, since instead of operators, the rhs of
(7.28) involves only a linear combination of k scalar function values { f (n+m)} (0 ≤
m ≤ k) for a fixed n. In particular, for n = 0, the k difference 	̂k f (0) is reduced to:

	̂k f (0) =
k∑

m=0

(
k
m

)
(−1)k−m f (m). (7.29)

Choosing f (m) in (7.29) to be a power function of m :

f (m) = mk−1, (7.30)

it follows

	̂k0k−1 =
k∑

m=0

(
k
m

)
(−1)k−mmk−1. (7.31)
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The rhs of Eq. (7.31) coincides with the sum in Jk from (7.17) and this implies:

Jk = 	̂k0k−1. (7.32)

In Eq. (7.20) for x ′′, we need Jk for k ≥ 2, in which case the term 0k−1 is zero. This
implies 	̂k0k−1 = 	̂k0 = 0 (k ≥ 2), and consequently the rhs in Eq. (7.32) is also
equal to zero, so that:

Jk ≡
k∑

m=0

(−1)k−m
(
k
m

)
mk−1 = 0, ∀k ≥ 2. (7.33)

Wehave found earlier in (7.18) that J1 = 0, and this extends (7.33) to Jk = 0 (∀k ≥ 1),
although the casewith k = 1 is not needed in x ′′ from (7.20). Therefore, by substituting
the result (7.33) for Jk in the expression for x ′′, the whole sum over k from (7.20)
collapses to zero, thus yielding:

x ′′ = 0, (7.34)

which reduces (7.19) to

x ′ = x . (7.35)

Quantity x ′, as the lhs of (7.35), is equal to T (xe−x ) by reference to (7.10), so that:

T (xe−x ) = x . (7.36)

With this at hand, we have the sought algebraically calculated result for the sum rule
(7.8) as:

T (xe−x ) =
∞∑

n=1

nn−1

n! (xe−x )n = x . (7.37)

Likewise, a calculation along these lines can algebraically prove the sum rule (7.9).
This is, however, unnecessary since we can use the relation −T (−x) = W (x) from
(3.6) to immediately deduce the final results from (7.36) and (7.37) as follows:

W (xex ) = x, (7.38)

and

W (xex ) =
∞∑

n=1

(−n)n−1

n! (xex )n = x . (7.39)
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In the outlined analysis, the algebraically derived sum rules (7.37) and (7.39) are, in
fact, the power series representation of the compositional inverses T (xe−x ) = x and
W (xex ) = x from (7.36) and (7.38), respectively [107].

Nevertheless, here too, caution should be exercised as to the general validity of
the derivation in this sub-section, similarly to the corresponding remarks made in
Sect. 7.1. Namely, although considerably longer, this derivation is still only formal.
The reason is in the occurrence that the compositional inverses (7.36) and (7.38), or
equivalently, the sum rules (7.37) and (7.39), are established for any branch of the
multi-valued Euler and Lambert functions and, moreover, with no regard whatsoever
to the limitations on the ranges for x .However, as per Sect. 7.1, even for a given, fixed
branch of Tk or Wk, the obtained result x for the compositional inverses (7.36) or
(7.38) is not valid for any x . Thus, by reference to Sect. 7.1, the validity of (7.36) and
(7.38) for e.g. k = {0, 1} is specified strictly through {(7.4),(7.5)} and {(7.6),(7.7)},
respectively.

8 Asymptotic behavior ofW(x) and T(x) at small and large x

Here, whenever convenient for connecting with Refs. [107] and [110], we will switch
from the Lambert W to the Euler T function, which is always permissible on the
account of their inter-relationship (3.6), i.e. −W (−y) = T (y). Thus, we shall begin
with W , then continue with T , and finally return to W . In particular, the asymp-
totic behaviors of e.g. W (x) for small and large x can be obtained from the defining
expressions (5.2) and (5.3), respectively, after rewriting them as follows:

W (x) = x

eW (x)
= x

exp(W (x))
, (8.1)

W (x) = ln x − lnW (x) = ln
x

W (x)
. (8.2)

These two transcendental equations can be solved for W (x) by means of iterations
through self-unrolling. This can be done by repeatedly inserting x/eW (x) in the argu-
ment W (x) of the exponential in the denominator of the rhs of Eq. (8.1). The result
is the following representation of W (x) in terms of the infinitely iterated exponential
function via W = x/{exp (W )} = x/{exp (x/[exp (W )])}, i.e.:

W (x) = x

exp

(
x

exp (W (x))

) = · · · = x

exp

⎛

⎜⎜
⎜⎜⎜
⎝

x

exp

(
x

. . .

)

⎞

⎟⎟
⎟⎟⎟
⎠

, (8.3)
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or equivalently

W (x) = xe−xe−W (x) = · · · = xe−xe−xe−x · · ·
(Continued exponential).

(8.4)

If here we reverse the sign of x (i.e. x → −x), and afterward use the relation
−W (−x) = T (x), then the expression (8.4) would become:

T (x) = xexe
T (x) = · · · = xexe

xex · · ·
(Continued exponential). (8.5)

The meaning of the expression (8.5) can be understood by introducing an auxiliary
function t̃m(x) by the recursion [107]:

t̃m+1(x) = xet̃m(x), m ≥ 0, t̃0(x) = x . (8.6)

Then, for a fixed x, function T (x) from (8.5) is defined as the following limit of the
sequence {t̃m(x)} (m = 0, 1, 2, 3, . . . ) :

lim
m−→∞ t̃m(x) = T (x), (8.7)

whenever the limit exists in a formal sense. This is recognized as the root-finding
Newton iteration process. Here, x from the initialization t̃0 = x is taken to be a known
trial value xtrial, which enables the iteration to start from t̃0 = xtrial. For instance, the
approximate root of Eq. (4.32), re-written as:

x = yex , (8.8)

can be found by a straightforward application of the Newton algorithm

xm+1 = yexm , m ≥ 0, x0 = y. (8.9)

Here, the trial value xtrial for the zeroth iterate x0 is chosen as the solution of Eq. (8.8)
with its rhs taken at x = 0 :

x0 = xtrial = {
yex

}
x=0 ∴ x0 = xtrial = y. (8.10)

The 1st iterate x1 is obtained from the recursion (8.9) by inserting x0 to give x1 =
y exp (x0) = y exp (y). When the approximation x1 is inserted into yex1 from (8.9),
the 2nd iterate follows as x2 = y exp (y exp (y)). An analogous procedure for n = 3
gives the 3rd Newton iterate via:

x3 = y exp (y exp (y exp (y))) = yeye
yey

. (8.11)
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Continuing iteratively in this way some n times would give the n th iterate xn which
is the n th Newton approximation to the exact root xexact = T (y) of (8.8). The
root estimate as the n th Newton iterate can be written by the symbolic expression
(yexp){n}y :

x ≈ xn = (yexp){n}y = yexp(yexp(yexp(· · · )))
︸ ︷︷ ︸

n terms

y, (8.12)

where (yexp){n} is an operator which abbreviates the n nested exponential operators
[110]:

(yexp){n} = yexp(yexp(yexp(· · · )))
︸ ︷︷ ︸

n terms

. (8.13)

Here, the curly brackets are used around n in the superscript to avoid confusion with
a power function. Thus, for e.g. n = 3, it follows that Eq. (8.10) simplifies as:

x3 = (yexp){3}y = yexp(yexp(yexp))
︸ ︷︷ ︸

3 terms

y

= y exp(yexp(yexp(y)))

= yeye
yey

, (8.14)

and this agrees with (8.11). Of course, a specific fixed number for the initial value
x0 is needed from the outset of an actual numerical generation of the Newton iterates
xn (n = 0, 1, 3, ...), as the successive approximations to the exact solution x of Eq.
(8.8) given by the Euler T (y) function.

However, in an analytical calculation aiming at deriving an algebraic explicit solu-
tion x of Eq. (8.8) in a closed form, no such specification is needed for x0 at the very
beginning of the iteration process. To this end, it suffices to choose x0 as an unspecified
value, namely the unknown x which is the solution of the problem:

xm+1 = yexm , m ≥ 0, x0 = x . (8.15)

Then repeating the outlined Newton procedure, but this time with x0 = x, as per
(8.15), yields the n th iterate xn as the result of application of the operator (8.13) to
x :

x ≈ xn = (yexp){n}x = yexp(yexp(yexp(· · · )))
︸ ︷︷ ︸

n terms

x . (8.16)

In theory, the value n = ∞ is permitted, in which case x∞ would be the result of
infinitely many iterations:

x∞ = (yexp){∞}x = yexp(yexp(yexp(· · · )))
︸ ︷︷ ︸
n=∞: infinitely many terms

x . (8.17)
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Expression (8.16) is the analytical solution x of Eq. (8.8) in n steps of the Newton
iteration (8.15). For an infinitely large n the solution xn becomes x∞,where x∞ is from
(8.17). However, the result (8.16) itself is an implicit transcendental expression, since
the unknown x is a part of the solution x = (yexp){n}x .Moreover, the solution (8.16) is
much more complicated than the original implicit transcendental equation (8.8), since
we now have an iterated exponential rather than just one such initial exponential.

Nevertheless, this obstacle can be circumvented by noting that x in the solution
(yexp){n}x can be traced back to the unspecified initialization x0 = x in the New-
ton iteration (8.16). Therefore, setting x = x0 in the implicit function (yexp){n}x
will transform the n th iterate xn from (8.16) into the following explicit approximate
solution of Eq. (8.8):

xn = (yexp){n}x0 = yexp(yexp(yexp(· · · )))
︸ ︷︷ ︸

n terms

x0, (8.18)

and similarly for infinitely many iterations

x∞ = (yexp){∞}x0 = yexp(yexp(yexp(· · · )))
︸ ︷︷ ︸
n=∞: infinitely many terms

x0, (8.19)

where x0 is a free parameter. Now, at the end of the derivation, we can specify x0 by
the prescription (8.10), via x0 = y, so that:

x∞ = (yexp){∞}x0 = yexp(yexp(yexp(· · · )))
︸ ︷︷ ︸
n=∞ infinitely many terms

y. (8.20)

By reference to (8.5), the rhs of Eq. (8.20) is the Euler T (y) function as the exact
solution of the transcendental equation (8.8), which we set to solve for the unknown
x, so that:

x∞ = T (y). (8.21)

Once the solution x∞ was identified with one of the representations of T (y), namely
the continued exponentials (8.5), it is permissible to cast x∞ into any of the other
existing forms of T (y). In other words, x∞ is T (y) irrespective of the selected rep-
resentation of T (y). Customarily, the Newton root-finding iterations are used as a
numerical algorithm. The above derivation shows that the same algorithm can also
be employed for obtaining the exact analytical solutions to the roots of a class of
implicitly defined functions.

As an alternative to the outlined procedure, we can also substitute repeatedly ln x−
lnW (x) in the argument W (x) of the second logarithm on the rhs of Eq. (8.2). This
expresses W (x) as an infinitely iterated logarithm function:
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W (x)= ln x − ln (ln x − W (x)) = ln
x

ln x − W (x)

W (x)= ln x−ln (ln x−ln (ln x−· · ·))=· · ·= ln
x

ln
x

ln
x

. . .

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(Continued logarithm).

(8.22)

The iterative forms (8.3) and (8.22) are of a type of a continued fraction (CF) [111].
For the reason of economizing space, it is customary to use a shortened symbolic
notation for a CF-type expression. In such a notation, the staircase iterated ratios from
(8.3) and (8.22) can succinctly be written as:

W (x) = x/ exp (x/ exp (x/ exp (x/ · · · ))), (8.23)

and

W (x) = ln (x/ ln (x/ ln (x/ · · · ))), (8.24)

respectively. In the above formulae x is real-valued. If x is replaced by a complex
variable z, the definition (5.2) continues to be of the same form, whereas (5.3) is
modified as [80]:

Wk(z)e
Wk (z) = z, lnWk(z) + Wk(z) = Ln z

Ln z = ln z + 2ikπ, i = +√−1

}
(k = 0,± 1,± 2, . . . ).

(8.25)

Thus, whenever the symbol Ln is used instead of ln, the branch is left unspecified.
The standard principal branch of the natural logarithmic function ln is the one which
is cut along the negative real semi-axis (i.e. from 0 to −∞).

This latter convention also applies to the square root function u from (5.8) whenever
x is negative or complex-valued. The relation W (x) = ln(x/W (x)) for real x from
(8.2) is not preserved for complex z unless k = 0 (principal branch), because of (8.25)
which implies:

Wk(z) = ln
z

Wk(z)
+ 2ikπ (k = 0,± 1,± 2, · · · ). (8.26)

The iterative CF-type forms (8.3) and (8.22) of the Lambert function are suitable for
extraction of the corresponding asymptotic behaviors at small and large values of real
variable x, respectively:

W (x) ≈x→0
x

1 + x
≈x→0 x − x2

}

, (8.27)
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and

W (x) ≈x→∞ ln x − ln (ln x)

≈x→∞ ln
x

ln x

}

. (8.28)

We see that the leading terms of the asymptotes of W (x) from (8.27) and (8.28) for
small and large x are x and ln x, respectively. Hence, it is through its small- and large-x
asymptotes that the Lambert function W (x) captures the linear-logarithmic feature of
the lhs of the transcendental, implicit equation:

y + ln y = ln x, (8.29)

whose solution y isW (x), i.e. y = W (x), according to the definition (5.3). In fact, the
small- and large-x asymptotes of y can be found already from (8.29) without knowing
that y = W (x). To this end, it suffices to recall the two basic features: (i) among all
the elementary functions, ln x is the slowest to rise when its argument x is augmented,
and (ii) for a small value of its argument, the logarithmic function is large. Thus, for
small x, the rhs of (8.29) is large. In the same limit x → 0, the dominant term in the
sum y + ln y from the lhs of (8.29) is ln y. Thus, for small x, the relation (8.29) is
reduced to ln y ≈ ln x,which is y ≈ x .On the other hand, for large x, the logarithmic
function ln x on the rhs of (8.29) is large. In such a case, the lhs of (8.29) must also
be large. When both y and ln y are large, their sum y + ln y from (8.29) is dominated
by y. Hence, for large x, the implicit equation (8.29) becomes y ≈ ln x . We see then
that in the limits x → 0 and x → ∞ of the transcendental equation (8.29), the proper
asymptotes of its solution y via y ≈ x and y ≈ ln x, respectively, can faithfully
be reconstructed with no recourse to the exact result (supposed here to be unknown)
y = W (x) of (8.29).

Similar asymptotic formulae can also be written for the Euler T (x) function by
using the defining relation T (x)e−T (x) = x in (4.33) as well as T (x) = ln T (x)− ln x
from (4.34). In particular, the asymptote of T (x) at small x can be deduced directly
from (8.27) via x → −x and −W (−x) = T (x) yielding:

T (x) ≈x→0
x

1 − x
≈x→0 x + x2

}

. (8.30)

In (8.27), the small x-asymptote W (x) ≈ x/(1 + x) = [1/1]W (x) is the first-order
diagonal Padé approximant1 (PA) to W (x). The subsequent approximation x/(1 +
x) ≈ x − x2 from (8.27) is obtained from the binomial expansion 1/(1 + x) ≈
1 − x + x2 − · · · (|x | < 1) and by retaining only the first 2 terms 1 − x to give
W (x) ≈ x/(1+ x) ≈ x(1− x) = x − x2. If x is a complex variable z, the asymptote
of all the k branches of the Lambert function Wk(z) at large |z| is given by:

1 Recall that for a series expansion in powers of x of a given function f (x) and for the fixed (n,m) order,
the PA to f (x) is defined as the unique ratio Pn(x)/Qn(x) of two polynomials Pn(x) and Qm (x) of degrees
n and m, respectively, as symbolized by [n/m] f (x), such that f (x) ≈ Pn(x)/Qn(x) [111].
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Wk(z) ≈|z|−→∞Lnz − ln(Lnz)
Wk(z) ≈|z|−→∞ ln z + 2π ik − ln (ln z + 2π ik)

Wk(z) ≈|z|−→∞ ln
z

ln z + 2π ik
+ 2π ik

⎫
⎪⎬

⎪⎭
(k = 0,± 1,± 2, . . . ).

(8.31)

9 Applications of the Euler T and LambertW functions in
radiobiological modelings

Dose planning systems in radiotherapy for treatment of patients with cancer rely
heavily upon radiobiology. The problem of cell survival after dose exposure from
different radiation modalities is one of the important themes of cell biology within
radiobiology. Therein, a large number of mathematical models, both empirical and
mechanistic, have been introduced over a period longer that 70years. A partial account
of the abundant bibliography can be found in a recent survey on this topic [3].

Radiation damage is inflicted on the healthy and diseased cells alike. The genetic
system of normal cells can, in principle, repair at least some of their radiation lesions.
However, in particular for cancerous cells, the repair system is dysfunctional due to
their broken genetic machinery. Alternative to instantaneous doses, in order to follow
the time course of cell recovery, fractionated dose exposures are also used for cell
cultures (cell lines). This strategy is also administered for patients with cancers within
the fractionated radiotherapy.With dose fractionation, cell recovery is thought to occur
when cell survival after exposures to two doses separated in time (the two fractionated
doses) is observed as being systematically larger than the corresponding cell survival
following a single dose imparted at any time onto the treated cells.

For realistic radiobiological models of cell survival, in the case of both instanta-
neous and fractionated dose deliveries, cell recovery is one of the key effects that
need to be properly taken into account. Metabolic repair processes can occur through
various pathways that can be described by different mechanisms. Several among these
mechanisms involving the Euler and Lambert functions have recently been put forward
[1–3], and they will succinctly be outlined in the analysis which follows.

These advances in radiobiological models have been motivated by the need of dose
planning systems for radiotherapy with hypo-fractionation which uses high doses [4–
13]. The most frequently used radiobiological formalism, in all the dose planning
systems is the LQ model [14–23] with the cell surviving fraction:

S(LQ)
F (D) = e−αD−βD2

, α > 0, β > 0. (9.1)

where the instantaneous dose is denoted by D. The cell survival curve drawn as the
function S(LQ)

F (D) versus dose keeps on bending as D increases due to the presence

of the Gaussian function exp (−βD2) in (9.1). Therefore, S(LQ)
F (D) does not possess

the correct high-dose behavior, which should be SF(D) ≈ exp (−D/D0),where D0 is
the mean lethal dose. This is mitigated in the LQLmodel whose biologically modified
dose connects, at a transition dose DT, the LQ term αD + βD2 to a linear high-dose
tail [26–36]. The resulting cell surviving fraction in the LQL model is:
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S(LQL)
F (D) = e−αD−βD2

, D < DT

= e−αDT−βD2
T−γ (D−DT), D ≥ DT. (9.2)

This dealswith a discontinuous surviving fraction and,moreover, it has twicemore free
parameters {α, β, γ, DT} than the pair {α, β} in the LQmodel. Aswill be evidenced by
the upcoming exposition, it is much more rewarding to use the continuous surviving
fractions, uniformlyvalid at all doses,within the recently introducedmechanistic three-
parameter radiobiological models, based upon different mechanisms from chemical
kinetics for cell repair of radiation damage [1–3].

9.1 IntegratedMichaelis–Mentenmethod for cell survival

Chemical kinetics can be viewed as one of the most appropriate ways to introduce
repair mechanisms into cell survival after irradiation. Thus, for example, a cell repair
process canbedescribed through chemical kinetics by the irreversible enzymecatalysis
within the formalism of the Michaelis–Menten equation [112] in the quasi-steady
state (QSS) setting [113]. This has recently been done in Ref. [1]. Enzyme catalysis
[112,114], as one of the most important chemical reactions, consists of formation and
destruction of an intermediate molecular compound:

[E] + [L] −→k1 [EL] −→k2 [E] + [R] , (9.3)

where [E], [L] and [R] are the concentrations of enzymes (E), lesions (L) {substrates}
and repaired lesions (R) {products}, respectively. The concentration [EL] refers to the
intermediate complex EL consisting of E and L.

In biochemistry, the substrate and product are denoted by S and P, respectively.
This standard notation is not used in radiobiology to avoid confusion with the cell
surviving fraction, which is conventionally labeled by S or SF. In (9.3), the parameters
k1 and k2 are the rate constants for formation and destruction of EL, respectively. The
damaged molecules (lesions L) can be taken to be the deoxyribonucleic acid (DNA)
molecules, as the principal target in the cells. The products R are the repaired lesions.

In the Michaelis–Menten mechanism of enzyme catalysis for lesion repair, the
mass action law for [E], [L], [EL] and [R] is employed through the standard system
of differential non-linear coupled rate equations for time evolution of concentrations
of the invoked four molecules:

d[L]
dt

= −k1[E] [L], (9.4)

d[E]
dt

= −k1[E] [L] + k2[EL], (9.5)

d[EL]
dt

= k1[E] [L] − k2[EL], (9.6)

d[R]
dt

= k2[EL], (9.7)
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with the given initial conditions at time t = 0,

[L](0) = [L]0, [E](0) = [E]0, [EL](0) = [EL]0, [R](0) = [R]0. (9.8)

Hereafter,we use the abbreviated notation [E] ≡ [E](t), [L] ≡ [L](t), [EL] ≡ [EL](t)
and [R] ≡ [R](t). The initial concentration of lesions [L]0 is:

[L]0 = k0D, k0 = 1

D0
, (9.9)

where as throughout, D is the absorbed instantaneous (acute) physical dose. The
quantity D0 from (9.9) is the mean lethal dose, which is the dose for which the
survival fraction is reduced by a factor of 1/e ≈ 0.37, or by ∼ 37%. This follows
from the assumption of a purely exponential decay law for the cell survival probability,
SF(D) = exp (−D/D0), where at D = D0 we have SF(D0) = 1/e.

The systemof equations in (9.4)–(9.7) cannot be solved exactly by analyticalmeans.
However, making the QSS approximation, defined by d[EL]/dt ≈ 0, the exact closed-
form solution of the system (9.4)–(9.7) is obtained as the Michaelis–Menten equation
for the reaction velocity v0 [1]:

v0 ≡ dR

dt
= −dL

dt
= vmax[L]

KM + [L] . (9.10)

The parameter vmax > 0 is the maximal value of v0 and KM > 0 is the Michaelis–
Menten constant for the irreversible enzyme catalysis from (9.3):

vmax = k2[E]0, KM = k2
k1

. (9.11)

The constant KM has the dimension of concentration and it represents the value of the
lesion concentration [L] at which the reaction velocity v0 attains its halved maximum,
vmax/2. Integrating the equation dL/dt = −vmax[L]/(KM + [L]) from (9.10) gives
the expression:

− vmaxt = KM ln
[L]
[L]0 + [L] − [L]0. (9.12)

An alternative derivation from Ref. [114] also gives the result (9.12), which for radio-
biological models of cell surviving fractions has been used in Ref. [54]. It is convenient
to rewrite Eq. (9.12) in the following equivalent form:

ln
[L]
KM

+ [L]
KM

= ln y, (9.13)

with

ln y ≡ ln
[L]0
KM

+ {σM[L]0 − kt} ∴ y = [L]0
KM

eσM[L]0−kt , (9.14)
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where

σM = 1

KM
, k = vmax

KM
. (9.15)

The implicit, transcendental equation (9.13) for [L], as a function of time t, can now
be solved exactly using the definition (5.3) of the Lambert W function with the result
[1]:

[L](t) = 1

σM
W0

(
σM[L]0 eσM[L]0−kt

)
. (9.16)

The Lambert function W of a general argument y from (5.3) is specified in (9.16) as
the principal branch W0 because y = ([L]0/KM) exp (σM[L]0 − kt) from (9.14) is
always real and positive.

Earlier, in 1997, within biochemistry, the Michaelis–Menten equation has been
integrated analytically for the first time by Schnell and Mendoza [88] in terms of the
Lambert W0 function. In 1999, Goudar et al. [89] applied intensively this analytical
tool to biochemical problems, and made their program available as an open source
code. From that time until the present, the Schnell–Mendoza method for integrated
progress curves in the Michaelis–Menten based enzyme catalysis has continuously
been applied for many problems in biochemistry and beyond.

From the radiobiological viewpoint, the compact analytical formula (9.16) is impor-
tant because it depends both on time t and dose D.Thus, the lesion concentration [L](t)
is, in fact, a bi-variate function [L](t, D) which represents the net biological effect of
radiation, as denoted by EB(t, D) :

EB(t, D) ≡ [L](t, D) = 1

σM
W0

(
σM[L]0 eσM[L]0−kt

)
. (9.17)

However, whenever the dose dependence is of a primary concern, the time variable t
in (9.17) can be taken as a fixed time parameter. Presently, t is taken to be the repair
time tR. In such a case, and by reference to the relation [L]0 = k0D from (9.9), dose D
becomes the sole independent variable in the lesion concentration [L](tR, D), which
is now a uni-variate function of dose, as simplified by [L](tR, D) ≡ [L](D), so that:

[L](tR, D) ≡ [L](D) = α

γ
W0

(
γ DeβD/α

)
, (9.18)

α = k0e
−ktR , β = k0γ , γ = α

KM
, (9.19)

α

β
= KMD0,

γ

β
= D0. (9.20)

As seen from (9.20), the parameter quotients α/β and β/γ are independent on the
repair time tR.This expounded formalism constitutes the integratedMichaelis–Menten
radiobiolagical model, IMM [1] which, on account of (9.18), predicts the biological
effect E(IMM)

B (D) as:
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E(IMM)
B (D) = L(IMM)(D) = α

γ
W0

(
γ DeβD/α

)
. (9.21)

Assuming the statistical Poisson distribution of lesions L(IMM)(D), the associated
cell surviving fraction S(IMM)

F (D) in the IMM model is defined by S(IMM)
F (D) ≡

exp {−E(IMM)
B (D)} = exp {−L(IMM)(D)} and, therefore:

S(IMM)
F (D) = e−(α/γ )W0(γ DeβD/α). (9.22)

Using the asymptotic formulae (8.27) and (8.28), the behaviors of the surviving fraction
S(IMM)
F (D), for small and large doses, respectively, can readily be derived with the

results [1]:

S(IMM)
F (D) ≈

D→0
e−D/(nD0), (9.23)

S(IMM)
F (D) ≈

D→∞ ne−D/D0 , (9.24)

where

n = eωR , ωR = vmaxtR. (9.25)

Here, n is the extrapolation number, which is in the IMM model connected to the
maximal enzyme velocity vmax and the repair time tR via ln n = vmaxtR = ωR. In a
plot of S(IMM)

F (D) versus dose D, the number n is the intercept of the extrapolated,
ending, exponentially decreasing part of the survival curve with the ordinate (drawn
from the origin D = 0). The illustrations of the successful performance of the IMM
model relative to measurements as well as to the LQ model for survival of irradiated
cells have previously been given in Refs. [1,3].

9.2 Cell repair by pool repair molecules from the cell environment

Staying still within chemical kinetics, one of the alternatives to the IMM model
is to conceive the damage repair as being mediated by the so-called pool repair
molecules from the cell environment [56,115–120]. To proceed, let the set of quan-
tities {[a]t , [b]t , [c]t , [p]t } be the concentrations of various types of radiation lesions
{a, b, c, p} ≡ {′′a′′, ′′b′′, ′′c′′, ′′ p′′}.Hereafter, in the running text, whenever the square
brackets are not used to denote the concentrations, the letters {a, b, c, p} for the lesion
labels will alternatively be denoted by {′′a′′, ′′b′′, ′′c′′, ′′ p′′} for a clearer distinction
from the corresponding ordinary letters. The meaning of the labels [a]t , [b]t , [c]t and
[p]t is as follows: [a]t is the concentration of potentially lethal, first-step lesions per
cell, [b]t is the concentration of metabolically-developed lethal lesions per cell, [c]t is
the concentration of potentially lethal lesions per cell that have been repaired and [p]t
is concentration of first-step lesions per cell that are not potentially lethal. Further, let
k0, k, k1, k2 be the rate constants of different transformations governed by chemical
processes induced by interactions between the cell and radiation. Concretely, k0 is
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the rate constant of increase in type ′′a′′ lesions per unit dose at time t = 0, k is the
constant of increase in type ′′ p′′ lesions per unit dose at time t = 0, k1 is the rate con-
stant of the cell kill reaction [a]t −→ [b]t and k2 is the rate constant for the recovery
reaction [a]t −→ [c]t . Equivalently, rate k0 can be defined through the reciprocal of
the mean lethal dose D0 via k0 = 1/D0 as in (9.9).

Pool substances ′′ p′′ can be both repair molecules and lesions. The reason is that
pool molecules can also be damaged by radiation, in which case, we assume that the
produced ′′ p′′ lesions are not potentially lethal and are, thus, always available for
repair. As stated, the rate constant k2 is the rate for transformation ′′a′′ −→ ′′c′′ by
which ′′a′′ is reduced to ′′c′′ per unit of ′′a′′. The rate k1 of decrease of ′′a′′ + ′′ p′′
can be assumed to be a dose-independent constant throughout the time development
of the type ′′a′′ lesions. The rate constant k2 could be obtained by considering all
lesions on which the recovery process can act. These are the type ′′a′′ and ′′b′′ lesions.
A general hypothesis of all the pool-based models is that every increment of dose D
yields more new ′′a′′ and ′′ p′′ lesions. Further, it can be supposed that the rate for the
transformation ′′a′′ −→ ′′b′′ is dependent solely on the concentration of the type ′′a′′
lesions.

In this setting, the standardmass action lawof chemical kinetics yields the following
system of the rate equations (without forming an intermediate compound molecule):

d[a]t
dt

= −k2[p]t [a]t − k1[a]t , (9.26)

d[b]t
dt

= k1[a]t , (9.27)

d[c]t
dt

= k2[p]t [a]t , (9.28)

d[p]t
dt

= −k2[p]t [a]t , (9.29)

with the initial conditions at t = 0 :

[a]0 = k0D, [b]0 = 0, [c]0 = 0, [p]0 = p0 , (9.30)

where p0 is the initial concentration of the pool molecules that are available for repair
at time t = 0. Unlike the Michaelis–Menten system of equations (9.4)–(9.7) for cell
repair by enzyme catalysis, the system (9.26)–(9.29) can be solved exactly. To see
this, we first express [a]t from Eq. (9.27) as:

[a]t = 1

k1

d[b]t
dt

. (9.31)

When (9.31) is inserted into Eq. (9.29), it follows:

d ln[p]t
dt

= −ρ
d[b]t
dt

, (9.32)
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where ρ is the quotient of the rate for the repair process and the development of a
lethal lesion

ρ = k2
k1

= Rate constant of cell repair

Rate constant of cell kill
. (9.33)

Integration of (9.32) gives ln [p]t = −ρ[b]t + lnC1 where the integration constant is
fixed as C1 = p0 by the initial conditions (9.30). Thus:

[p]t = p0e
−ρ[b]t . (9.34)

Next, by combining (9.31) and (9.34), we can cast Eq. (9.28) for [c]t into the form:

d[c]t
dt

= ρ p0e
−ρ[b]t d[b]t

dt
. (9.35)

This equation has its more useful counterpart:

d[c]t
dt

= −p0
d

dt
e−ρ[b]t , (9.36)

on the account of the relation

d

dt
e−ρ[b]t = −ρe−ρ[b]t d[b]t

dt
. (9.37)

Integration of Eq. (9.35) yields [c]t = −p0 exp (−ρ[b]t ) + C2 with the integration
constant C2 determined as C2 = p0 by way of the initial condition [c]0 = 0 at t = 0
from (9.30). Therefore:

[c]t = p0
{
1 − e−ρ[b]t

}
. (9.38)

Further, we insert (9.31) and (9.38) into the rhs of (9.26) to arrive at:

d[a]t
dt

= −
{
1 + ρ p0e

−ρ[b]t
} d[b]t

dt
, (9.39)

or equivalently, with the help of (9.37)

d[a]t
dt

= −d[b]t
dt

+ p0
d

dt
e−ρ[b]t . (9.40)

Integration of this equation provides the result [a]t = −[b]t + p0e−ρ[b]t +C3 where,
by using the initial conditions [a]0 = k0D and [b]0 = 0 from (9.30), the integration
constant C3 is found to be C3 = k0D − p0. This finally gives the expression:

k0D = [b]t + p0
{
1 − e−ρ[b]t

}
+ [a]t . (9.41)
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In the solution (9.41), the primary interest is to consider a sufficiently long time t
(theoretically t → ∞). The corresponding limiting values of the invoked concen-
trations will be denoted by: limt→∞[a]t = [a]∞ ≡ [A]D, limt→∞[b]t = [b]∞ ≡
[B]D, limt→∞[c]t = [c]∞ ≡ [C]D, limt→∞[p]t = [p]∞ ≡ [P]D. In particular,
we have [a]∞ = 0 since after a sufficiently long time has elapsed, all the remaining
potentially lethal lesions eventually lead to cell death. These circumstances map the
expression (9.41) into the following relation:

k0D = [B]D + p0
{
1 − e−ρ[B]D

}
, (9.42)

where the sought quantity [B]D, as the biological effect of radiation, represents the
concentration of lethal lesions at dose D. This implicit solution for [B]D belongs to
the category of the following general transcendental equation:

y − q1 − q2e
−q3y = 0. (9.43)

Multiplying (9.43) by q3e−q1q3 gives q3(y − q1)e−q1q3 = q2q3e−q3(y+q1) which can
be rewritten as q3(y − q1) exp (q3{y − q1}) = q2q3 exp (−q1q3), or equivalently:

Y eY = q2q3e
−q1q3, (9.44)

where Y is an abbreviated notation for q3(y − q1)

Y = q3(y − q1). (9.45)

As per (5.2), the solution Y of (9.44) is the Lambert function Y = W (q2q3e−q1q3), so
that after returning to y via (9.45), namely y = q1 + (1/q3)Y , it follows:

y = q1 + 1

q3
W
(
q2q3e

−q1q3
)
. (9.46)

Rewriting (9.42) in the form (9.43) as [B]D − (k0D − p0) − p0e−ρ[B]D = 0 permits
the identification:

y = [B]D , q1 = k0D − p0 , q2 = p0 , q3 = ρ. (9.47)

These relations together with (9.46) give the solution of (9.42) as:

[B]D = k0D − p0 + 1

ρ
W0

(
ρ p0e

−ρ(k0D−p0)
)

, (9.48)

where the principal branch W0 of W is taken because its independent variable is
always non-negative, ρ p0 exp (−ρ(k0D − p0)) ≥ 0, for all the physical values of the
invoked quantities {D; ρ, k0, p0}. From here, the pool repair Lambert model, PRL [2]
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for the biological effect of radiation, as the concentration of lethal lesions, has been
introduced by:

E(PRL)
B (D) = [B]D = k0D − p0 + 1

ρ
W0

(
ρ p0e

−ρ(k0D−p0)
)

. (9.49)

With the usual assumption of a Poisson distribution of lesions [B]D, the associated
cell surviving fraction in the PRL model is:

S(PRL)
F (D) ≡ e−E(PRL)

B (D) = e−(k0D−p0)−(1/ρ)W0
(
ρ p0e−ρ(k0D−p0)

)
. (9.50)

An alternative form of (9.43) can also be considered by the substitution:

S = e−y . (9.51)

With this ansatz, we can cast (9.43) into the following general transcendental equation:

ln S + q1 + q2S
q3 = 0, (9.52)

or equivalently

1

q3
ln
(
q1/q32 S

)q3 − ln (q2)

q3
+ q1 +

(
q1/q32 S

)q3 = 0. (9.53)

Further, passing from the function S to X by using the defining relation:

X = q2S
q3 , (9.54)

it follows from (9.53)

ln X + q3X = ln (q2) − q1q3, (9.55)

or alternatively

ln Y + Y = ln ζ, Y = q3X , (9.56)

where

ln ζ = ln (q2q3) − q1q3 ∴ ζ = q2q3e
−q1q3 . (9.57)

A comparison of (9.56) with (5.3) provides the following identification:

Y = W (ζ ). (9.58)
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This result, by recurring back to X , yields X = (1/q3)W (ζ ). The latter formula, by
way of (9.54), provides S as:

S =
{

1

q2q3
W
(
q2q3e

−q1q3
)}1/q3

. (9.59)

This is the solution of the intermediate transcendental equation (9.52), which is of
interest on its own right. Finally, by recuperating the original quantity y from S through
the use of (9.51), we arrive at:

y = − 1

q3
ln

(
1

q2q3
W
(
q2q3e

−q1q3
))

. (9.60)

We now have two very differently looking expressions (9.46) and (9.60) for the sup-
posedly unique solution y of the starting transcendental equation (9.43). The solution
y from (9.43) would indeed be unique if and only if the right hand sides of the expres-
sions in (9.46) and (9.60) are identical. To proceed, we then assume that y, as the
solution of transcendental equation (9.43), is equal to either the left or the right hand
sides of the following expression taken from (9.46) and (9.60):

q1 + 1

q3
W (ζ ) = − 1

q3
ln

(
W (ζ )

q2q3

)
, (9.61)

where ζ = q2q3e−q1q3 as per (9.57). Multiplying both sides of Eq. (9.61) by q3 and
rearranging the resulting terms, we obtain ln (W (ζ ))+W (ζ ) = ln (q2q3)−q1q3. The
rhs of this latter equation is equal to ln ζ, according to (9.57), so that:

lnW (ζ ) + W (ζ ) = ln (ζ ). (9.62)

This is of the form of the definition (5.3) of the Lambert W function. Therefore,
the indicated match of the two different forms (9.46) and (9.60), as stated in (9.61),
coherently recovers one of the defining relations for theW function, namely Eq. (5.3).
This completes the sought proof of the identity of the solutions (9.46) and (9.60) of
the transcendental equation (9.43).

In the context of radiobiology, referring to (9.47), where y is the biological effect
[B]D ≡ E(PRL)

B (D)predicted by thePRLmodel, the quantity S from (9.51) is identified

as the cell surviving fraction S(PRL)
F (D). Thus, with the parameters {q1, q2, q3} taken

according to (9.47), in the outlined second derivation, the biological effect and the
cell surviving fractions acquires the following alternative forms, that are equivalent to
(9.48) and (9.50), respectively [2]:

E(PRL)
B (D) = − 1

ρ
ln

(
1

ρ p0
W0

(
ρ p0e

−ρ(k0D−p0)
))

, (9.63)
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and

S(PRL)
F (D) =

{
1

ρ p0
W0

(
ρ p0e

−ρ(k0D−p0)
)}1/ρ

. (9.64)

The alternative result (9.64) must be equal to (9.50). To show this, we denote the
argument ρ p0 exp {−ρ(k0D − p0)} of the W0 function from (9.63) as xD via:

xD ≡ ρ p0e
−ρ(k0D−p0) ∴ ln (xD) = ln (ρ p0) − ρ(k0D − p0). (9.65)

In terms of the quantity xD, and by reference to (5.2) and (5.3), the function W0(xD)

from (9.64) reads as:

W0(xD)eW0(xD) = xD ∴ lnW0(xD) + W0(xD) = ln (xD). (9.66)

This is followed by taking the natural logarithm of both sides of (9.64):

ln S(PRL)
F (D) = 1

ρ
ln

W0(xD)

ρ p0

= 1

ρ
lnW0(xD) − 1

ρ
ln (ρ p0)

= 1

ρ
{ln (xD) − W0(xD)} − 1

ρ
ln (ρ p0)

= −W0(xD)

ρ
+ 1

ρ
{ln (ρ p0) − ρ(k0D − p0)} − 1

ρ
ln (ρ p0)

= −(k0D − p0) − W0(xD)

ρ

so that

ln S(PRL)
F (D) = −(k0D − p0) − 1

ρ
W0

(
ρ p0e

−ρ(k0D−p0)
)

. (9.67)

The result (9.67) coincides with (9.49), which itself is equal to ln S(PRL)
F (D). This

proves the equivalence of (9.50) and (9.64). Both forms for the PRL model, i.e. (9.50)
and (9.64) have only three parameters {k0, p0, ρ} and they all possess theirmechanistic
meaning derived from chemical kinetics [2].

Regarding the low- and high-D asymptotes of the cell surviving fraction S(PRL)
F (D)

from (9.50), they can be established, as has been done in Ref. [2], in a way similar
to that presently explained for the IMM model. Thus, the corresponding asymptotic
behaviors of S(PRL)

F (D) are given by:

S(PRL)
F (D) ≈

D→0
e−D/{(1+ρ p0)D0}, (9.68)

S(PRL)
F (D) ≈

D→∞ ne−D/D0 , (9.69)
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where n is the extrapolation number

n = ep0 . (9.70)

In the PRL model, the extrapolation number n from (9.70) is different from its coun-
terpart (9.25) in the IMM model. Namely, n from (9.70) in the PRL model is defined
in terms of the initial concentration p0 of the pool repair molecules. Otherwise, the
meaning of n in a plot of S(PRL)

F (D) as a function of dose D, is the same as that
already explained in the IMM model. The PRL model has been shown to excellently
reproduce the experimental data on cell surviving fractions at all radiation doses D
ranging from low through intermediate to the highest radiation exposures [2].

9.3 The Euler T function for corrections to counting statistics

As an apparent digression from the theme of the applications of the Euler and Lambert
functions in radiobiology, let us mention a circumstance associated with radiation
detectors. Namely, it is a common occurrence that the observed counting rates in
radiation detecting instruments are only apparent and, as such, they need the so-called
counting coincidence correction. In these measurements, counters take their time (say
τ ) to “recover” from radiation hits. Themeaning of such a notion is that once a count is
recorded, the counting detector becomes insensitive during a time τ.As a consequence
of the inequality τ �= 0, the detector cannot register all the hits. Therefore, the observed
number of counts will only be apparent as it is smaller than the true number of radiation
hits. In other words, there is a delay in counting, yielding a measurement error due to
themissed (non-registered) hits. So the practical question arises as to how to correct the
experimental counting rate nexp to deduce the corresponding expected, true counting
rate ntrue. The posed question can be answered in an adequate manner by assuming the
Poisson statistics of random events. Such a distribution gives for the corrected count
rates (say ncorr) the following result [3]:

ncorr = nexpe
−nexpτ , (9.71)

which is of the type of the Ricker decline function y = xe−ax from (4.1) in popu-
lation dynamics [104]. This is the source of the so-named updating (extendable, or
paralyzable or cumulative) dead time model in counting statistics. The formula (9.71)
is universally useful for a variety of coincidence counting experimental techniques
that need not refer to radiation measurements. Employing (9.71), the true counts ntrue
can be modeled by ncorr, which corrects for the dead time τ of detector. The sought
corrected counting rate ncorr is reconstructed from (9.71) as the inverse function by
means of the definition (4.32) for the Euler T function. This is already stated in (4.13)
for the function (4.1) which reduces to (9.71) for a = τ, x = nexp and y = ncorr, so
that:

ncorr = 1

τ
T0(nexpτ). (9.72)
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With the help of (4.14), the result (9.72) can be expressed by the following series
expansion in powers of the measured counting rates nexp :

ncorrτ ≡
∞∑

n=1

nn−1

n! (nexpτ)n

= ξ + ξ2 + 3

2
ξ3 + 8

3
ξ4 + 125

24
ξ5 + 54

5
ξ6 + 16807

720
ξ7 + · · · , (9.73)

where ξ = nexpτ. The exact solution (9.72) of the transcendental equation (9.71)
in counting statistics of radiation detectors has been obtained in Ref. [3] explicitly
and directly through the Euler T0 function. The series in (9.73) for the cumulative
dead time has been derived earlier in Ref. [121] using the method of series inversion.
However, it was not realized in Ref. [121] that (9.73) coincides with the the power
series representation of the Euler T0 function. Needless to say, it is of theoretical and
practical importance to recognize that the rhs of Eq. (9.73) is the Euler T0 function
as this paves the road for exploration of various properties of this function, e.g. its
asymptotic forms, etc.

9.4 The Euler T function stemming from counting statistics for cell survival

The subject of the Sect. 9.3 is of direct relevance to a key concept of the so-called
biologically effective dose. This concept is rooted in the mechanism of cell repair.
Viewed as a counting “detector”, the cell can be considered as having its resolving
power. In this way, the cell could, in principle, separate any two consecutive hits on its
sensitive site targeted by radiation. Namely, for any time t smaller than the cell repair
(recovery) time τ, the cell would be insensitive to radiation. In other words, such a cell
radiation insensitivity acts as if the cell were blocked to all the hits at the times t < τ.

This cell blocking mechanism (as a kind of radiation shielding), with the underlying
time delay, amounts to reduction of the effectiveness of radiation. As a consequence,
the cell absorbs a dose DB which is decreased relative to the delivered instantaneous
dose D. The latter relation, DB < D, as a manifestation of a reduced radiosensitivity
of the cell, conceives the dose DB as a biological modification of the imparted physical
dose D. Thus, the cell blocking mechanism, facilitated by the existence of the cell
repair system, alters D to DB as if the cell were annihilating all the radiation quanta
that were supposed to hit the targeted cell at the times t < τ.

These remarks resonate with the coincidence counting correction from the Sect. 9.3
and, moreover, they can make the relation DB < D quantitative. To proceed, we again
assume the Poisson statistics to formalize the effect of the missed or wasted radiation
quanta. According to this assumption, the probability P(0) of having no radiation
events at times t < τ is given by P(0) = exp (−kτ) = exp (−μDB). Here, k and
μ are, respectively, the dose-rate-dependent and dose-rate independent constants for
producing sub-lethal lesions by radiation. The same probability P(0) quantifies the
mentioned relation DB < D as DBP(0) = D. This gives the way in which the dose
D is decreased to DB by the cell repair system mediated through the cell blocking
mechanism in the setting of the Poisson distribution of lesions [47–53]:
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DBe
−μDB = D, μ > 0. (9.74)

If we take D to be the function of the given independent variable DB, then (9.74) is
the Ricker decline function from (4.1). However, in the context of inverse functions,
D (dependent variable) is given and DB is the sought function (independent variable).
Using the definition (4.33) of the Euler T function, the biologically modified dose DB
can be retrieved from (9.74) as:

DB = 1

μ
T0(μD), (9.75)

or via the equivalent power series representation

DB = 1

μ
T0(μD)

=
∞∑

n=1

(nμ)n−1 Dn

n! = (D + μD2) (9.76)

+3

2
μ2D3 + 8

3
μ3D4 + 125

24
μ4D5 + 54

5
μ5D6 + 16807

720
μ6D7 + · · · .

(9.77)

As per the explanation, the cell-blocking mechanism effectively relies upon the exis-
tence of a time delay 	t due to the cell’s inability to register any hit at times t smaller
than 	t . Here, 	t is the same as the cell repair time τ , i.e. 	t = τ. For this reason,
modeling the biologically modified dose by means of DB from (9.75) in the cell sur-
viving fraction SF(D) ≡ exp (−αDB) is called the Euler delayed dynamics (EDD)
model [47–52]. Thus, writing S(EDD)

F (D) ≡ exp {−αD(EDD)
B } with DB from (9.77)

re-labeled by D(EDD)
B , we have:

S(EDD)
F (D) = e−(α/μ)T0(μD). (9.78)

If we set μ = β/α and truncate the series for DB by retaining only the first two terms
D + μD2, that are already singled out in (9.76), the LQ model would be obtained for
the biological effect αDB ≈ αD(LQ)

B = αD+βD2. This would give the cell surviving

fraction S(LQ)
F (D) = exp (−αD − βD2), as in (9.1). As such the LQ model appears

to be a low-dose approximation of the EDD model.

9.5 The Euler T function in cell survival stemming explicitly from delayed
dynamics

The EDD model can alternatively be derived in the framework of delayed differential
equations (DDE) [3]. To see this, instead of using the time variable, wewill temporarily
consider the radiosensitivity α as the independent variable, and take dose D to be a
fixed parameter. Note that in the simplest radiobiological model SF(α, D) = e−αD =
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SF(D, α), the quantities α and D appear symmetrically. This implies that the same
solution SF(D) = e−αD of an underlying dynamical equation can be derived by
exchanging the role of α and D. For example, we can use D as the independent
variable and keep α as a fixed, constant parameter. This situation corresponds to the
cell dynamics described by the ordinary differential equation (ODE):

dSF(α, D)

dD
= −αSF(α, D), SF(α, 0) = 1

∴ SF(α, D) = e−αD

⎫
⎬

⎭
, μ > 0. (9.79)

Likewise, we can take α as the independent variable and consider D as a fixed param-
eter, so that the alternative ODE is:

dSF(α, D)

dα
= −DSF(α, D), SF(0, D) = 1

∴ SF(α, D) = e−αD

⎫
⎬

⎭
. (9.80)

Both Eqs. (9.79) and (9.80) describe an irreparable lesion mediated by a direct cell kill
mechanism. Additionally, repair can be included by introducing a time delay τ which
retards the direct radiation action. Such a type of delayed dynamics is described by a
DDE, which usually has time t as the independent variable. This does not need to be
always the case, and in the present context, we can use the radiosensitivity α as the
independent variable.Under such a circumstance, to introduce a cell repairmechanism,
we shall consider the following DDE counterpart of the ODE from (9.80):

dSF(α, D)

dα
= − f (D)SF(α − μ, D) , SF(0, D) = 1, μ > 0, (9.81)

where D and μ are fixed non-negative parameters. In particular, μ is a delay constant
which is a reduction of radiosensitivity in comparison with to the situation without
repair. Here, f (D) is a dose-modifying factor (DMF), which is subject to various
choices leading to different radiobiological models. To solve Eq. (9.81), we set:

SF(α, D) = eαXD . (9.82)

The sought function XD does not depend on α. Its dependence on D is implicit and
parametric. When the ansatz (9.82) is substituted in Eq. (9.81), it follows XDeαXD =
− f (D)e(α−μ)XD , or equivalently:

XDe
μXD = − f (D). (9.83)

Multiplication by μ gives the transcendental equation μXDeμXD = −μ f (D) whose
exact solution, according to (5.1) and (5.2), is the Lambert W function, i.e. μXD =
W (−μ f (D)). This latter expression can equivalently be given through the Euler T
function via μXD = −T (μ f (D)), by virtue of the relation W (−y) = −T (y) from
(3.6), so that:
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XD = − 1

μ
T (μ f (D)). (9.84)

Inserting this result into Eq. (9.82) gives the cell survival fraction:

SF(α, D) = e−(α/μ)T (μ f (D)). (9.85)

Once (9.85) is derived, we are free to return to the usual writing via SF(D) for the cell
surviving fraction instead of the provisional notation SF(α, D). Then, for a specified
f (D), the surviving fraction SF(D), as a function of D, can be drawnwith the quantity
α considered as a fixed parameter. For example, we can model the DMF to be linear
in dose D :

f (D) = D. (9.86)

In this case, T (μ f (D)) from (9.85) becomes the Euler principal branch function
T0(μD) since μD is positive. With f (D) given by (9.86), the surviving fraction
(9.85) becomes:

SF(D) = e−(α/μ)T0(μ f (D)) = e−(α/μ)T0(μD), f (D) = D, (9.87)

wherewe set SF(α, D) ≡ SF(D).This expression coincideswith the surviving fraction
S(EDD)
F (D) from Eq. (9.78) in the EDD model. Of course, in the DDE formalism, the

parameter μ must be independent of α to secure that SF(D) from (9.87) is the exact
solution of Eq. (9.81).

9.6 The Euler T function for cell survival based upon delayed dynamics and the
Poisson dosemodifying factor

As stated, in the DDE from (9.81), the function f (D) is not specified. As such, the
choice (9.86) produced the EDD model. Of course, some other biologically justified
choices of the DMF could also be made. For example, we can request that f (D) is
given by the Poissonian ansatz via the Ricker decline function (3.3):

f (D) = De−λD, λ > 0, (9.88)

where λ is a repair rate constant. Note that the rhs of Eq. (9.88) would correspond to
the cell blocking mechanism of repair, if in Eq. (9.74), the parameter μ is renamed to
be λ alongside with the exchange DB ←→ D. Inserting (9.88) into (9.85) gives the
presently proposed Euler-Poisson Delayed (EPD) model with the surviving fraction:

S(EPD)
F (D) = e−(α/μ)T0(μDe−λD), f (D) = De−λD . (9.89)

The dose-modifying factor f (D) from (9.86) in the EDD model does not, in fact,
modify the imparted dose D, i.e. f (D) = D.However, in the EPDmodel, the situation
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is different. Therein, the dose-modifying factor f (D) from (9.88) relates to a manner
by which the repair system copes with the impact of radiation. Namely, by way of
f (D) = D exp (−λD) from (9.88), the cell repair capability is significant for small
doses, after which it reaches a maximum at D = 1/λ and afterward, as expected, dies
out exponentially at high doses.

9.7 The LambertW function for cell survival based upon delayed dynamics

Within the delayed dynamics, another radiobiological model can be devised. To this
end, it is convenient to first consider an auxiliary function M(α, D), called the cell
mortality function, which is defined by the following DDE:

dM(α, D)

dα
= g(D)M(α − μ, D), M(0, D) = 1, (9.90)

where μ > 0 and D is a fixed parameter. Here, g(D) is a growth function, which can
be selected following different models from studies of population species. Then the
reciprocal of M(α, D) is the surviving fraction SF(α, D) via:

SF(α, D) = 1

M(α, D)
. (9.91)

In Eq. (9.90), we can choose g(t) to be the Ricker growth function of the type (3.1),
as proposed in Ref. [3]:

g(D) = DeλD, λ > 0. (9.92)

With this choice, Eq. (9.90) becomes:

dM(α, D)

dα
= DeλDM(α − μ, D), M(0, D) = 1. (9.93)

The solution of (9.93) can be found by introducing the following exponential ansatz:

M(α, D) = eαYD . (9.94)

Substituting this form of M(α, D) into (9.93) yields the expression:

YDe
αYD = DeλD+(α−μ)YD . (9.95)

Multiplication of both sides of this equation by μe(μ−α)YD gives:

μYDe
μYD = μDeλD . (9.96)
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This transcendental equation is solved in terms of the principal value Lambert W0,

since μD exp (λD) is positive:

YD = 1

μ
W0(μDeλD). (9.97)

Therefore, the cell mortality function M(α, D) from (9.94) acquires the form:

M(α, D) = e(α/μ)W0(μDeλD), (9.98)

and the ensuing result for the quantity SF(α, D) from (9.91) becomes

SF(α, D) = e−(α/μ)W0(μDeλD). (9.99)

In an analogy with the EDD model from the formalism of the DDEs, here too, the
function SF(α, D) from (9.99) can freely be re-labeled as SF(D) to represent the cell
surviving fraction in which α is now kept as a fixed, constant parameter. The outlined
description of the delayed dynamics resulting in the biological effect expressed in
terms of the Lambert function W0(μDeλD) is called the Lambert delayed dynamics
(LDD) model [3]:

S(LDD)
F (D) = e−(α/μ)W0(μDeλD). (9.100)

The LDD model provides the analytical expressions for the required asymptotic
behaviors of the surviving fraction S(LDD)

F (D). It predicts the correct exponential cell
inactivation modes at both small and large doses with a shoulder located in between
these two extreme ranges of irradiation.

Formally, the cell surviving fractions S(IMM)
F (D) and S(LDD)

F (D) from (9.22) and
(9.100) in the IMM and LDD models, respectively, are strikingly similar. As a matter
of fact, they would coincide via S(IMM)

F (D) = S(LDD)
F (D) if the parameters μ and λ

from S(LDD)
F (D) in (9.100) for the LDD model are set to μ = γ and λ = β/α. How-

ever, such a formal coincidence cannot be justified. The reason is that γ and λ must
not depend on α if the auxiliary quantity M(α, D), as the seed (kernel) function for
S(LDD)
F (D), is to satisfy exactly Eq. (9.93).Most importantly, the IMMand LDDmod-

els are fundamentally dissimilar because they stem from two different assumptions.
The IMM model is based on a clearly defined and quantitatively testable mechanism
of enzymatic repair limited by a damage ’fixation’ time [55]. On the other hand, the
LDD model postulates that a lesion repair is governed by delayed dynamics for the
cell radiosensitivity.

10 Illustrations

To illustrate the usefulness of the Lambert W functions for a repair-based description
of cell surviving fractions, we presently apply two of the discussed models to the
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Fig. 1 Cell surviving fraction SF(D) as a function of radiation instantaneous dose D in Gy (a) and the Fe
(Full-effect) plot (b). Experimental data (Chinese hamster V79 cell lines) [122]: full circles. Radiobiological
models (present computations): IMM (Integrated-Michaelis–Menten) model: solid curve, and LQ (Linear–
quadratic) model: dashed curve (see also the rightmost panel ‘11.5h’ in Fig. 1 of Chadwick and Leenhouts
[17]) (Color Online)
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Fig. 2 Cell surviving fraction SF(D) as a function of radiation instantaneous dose D in Gy (a) and the Fe
(Full-effect) plot (b). Experimental data (Chinese hamster V79 cell lines) [123]: full circles. Radiobiological
models (present computations): IMM (Integrated-Michaelis–Menten) model: solid curve and LQ (Linear–
quadratic) model: dashed curve (Color Online)
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Chinese hamster V79 cells. This is shown in Figs. 1 and 2, where the IMM and LQ
models are compared with the available experimental data. Comparisons are made
using both cell surviving fractions (Figs. 1a, 2a) and the so-called full-effect curves
(Figs. 1b, 2b). The behaviors of the experimental data for cell surviving fractions
exhibit three different patterns at low, intermediate and high values of dose D. At low
and high doses, exponential declines of cell surviving fractions as a function of D are
observed with two different decay constants. In between these two asymptotic regions,
a curve bending via some shoulders appears. By contrast, the experimental data in the
full-effect plot are usually some rising functions of dose D.

At all doses, as seen in Figs. 1 and 2, these different trends from the measured data
are correctly predicted by the IMM model. Also displayed in Figs. 1a and 2a are the
results from the LQ model, which cannot describe the high-dose tails of the measured
cell surviving fractions. Moreover, regarding the full-effect plots in Figs. 1b and 2b,
the LQ model yields merely the pure straight lines and, thus, fails to detect a plateau
at high doses.

Physically, an exponential mode of decline in cell surviving fractions at large D
is anticipated. This occurs because the repair system cannot cope with sufficiently
high doses that can kill basically all the irradiated cells. Such a phenomenon is also
manifested in the full-effect plot, which levels off at sufficiently high doses for which
the repair system ceases to function. Namely, for large doses all the available repair
molecules (e.g. enzymes in the IMM model or some pool of chemical compounds
from the cell environment in the PRL model) are either exhausted (i.e. used up) or
incapacitated by the intense radiation.

As has previously been shown for other experimental data [1,2], here too, the
corresponding results from the PRL model are close to those of the IMM model.
Therefore, to avoid clutter, the cell surviving fractions and the full effect plots from
the PRL model are not shown in the present illustrations.

11 Conclusions

This review is on theuseof theEulerT andLambertW functions for the radiobiological
models based upon chemical kinetics with a special focus on cellular damage repair.
Expectedly, experimental data on cell surviving fractions decline exponentially as
e−aD and e−bD (with two different decay constants a and b) when the deposited
radiation dose D becomes small and large, respectively. A shoulder of a definite
width is located in between these two asymptotic regions of exposures to radiations.
This shoulder within a limited region of small doses (around 2Gy) has often been
approximated by a low-degree polynomial. Such is the situation with the frequently
used linear–quadratic model, LQ. This model assumes the Poisson distribution of
radiation lesions and gives the cell surviving fraction in terms of the two adjustable
parameters {α, β} via S(LQ)

F (D) = exp (−αD − βD2). Evidently, the LQ model does

not possess the correct high-dose asymptote as S(LQ)
F (D) is reduced to a Gaussian

function exp (−βD2) at large D. Further, it has been argued that the LQ model has
no mechanistic basis [21].

123



2186 Journal of Mathematical Chemistry (2018) 56:2133–2193

Researchers in this branch of cellular radiobiology (which is relevant to dose plan-
ning systems in radiotherapy), usually choose a transition dose DT to connect a
low-dosemodel (e.g. LQ)with a high-dose, purely exponential inactivationmodeof the
type exp (−D/D0).Here 1/D0 is the final slope of the curve for the cell surviving frac-
tion,where D0 is themean lethal dose.Connecting a low-with a high-dose asymptote is
customarily made through the Heaviside step function. The ensuing linear–quadratic-
linear model, LQL, gives the cell surviving fraction as S(LQL)

F (D) = S(LQ)
F (D) for

D < DT and S(LQL)
F (D) = S(LQ)

F (DT)e−γ (D−DT) for D ≥ DT. Thus, disadvanta-

geously, the LQL has a discontinuous cell survival curve S(LQL)
F (D) and, moreover, it

increases the number of the adjustable parameters to four {α, β, γ, DT} relative to the
LQ model. The LQL model lacks a mechanistic basis. This is inherited from the LQ
model, and further exacerbated by artificially imposing the purely exponential cell kill
at high doses.

By contrast, as has recently been shown [1,2], these drawbacks of the usual radiobi-
ological models can all simultaneously be lifted. This has been achieved by employing
chemical kinetics to derive the mechanistic models that automatically exhibit the cor-
rect behaviors at low and high doses, with the adequate predictions of the shoulder at
intermediate values of D. The corresponding cell survival fractions are given by the
explicit, closed expressions that are amenable to the necessary analyses and efficient
computations. Thesemodels have no need to introduce any transition dose DT because
the passage from one to the other correct exponential tail is smoothly built into the
cell surviving fraction by way of the Lambert W functions.

For example, one suchmodel arises fromenzyme catalysis in theMichaelis–Menten
mechanism, and it is called the integratedMichaelis–Menten model, IMM. The adjec-
tive “integrated” means that the standard Michaelis–Menten equation for the reaction
velocity (as the rate of concentrations of radiation lesions) is integrated. This inte-
gration is carried out analytically giving the biological effect E (IMM)

B in the form

of the principal-branch Lambert function W0 via E (IMM)
B = (α/γ )W0(γ DeβD/α).

Assuming the Poisson distribution of lesions, the resulting surviving fraction is
S(IMM)
F (D) = exp{−(α/γ )W0(γ DeβD/α)}, where α, β and γ are the kinetic param-

eters. This survival curve has the required exponential cell kill at low and high doses.
Further, it describes cell repair by enzyme catalysis combined with a finite ’fixation’
time. Such a type of repair leads to a shoulder in S(IMM)

F (D) at intermediate values of
dose D.

Chemical kinetics can be used without the assumption that repair is achieved by
enzyme catalysis. Instead, some other species from the surrounding pool of the irradi-
ated cells can also be capable of performing repair of the damaged genetic machinery
of the cells so that they could resume their cycle with division and reproduction.
The system of coupled kinetic differential equations in the Michaelis–Menten for-
malism cannot be solved exactly in an analytical form, and the quasi-stationary state
hypothesis, QSS, is needed to obtain the stated approximate solution [1]. In con-
tradistinction, however, the corresponding system of kinetic differential equations
with some pool chemical compounds for cell repair can be solved exactly in an
analytical and explicit form without any additional hypothesis [2]. The resulting
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description, called the pool repair Lambert model, PRL, gives the biological effect
also in terms of the principal-branch Lambert W0 function, but with a different argu-
ment, E (PRL)

B = k0D − p0 + (1/ρ)W0(ρ p0e−ρ(k0D−p0)). Again, by invoking the
Poisson distribution of radiation lesions, the cell surviving fraction in the PRL model
becomes S(PRL)

F = exp{−(k0D − p0) − (1/ρ)W0(ρ p0e−ρ(k0D−p0))}. This cell sur-
viving curve also exhibits the proper limiting behaviors at small as well as large doses,
and it correctly describes a shoulder at intermediate doses in accordance with mea-
surements. Here, p0 is the initial concentration of the pool molecules, k0 = k1 + k2
and ρ = k2/k1, where k1 and k2 are the rate constants of cell kill and cell repair,
respectively. Thus, the three parameters {p0, k0, ρ}, or equivalently, {p0, k1, k2} in
the PRL model have a clear biological and clinical meaning. They are determined
statistically by a minimization procedure using the given input experimental data for
dose surviving fractions (or for the full-effect) in the same way as done for the three
parameters {α, β, γ } in the IMM model.

Although both the IMM and PRL models are derived from chemical kinetics they,
nevertheless, have two different assumptions for explanations of a shoulder at interme-
diate doses, an exponential tail at high doses, and the entire survival curve as the cell
response to radiation insult. In the PRLmodel, the pool chemical compounds can play
a twofold role by being both repair molecules and radiation scavengers. Within the
latter role, the pool substances can protect the targeted cells by e.g. donating hydrogens
to free radicals produced by radiation. This would prevent free radicals from ionizing
DNA, which is the main target. In the PRL model, at high doses, as soon as the pool
of repair substances disappears (either by being used up for repair or destroyed by
radiation), every subsequent lesion would be lethal, and this amounts to having the
mode of the exponential cell kill. Further, at intermediate doses in the PRL model, a
larger portion of the irradiated cells would have their damage repaired, and this yields
a shoulder in a survival curve.

As to the IMM model, the basic assumption is that lesion repair is carried out
by enzymes through enzyme catalysis in the same manner as in any other chemical
reaction. In principle, if a sufficient number of enzyme molecules is available, such
reactions could continue until the last lesion becomes repaired, as if the repair rate
were unlimited. In other words, the Michaelis–Menten mechanism alone would not
lead to a shouldered survival curve and, thus, a supplementary assumption is needed.
The additional assumption, which limits the repair rate, is that there is a finite time
allocated for lesion repair (as supported by measurements). This implies that lethality
would occur for all the cells whose lesions have not been repaired between the time of
damage and the time of ’fixation’ of damage. It is this combination of the limited time
for repair, and the enzyme catalysis (with its kinetic parameters) that is responsible
for the onset of a shoulder at intermediate doses, and an exponential inactivation in a
cell surviving curve at high doses.

In practice, both the IMM and PRLmodels are capable of fully explaining a variety
of experimental data on cell survival after irradiation.

Overall, these advances using chemical kinetics and the Lambert W function offer
two mechanistic and clinically interpretable radiobiological models that can advan-
tageously be used in dose planning systems for radiotherapy. This is expected to be
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of help for any level of dose exposure, and thus could hopefully find useful applica-
tions especially in stereotactic radiotherapy. This latter radiation therapy deals with
localized smaller tumors to which it delivers exclusively high doses (about 10Gy)
per fractions in only a few (about 5) fractions within a week. For dose planning sys-
tems in these non-conventional fractionated treatment schedules (the conventional
fractionation regimens use about 2Gy per fraction, 5days per week, within a month),
it is important to rely upon certain adequate, mechanistically-based radiobiological
models with the correct behaviors, especially at high doses. The IMM and the PRL
models are the two examples of such models that stem from chemical kinetics. The
minimization procedures for determining a small number (three) of the mechanistic
parameters in the IMM and the PRL models is very efficient. This is the case because
the computations of the real principal branch Lambert function W0 of real arguments
is simultaneously very fast and highly accurate. It is, therefore, hoped that the IMM
and PRL radiobiological models will find their way to dose planning systems for both
conventional and non-conventional radiotherapy.
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50. Dž Belkić, K. Belkić, Mechanistic repair-based Padé linear-quadratic model for cell response to
radiation damage. Adv. Quantum Chem. 65, 407–449 (2013)
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