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Abstract An improved amplitude–phase formula suitable for non-relativistic heavy-
particle resonance phase shifts is derived. The present formula makes use of two
amplitude functions instead of one for a central potential; an inner amplitude which
is non-oscillatory in the well region of the effective potential, and an outer amplitude
function which is non-oscillatory far away from the origin of the effective potential.
The low-energy limit is discussed in connection with Levinson’s theorem. Numerical
computations at resonance energies and graphical illustrations are presented. Numer-
ical comparisons with an existing single-amplitude formula are made.

Keywords Elasticmolecular scattering ·Resonances ·Phase shifts ·Amplitude–phase
method

1 lntroduction

A study of scattering resonances need reliable computations of phase shifts [1–4].
Absolute values of phase shifts with correct multiples of π plays an important role in
connection with Levinson’s theorem and the correct number of bound states in a given
effective potential [2,5], as well as for calculations of virial coefficients [3,4]. Numer-
ical methods and algorithms do not automatically provide phase shifts with correct
multiples of π [3,4,6–8], partly because calculations of cross sections do not require
correct multiples of π . For use of methods other than amplitude–phase methods, Wei
and Le Roy (2006) [3,4] present a quantal/semiclassical method to calculate absolute
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phase shifts (rather than relative phase shiftsmoduloπ ) that improves standard quantal
methods [9,10]. This method is general and not specific to resonance scattering.

In cases of heavy-particle scattering, resonances often appear in tiny energy intervals
and require accurate phase shift computations. The amplitude–phase method using a
single amplitude function turns out to miscount the correct multiple of π in such cases.
The improvement presented here (a two-amplitude method) is specific for potentials
supporting extremely sharp resonances, having ‘thick barriers’ causing exponential
behaviors of wave functions. For non-resonance scattering of heavy particles one can
rely on the single-amplitude method of calculating phase shift. Both amplitude–phase
methods automatically provide absolute phase shifts.

The amplitude–phase method sees a fundamental quantum wave function as
composed of a real-valued amplitude function and a real-valued phase function in
exponential form [11,12]. The idea of subdividing a wave function of quantum theory
into a phase function and an amplitude function has been introduced also in semi-
classical approximations; see [1,2,13,14]. It was implemented as an exact numerical
method by Milne [11] and Wheeler [12], and later improved by others; often referred
to as the ‘amplitude-phase method’. Because of a suitable exact relation between the
phase and the amplitude, the basic quantity of computation is the amplitude function.

Theremay be several ‘local’ representations of a solution obtained by an amplitude–
phase method, being formally exact in all space. However, their numerical efficiencies
may differ significantly. A typical case is the problem of calculating bound-state
solutions and energies in double-well potantials [15]. Another case is the reflec-
tion/transmission solutions in the presence of thick potential barriers [16]; see also
[17]. Therefore, like semiclassical representations of the Wentzel–Kramers–Brillouin
(WKB) type [16], the amplitude–phase representations of a wave can be seen as
‘locally valid’ and connections between them are useful in the present study. As yet,
connections of ‘local’ amplitude–phase representations occur only between regions of
oscillating waves [15]. In the present derivations, two representations of the scattering
solution are obtained and made to agree at a convenient matching point between the
two oscillatory regions. The resulting phase shift formula is valid also when the inner
and outer regions merge at energies above the barrier.

A typical effective radial potential of interest here is illustrated in Fig. 1. For scatter-
ing energies above the minimum of the well one can use fixed potential characteristics
to define two amplitude functions; the local (inner) minimum position ri and any suf-
ficiently large value of the relative distance. The barrier maximum position rm of the
effective potential is used to match the two representations of the wave.

In cases of no or small angular momenta there there may be no centrifugal barrier
in the effective potential. In the absence of a barrier one may choose rm equal to the
potential range parameter. This is the case treated by Mott and Massey [5] for phase
shifts due to an attractive radial rectangular well potential. In that case ri can be chosen
anywhere in the well, e.g. at the origin, and rm is chosen at the discontinuity where
the well vanishes. This is demonstrated in one of the sections.

Section 2 reviews the radial Schrödinger equation of potential scattering and the
definition of the partial-wave phase shifts. Section 3 presents a derivation of the well
used single-amplitude amplitude–phase formula. This section also introduces a second
amplitude function and derives a new formula for phase shifts suitable at resonance
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Fig. 1 Schematic illustration in arbitrary units of an effective potential Vl (r) and a scattering energy E
near the potential barrier maximum

conditions. Levinson’s theorem is discussed in the light of the new phase-shift for-
mula in Sect. 4. Numerical applications to carbon–oxygen scattering with a simplified
potential model are found in Sect. 5. Conclusions are stated in Sect. 6.

2 The radial Schrödinger equation and scattering solutions

The radial Schrödinger equation can be written as

� ′′
l (r) + K 2

l (r)�l(r) = 0, �l(0) = 0, (2.1)

where�l(r) is the radial wave function being regular at the origin. A prime (′) denotes
the derivative along an r -axis and l denotes the orbital angular momentum quantum
number. The potential V (r) and the scattering energy E are contained in the real-
valued coefficient function K 2

l (r). The regular radial wave function is normalized
here to satisfy

�l ≈ k−1/2 sin (kr − lπ/2 + δl) , r → ∞, (2.2)

where δl is the scattering phase shift. The wave number k is defined by

k =
√
K 2
l (+∞). (2.3)

It is assumed that the potential vanishes as r → ∞. The asymptotic expression (2.2)
is assumed at far distances where centrifugal barrier is negligible. These distances are
typically far beyond the distance where the potential is negligible.

With standard quantum computations one wants to extract the phase shift at a wave
node as close as possible to the range of the potential by fitting the quantal wave to
a linear combination of spherical Bessel functions. In that way one obtains ‘tan δl ’
and may then miss some multiple of π in the phase shift ‘δl ’ [3,4]. To overcome this
problem one interpolates phases of the waves, without the potential (spherical Bessel
function) and/orwith the potential, betweennodes using semiclassical approximations.
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This method is robust if the algorithm to count and localize nodes of the numerical
wave function is robust. The method is not limited to resonance scattering. However,
the number of oscillations of a quantal wave increases as scattering energy increases.
Accurate numerical integrations would then become more demanding, in particular
for large angular momenta.

The influence of a partial-wave phase shift δl on cross sections is proportional to
the transition factor defined here as

Tl = 2ie2iδl sin δl . (2.4)

Total cross-sections are obtained from

σ =
∞∑

�=0

σl = π

k2

∞∑
�=0

(2� + 1) |Tl |2 , (2.5)

where σl is the ‘partial cross section’. A maximum value |Tl |2 = 4 usually occurs in a
single term at a time and this happens when the phase shift is close to an odd multiple
of π/2. The correct multiple of π in the phase shift is not needed.

3 Amplitude phase method

The improved amplitude–phase formula presented in Sect. 3.2 is specific for poten-
tials supporting extremely sharp resonances, having thick barriers causing exponential
behaviors of wave functions. In other cases calculations using the single-amplitude
method in Sect. 3.1 are reliable. Both formulas automatically provides the absolute
phase shift.

The use of a single amplitude function to determine the (regular) scattering wave
function is reviewed and followed by an improved method in sharp-resonance situa-
tions using two amplitude functions.

3.1 Method with one amplitude function

This method applies if there is a single classically allowed interval of the r -axis, say
r > R, with R being a classical turning point [12,19]. It also applies if there are tiny
barriers and there is no radial turning point at all. In the latter case the method may
meet numerical complications if the attraction surrounding the origin is too strong.

A non-normalized wave function �l(r), regular at r = 0, can be represented in
terms of an amplitude u(r) and a phase φ(r) along the entire r -axis as [12,19]

�l(r) = u(r) sin φ(r). (3.1)

The phase φ(r) is obtained from the amplitude function u(r) by

φ(r) =
∫ r

0
u−2(r ′)dr ′, φ(0) = 0. (3.2)
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Amplitude and phase functions depend on the angular momentum (‘l’), which is
formally suppressed in the notation here.

In case of a classically forbidden region (0 < r < R) the phase contribution
becomes small because u(r) always increases strongly there, if defined as below. The
amplitude function u(r) is a solution of a non-linear (Milne/Wheeler-type) differential
equation [11,12,19]

u′′(r) + K 2
l (r)u(r) = u−3(r), (3.3)

where K 2
l (r) is the coefficient function in (2.1). As explained in references [17,19]

expression (3.1) is an oscillating function only in classically allowed regions, where
K 2
l (r) > 0. If two classically allowed regions are significant in the problem, but

separated, one can find slowly varying amplitude functions in each classically allowed
region but not in both of them. In scattering problems the asymptotic region (r →
+∞) is classically allowed and the slowly varying amplitude may be chosen with the
boundary conditions

u(+∞) = Kl
−1/2(+∞) = k−1/2, u′(+∞) = 0. (3.4)

Note that u(r) = k−1/2 and φ(r) = kr+const. for all values of r in case of a
vanishing effective potential. k is the asymptotic (angular) wave number.

The nonlinear differential equation (3.3) is integrated with the boundary condition
(3.4) towards the origin r = 0. In that integration process the function u−2(r) (as an
integrand) can be added as a separate component in the first-order vector solution. If
the effective potential is repulsive in a region containing the origin (see Fig. 1) the
amplitude function will increase exponentially [16,17]. This behavior is illustrated in
Fig. 2. As a result u−2(r) → 0 so that the phase integral in (3.2) becomes convergent
as r → +0.

In the asymptotic region the amplitude–phase solution becomes

�l(r) ≈ k−1/2 sin φ(r), r → +∞, (3.5)

and by comparison with (2.2) the phase shift formula is

δl = lim
r→+∞ (φ(r) − kr) + lπ/2, φ(0) = 0. (3.6)

The single-amplitude method is reliable for calculating most partial wave phase
shifts of light scattering systems, but meets numerical problems under semiclassical
conditions in the presence of a barrier and awell in the effective potential. As illustrated
in Fig. 2 the amplitude function tends to oscillate as the scattering energy approaches
that of the barrier maximum (here E ≈ 1).

Single-amplitude computations are limited by the choices of the limits of integration
of the phase function. The lower limit is chosen as a suitable fraction of the inner
classical turning point and the outer limit is chosen sufficiently far out in the asymptotic
region where the asymptotic forms of the spherical Bessel functions are sufficiently
accurate.
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Fig. 2 Illustration of an ‘outer’ amplitude function u(r), defined in the limit r → +∞ with l = 200 in
the CO model [18], as scattering energy becomes comparable to a potential barrier energy. For E = 1.1 eV
u(r) tends to oscillate inside the barrier region. These oscillations can have exponentially large amplitudes
in heavy-particle scattering involving a barrier and a well in the effective potential

3.2 Method with two amplitude functions

The aim here is to find an algorithm or equation that determines the precise value
of the phase shift from a single computation given l and energy E (or k) as well as
potential parameters. The effective potential is assumed to be sufficiently attractive
so that the radial wave function is subject to two classically allowed regions for the
relevant energies; the inner region of the r -axis and the outer region. In each region
it is possible to construct a slowly varying amplitude function and a well-behaved
amplitude–phase representation of the physical wave.

The two representations are matched at a matching point rm , typically chosen
inside the barrier region; see Fig. 1. In energy regions of sharp resonances the barrier
region is classically forbidden. At a matching point inside a barrier region both inner
and outer amplitude functions may be large and positive. Since they approach the
barrier region from the left respectively from the right along the r -axis they will have
different directions of their slopes; see Fig. 3. Each amplitude function is generally
non-oscillatory but exponentially increasing in the surrounding ‘classically forbidden’
regions.

Both inner and outer representations of the same scattering wave function are
matched at r = rm in Fig. 1, or anywhere between the two main oscillating regions. In
case of a discontinuous potential with one discontinuity one has to choose rm at this
discontinuity position.

3.2.1 Inner region

The radial wave function vanishes at r = 0 and can be represented by the amplitude–
phase representation

�l(r) = Aui (r) sin φi (r), φi (r) =
∫ r

0
u−2
i (r ′)dr ′, (3.7)
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Fig. 3 Illustration of inner and outer amplitude functions ui (r) respectively uo(r) in the presence of a
barrier in the effective potential Vl (r). Units are arbitrary

where the lower limit of the phase integral in (3.7) implies φi (0) = 0, as in (3.2). The
r -independent factor A (> 0) is an amplitude of the inner wave relative to the outer
wave, the outer wave being determined from the amplitude–phase representation as
r → +∞ and normalized as in (2.2).

To calculate ui (r) and φi (r) one needs boundary conditions in the inner, classically
allowed region. These are conveniently taken at a localminimum r = ri of the effective
potential where the derivative of the coefficient Kl(r) is zero. Hence,

ui (ri ) = Kl
−1/2(ri ), u′

i (ri ) = 0. (3.8)

From r = ri one integrates the amplitude Eq. (3.3) in two directions; towards the origin
and towards the matching point rm . With this amplitude function the solution (3.7) is
evaluated at the matching point r = rm . The same solution can then be expressed in
terms of a (shifted) phase function φim having a lower limit of integration at r = rm .
One obtains the inner wave expression

�l(r) = Aui (r) [ai cosφim(r) + bi sin φim(r)] , φim(rm) = 0. (3.9)

The lower limit of φim is thus taken at r = rm and satisfies φim(r) = φi (r) − φi (rm).
Constants ai and bi are determined at r = rm , where both ‘inner’ representations,
(3.7) and (3.9), provide equivalent expressions of �l . At r = rm

ai = sin φi (rm), bi = cosφi (rm). (3.10)

Hence, from (3.9)

�l(rm) = AUiai , � ′(rm) = A(U ′
i ai +U−1

i bi ), (3.11)

with Ui = ui (rm) and U ′
i = u′

i (rm).
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Following the treatment in [5], note that in case of a constant potential with l = 0
one would haveUi = k−1/2

i andU ′
i = 0, where ki is the relevant wave number inside

the attractive rectangular well potential.

3.2.2 Outer region and the phase shift formula

In the outer region an amplitude function uo is defined with boundary conditions
similar to those in (3.4) and (3.8), i.e.

uo(+∞) = Kl
−1/2(+∞) = k−1/2, u′

0(+∞) = 0, (3.12)

leading to a phase function defined as

φom(r) =
∫ r

rm
u−2
o (r ′)dr ′, (3.13)

where the lower limit rm being the matching point. The ‘outer’ amplitude-phase rep-
resentation of �l(r) is

�l(r) = uo(r) [ao cosφom(r) + bo sin φom(r)] , with φom(rm) = 0, (3.14)

where ao and bo are constants to be determined by the matching at r = rm . One finds
from (3.14)

�l(rm) = Uoao, � ′
l (rm) = (U ′

oao +U−1
o bo), (3.15)

with Uo = uo(rm) and U ′
o = u′

o(rm).
With reference to the treatment in [5], a vanishing potential in the region r ≥ rm and

l = 0 imply φom(r) = k(r − rm), Uo = k−1/2 and U ′
o = 0, where k is the asymptotic

wave number.
By equating �l and � ′

l from the inner and outer representations with the same
phase-reference point at r = rm , one obtains

ao = UiU
−1
o Aai , bo = UoU

−1
i Abi + (

UoU
′
i −UiU

′
o

)
Aai . (3.16)

The outer wave (3.14) satisfies

�l(r) ≈ k−1/2 [ao cosφom(r) + bo sin φom(r)] , r → +∞, (3.17)

since by boundary conditions of the outer amplitude function

uo(r) → k−1/2, r → +∞. (3.18)

By writing the wave (3.17) in a form similar to (2.2), i.e.

�l(r) ≈ k−1/2 sin(φom(r) + η), r → +∞, (3.19)

= k−1/2 [sin η cosφom(r) + cos η sin φom(r)] , r → +∞, (3.20)
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one can express the extra phase η as

η = arctan (ao/bo) (mod π). (3.21)

Of less interest in the present context one realizes from (3.20)

√
a2o + b2o = 1, (3.22)

which determines the inner/outer relative amplitude factor A, i.e.

A =
∥∥∥∥
[
UiU

−1
o ai

]2 +
[
UoU

−1
i bi + (

UoU
′
i −UiU

′
o

)
ai

]2∥∥∥∥
−1/2

. (3.23)

The phase-shift formula is obtained by comparing equations (2.2) and (3.19), i.e.

δl = lim
r→+∞ (φom(r) − kr) + lπ/2 + η. (3.24)

Because of the sign of ao/bo it is natural to define η as

η = arctan(ao/bo) + H [− arctan(ao/bo)]π + nπ, (3.25)

where the Heaviside function is just zero respectively one, depending on the positive
respectively negative sign of ao/bo; see [20]. It follows that

0 ≤ arctan(ao/bo) + H [− arctan(ao/bo)]π < π. (3.26)

The integer ‘n’ in (3.25) remains to be analyzed and understood. It turns out from
the analysis in the subsequent section that

n = Int [φi (rm)/π ] . (3.27)

3.2.3 Analyzing the integer n

The integer ‘n’ is related to the inner phase accumulation φi (rm) in (3.19)–(3.21)
through the connection (3.16). A basic relation between the coefficient sets {ai , bi }
and {ao, bo} is

ao
bo

= UiU−1
o tan φi (rm)

UoU
−1
i + (

UoU ′
i −UiU ′

o

)
tan φi (rm)

. (3.28)

The various jumps of the inner function ‘tan φi (rm)’ are understood from the mono-
tonically increasing behavior of φi (rm) as function of energy (or k). The U -functions
are functions of the energy as well. However, one can think of theU -functions as being
less dependent on energy compared to the energy dependence of φi (rm). Furthermore,
the amplitudesUi andUo are always positive, whileU ′

i ≥ 0 andU ′
o ≤ 0 at all energies
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as long as there is a barrier in the effective potential. Recall that the amplitude func-
tions always increase monotonically in the direction towards the barrier center; see
Fig. 3. Hence, in case of a classically forbidden region separating the two classically
allowed regions one can write (3.28) as

ao
bo

= |UiU−1
o | tan φi (rm)

|UoU
−1
i | + (|UoU ′

i | + |UiU ′
o|

)
tan φi (rm)

. (3.29)

or
ao
bo

= |UiU−1
o |2 tan φi (rm)

1 + |UiU
−1
o | (|UoU ′

i | + |UiU ′
o|

)
tan φi (rm)

. (3.30)

Whenever φi (rm) = 0, π, 2π, · · · , say φi (rm) = nπ , then ao/bo(= tan η) = 0. In
order η accounts for the inner oscillations it is clear that η contains the samemultiple of
π as φi (rm) does. Therefore equation (3.25) becomes η = 0+ Int[φi (rm)/π ]π = nπ .
‘Int’ stands for the integer part of its argument.

Assuming instead nπ < φi (rm) < (n+ 1)π , there are two possibilities. As long as
tan φi (rm) > 0, then ao/bo > 0, implying 0 < arctan(ao/bo) < π/2 in (3.25).
The same implication results from tan φi (rm) < 0 while ao/bo still being posi-
tive. However, if tan φi (rm) < 0 and ao/bo < 0 it is required that a π is added
to the arctan (ao/bo)-value in the expression (3.25) for η. This is taken care of by
the Heaviside function in equation (3.25) now read as η = [arctan(ao/bo) + π ] +
Int[φi (rm)/π ]π . The extra ‘π ’ just added by the Heaviside function to arctan(ao/bo)
(while being negative) is replaced by the increase of π in the term Int[φi (rm)/π ]π as
the inner phase becomes φi (rm) = (n + 1)π .

The above scenario is repeated again and again as energy increases for a given effec-
tive potential. All possible cases ofφi (rm) (modπ ) result in the following computation
formula of the integer ‘n’:

n = Int [φi (rm)/π ] . (3.31)

The main additional disadvantage of the two-amplitude method is the need of
approximate locations of maxima and minima of the effective potential when such
exist.

4 Levinson’s theorem and the number of bound states

To understand the relation between the phase shift formula and the number of bound
states one makes use of Levinson’s theorem. The direct way is to read the calculated
value of the phase shift as E → +0. With the present approach it is also interesting
to consider how the inner phase (or η) relates to the number of bound states of the
effective potential.

If Vl(ri ) > 0, proper bound states (E < 0) do not exist. Formula (3.24) is valid
only for energies above the (effective) potential minimum E ≥ Vl(ri ) > 0. In case
E = Vl(ri ), then n = 0, tan φi (rm) = 0 and η = 0. As E > Vl(ri ) formula
(3.31) applies and the ‘n’-formula only counts the number of completed π -intervals
by φi (rm).
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If Vl(ri ) < 0, proper bound states may exist and φi (rm) has a finite non-negative
value. In this limit (3.24) satisfies

δl → η, E → +0, (4.1)

since the outer phasewill be totally dominated by the classically allowed region outside
the classical turning point for the centrifugal potential. The outer phase will behave
as for a ‘free’ partial wave φom → kr − lπ/2, as kr → +∞ (while E → +0).

Suppose one has the integer s = Int [φi (rm)/π ] in the limit E → +0. Then
H(− arctan(ao/bo)) has two alternative values, 0 or 1, depending on the sign of ao/bo.
The two alternative values of η are

η = arctan(ao/bo) + sπ, ao/bo > 0, (4.2)

and
η = π + arctan(ao/bo) + sπ, ao/bo < 0. (4.3)

Occasionally it may happen that arctan(ao/bo) → ±π/2, as E → +0. In both cases
of sign, (4.2) and (4.3) result in

η →
(
s + 1

2

)
π, E → +0. (4.4)

It is customary to say that the partial wave satisfying (4.4) has a resonance (since all
resonances occur for odd multiples of π/2) in the zero-energy limit and the effective
potential supports ‘s’ proper bund states (Fig. 4).

However, if arctan(ao/bo) → ±0, since Uo → +∞ as E → +0, one finds the
two alternative limits

η =→ sπ, ao/bo → +0, E → +0, (4.5)

and
η → (s + 1)π, ao/bo → −0, E → +0. (4.6)

The number of bound states is given by ‘s’ if ao/bo → +0 and by ‘s + 1’ if ao/bo →
−0.

The ratio ao/bo is a rather complicated function of the inner phase φi (rm) and the
inner/outer amplitude valuesUi/Uo and rm . Therefore the exact limits corresponding
to φi (rm) as E → +0 are not studied in detail here. This inconvenience is simplified
for rectangular potential wells. Next subsection may clarify further the low-energy
limit (Levinson’s theorem [1,2,5]) in such cases.
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Number of bound states

2

1

1

1

0
0

Fig. 4 Illustration of phase shift behaviors, as E → +0 for a sequence of rectangular potentials Vl=0(r)
with increasing well depths (from bottom curve to top curve). Arbitrary units are used

4.1 Radial rectangular well with l = 0 and E → +0

This case is treated byMott andMassey [5] in great detail. The radial potential consists
of two constant parts (in arbitrary units)

V (r) = −V0, 0 ≤ r < R, V (r) = 0, R ≤ r < +∞, (4.7)

with a discontinuity at r = R, where R is the radius of the well. No effective barrier
is present and one can choose ri = 0 and rm = R in formula (3.24) and its derivation.

The potential is locally constant. The coefficient K 2
l=0(r) in (2.1) has two constant

values K 2
i = 2μ(E + V0)/h̄2 and K 2

o = 2μE/h̄2 withμ the reducedmass and h̄ being
Planck’s reduced constant. The corresponding (local) wave numbers are ki = Ki

respectively k = Ko with ki > k > 0. Here k is the asymptotic scattering wave
number.

The outer amplitude function remains constant by the defining Eqs. (3.3) and (3.4),
yielding Uo = k−1/2 and U ′

o = 0 at the matching point r = R. Similarly, the inner

amplitude function remains constant with values at r = R being Ui = k−1/2
i and

U ′
i = 0. The inner phase is φi (r) = kir , but restricted to 0 ≤ r ≤ R. The outer phase

is φom(r) = k(r − R) and restricted to R ≤ r < +∞ for r .
As E → +0 one has k → +0 and ki → k(0)

i = √
2μV0/h̄ > 0. Furthermore, the

inner wave number ki satisfies

ki =
√

(k(0)
i )2 + k2 ≈ k(0)

i + 1

2

k2

k(0)
i

, k → +0. (4.8)

Because of the locally constant potential, equations (3.28)–(3.30) become

ao
bo

= U 2
i U

−2
o tan φi (R) ≈ k

k(0)
i

tan

[(
k(0)
i + 1

2

k2

k(0)
i

)
R

]
, k → +0. (4.9)
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As E → +0 there are the two limits (ao/bo) → ±0, unless the potential is such that
the limit of the inner phase is k(0)

i R = π/2 + sπ with s = 0, 1, . . .. In all, there are
three limits of (ao/bo) to consider.

Studying the particular case k(0)
i R = π/2 + sπ of (4.9), one has

tan

[
π

2
+ sπ + 1

2

k2

k(0)
i

R

]
= tan

[
π

2
+ 1

2

k2

k(0)
i

R

]
→ −∞, k → +0. (4.10)

Furthermore, from reference [20], one has

tan

[
π

2
+ 1

2

k2

k(0)
i

R

]
= − cot

[
1

2

k2

k(0)
i

R

]
= − 1

tan

[
1
2

k2

k(0)
i

R

] ≈ −2k(0)
i

k2R
, k → +0.

(4.11)
Inserted into (4.9) one obtains

ao
bo

≈ − 2

kR
, k → +0, (4.12)

implying

arctan

(
ao
bo

)
≈ arctan

(
− 2

kR

)
→ −π/2, k → +0. (4.13)

Since arctan (ao/bo) is negative and approaching −π/2 one has H(− arctan (ao/bo))
= 1 in equation (3.31). The phase shift formula (3.24) with l = 0 and η = (s+1/2)π
gives

δl=0 = lim
r→+∞ (φom(r) − kr)+ (s+1/2)π → −kR+ (s+1/2)π → (s+1/2)π, E → +0.

(4.14)
This result is consistent with the analysis in [5].

Next consider the two other possible limiting cases as E → +0: 0 ≤ k(0)
i R <

π/2 + sπ , respectively π/2 + sπ ≤ k(0)
i R < π + sπ . According to (4.9) the former

case corresponds to (ao/bo) → +0 and the latter case corresponds to (ao/bo) → −0.
These cases are different. One finds the phase shift limits

δl → −kR + sπ → sπ, for 0 ≤ k(0)
i R < π/2 + sπ, E → +0, (4.15)

respectively

δl → −kR + (s + 1)π → (s + 1)π, for π/2+ sπ ≤ k(0)
i R < π + sπ, E → +0.

(4.16)
Levinson’s theorem then provides an interpretation of these limits: If the inner phase
limit satisfies (tan φi =) tan k(0)

i R > 0 and (Int[φi/π ] =)Int[k(0)
i R/π ] = s, then

‘s’ is the number of proper bound states, whereas if (tan φi =) tan k(0)
i R < 0 and

123



J Math Chem (2018) 56:2674–2690 2687

Table 1 Phase shift results (in
units of π ) for the CO-potential
with l = 250 and selected
scattering energies

E δl/π(AP1) δl (AP2)

1.20 0.4432 0.4432

1.30 0.6129 1.6129

1.40 0.8213 2.8213

1.50 1.0730 4.0730

1.60 1.3738 5.3738

1.70 1.7310 6.7310

1.80 2.1546 8.1546

1.90 2.6592 9.6592

2.00 3.2686 11.2686

2.10 4.0278 13.0278

2.20 16.0608 16.0607

– – –

2.30 19.8107 19.8107

The local minimum of the
effective barrier is ≈ 1.153 eV
and the barrier maximum is
≈ 2.248 eV. For scattering
energies between the potential
minimum and maximum the
single-amplitude formula
generally differ from the
two-amplitudes formula by
several integers of π . No bound
states are possible for l = 250.
The ‘tol’-parameter in MatLab is
10−7

(Int[φi/π ] =)Int[k(0)
i R/π ] = s the number of proper bound states is ‘s + 1’. This

agrees with the more general cases in (4.5) and (4.6).

5 Application to a CO-potential model

The model potential used for numerical calculations is [18]

V (r) = D

(
1 − eαre − 1

eαr − 1

)2

− D, (5.1)

with
D = 11.225528 eV, α = 2.2994 Å−1, re = 1.1283 Å. (5.2)

Also
2μ

h̄2
= 3282.4691 eV−1Å−2, (5.3)

with μ being the reduced mass of the scattering CO-system. The model is primarily
used to illustrate resonances typical for heavy-particle systems.

In numerical applications the theoretical limits r → 0 and r → +∞ must be
replaced by something more practical. Thereby it is important that phase-shift results
must be unaffected by significant variations of the lower respectively upper limits
explored.

Both amplitude–phase methods are applicable for scattering energies well above
the barrier maximum. Below the well minimum of positive energy only the single-
amplitude method is applicable. Table 1 shows phase-shift values for l = 250 in the
energy rangewhere the effective potential affects the wave functionwith its barrier and
its well. Both methods agree at energies near the well minimum and barrier maximum
and at higher energies (not shown). For the numerical accuracy used in the integrator

123



2688 J Math Chem (2018) 56:2674–2690

Table 2 Phase shifts (in units of π ) as related to numerical integration accuracies (‘tol’) for the two
amplitude–phase methods (‘AP1’ and ‘AP2’)

l tol δl/π (AP1) δl/π (AP2)

200 exp(−5) 42.6883 42.6883

200 exp(−7) 42.688453 42.688453

200 exp(−9) 42.68845447 42.68845447

250 exp(−5) 1.0731 4.0731

250 exp(−7) 1.0729960 4.0729960

250 exp(−9) 1.07299640 4.07299640

The energy is E = 1.5 eV and the CO-potential is used. The ‘tol’-parameter inMarLab controls the absolute
and relative errors in the computations

δ
π

Fig. 5 Phase shift behavior as function of energy for l = 250. The CO potential is used, which has an
effective barrier maximum at E = 2.248 eV

themethodwith one amplitude happens tomiss integers ofπ in its phase shifts between
the barrier maximum and the well minimum. Note that this ‘defect’ implies that that
any cross section computations (involving hundreds or thousands of partial waves)
would be unaffected. This result is surprising and not completely understood.

Table 2 illustrates the numerical values of the phase shifts (in units of π ) as the
accuracyof the integrator (‘ode45’ inMatLab) is varied.Except for themissing integers
of π in the phase shifts of the single-amplitude method, the decimals agree for both
formulas.

Figure 5 shows that the phase shift (in units of π ) for l = 250 has sharp integer
jumps below the barrier maximum energy E = 2.248 eV. Each sudden jump is related
to a resonance resulting in an unstable CO-molecule with a life time proportional to
the slope of the curve. This indicates long-lived unstable CO molecules with large
angular momentum quantum numbers.

Figure 6 shows details of one of the phase–shift jumps in Fig. 5. To illustrate
its appearance in a cross section the energy-dependent transition factor, |Tl=250|2 =
4 sin2 δl=250, is shown in the right-hand subplot. A resonance occurs as the phase shift
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δ
π

Fig. 6 Magnification of one of the phase shift jumps for l = 250 and its transition behavior; see Fig. 6

is an odd multiple of π/2. The phase shift in Fig. 6 passes through two such values.
The two resonance peaks are separated by a tiny deep minimum in the transition curve
in the right subplot.

6 Conclusions

A two-amplitude formula for resonance phase shifts is derived within the amplitude–
phase method. The effective central potential is assumed real valued with a well and a
barrier. The phase-shift formula applies to scattering energies between the well mini-
mum or the potential threshold energies and the barrier maximum energy. It accounts
for the absolute phase of the wave function and calculates phase shifts with correct
multiples of π . The formula is particularly suitable for resonance studies of heavy-
particle scattering and complementary to an already existing phase-shift formula using
a single amplitude function.

Levinson’s theorem directly connects the phase-shift values to the total number of
proper bound states supported by the effective potential. Thereby the quantities of the
formula in the limit E → 0 provide additional conditions for the number of proper
bound states.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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