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Abstract Of late, we have put forward a new branch called high-order derivative
signal processing. This investigative strategy is universally relevant for all spectro-
scopies, the progress ofwhichultimately depends on resolution improvement andnoise
suppression. The high-order, non-parametric derivative fast Padé transform (dFPT)
simultaneously solves these two problems of utmost importance. The present work
goes one critical step further than our previous two studies on this particular topic,
by setting up the goal of validating the non-parametric dFPT by its parametric coun-
terpart. This is done by comparing the full lineshapes of derivative envelopes from
the non-parametric dFPT with the corresponding derivative component spectra from
the parametric dFPT. The non-parametric dFPT, as a shape estimator, never solves
the quantification problem (or equivalently, the spectral analysis problem via e.g. an
eigenvalue problem, rooting characteristic/secular equations, etc.). The parametric
dFPT first solves the quantification problem from which the lineshapes of compo-
nents and envelopes are plotted. Thus, if the derivative component spectra from the
parametric dFPT could be fully reconstructed by the derivative envelopes from the non-
parametric dFPT, the goal of achieving quantification would be done by derivative
lineshape processing alone. This would amount to providing stand-alone quantifi-
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cation without actually solving the quantification problem (and, of course, without
fitting, either). The present study accomplishes this goal, with an important applica-
tion to data encountered in magnetic resonance spectroscopy for clinical diagnostics
of breast cancer.

Keywords Magnetic resonance spectroscopy · Breast cancer diagnostics · Mathe-
matical optimization · Fast Padé transform · Derivative spectra

Abbreviations

Ala Alanine
au Arbitrary units
β-Glc β-Glucose
BW Bandwidth
Cho Choline
cpu Central processing unit
dFFT Derivative fast Fourier transform
DFT Discrete Fourier transform
dFPT Derivative fast Padé transform
dMRS Derivative magnetic resonance spectroscopy
FFT Fast Fourier transform
FID Free induction decay
FPT Fast Padé transform
FWHM Full-width at half-maximum
GPC Glycerophosphocholine
Hz Hertz
ICRMS Ion cyclotron resonance mass spectrometry
IFPT Inverse fast Padé transform
IRS Infrared spectroscopy
Lac Lactate
MHz Megahertz
MR Magnetic resonance
MRS Magnetic resonance spectroscopy
m-Ins Myoinositol
NMR Nuclear magnetic resonance
PC Phosphocholine
PE Phosphoethanolamine
PES Photoelectron spectroscopy
ppm Parts per million
RF Radiofrequency
RMS Root mean square
s Seconds
SNR Signal-to-noise ratio
SNS Signal–noise separation
SRI Spectral region of interest
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SW Sweep width
T Tesla
Tau Taurine
TE Echo time
TMS Tetramethyl silane
TOFMS Time of flight mass spectrometry
TSP 3-(Trimethylsilyl-)-tetradeutero-propionic acid

1 Introduction

We pursue a novel pathway in analyzing spectra by non-parametric high-order deriva-
tive signal processing. Hereafter, when dealing with spectra, derivative operator Dm

ν of
orderm is takenwith respect to the sweep frequency v as Dm

ν � (d/dν)m . This is a gen-
eral methodology for all spectroscopies, including those based on magnetic resonance
(MR), which is the focus of the present work within the non-parametric derivative fast
Padé transform (dFPT). In our two most recent studies [1, 2], the dFPT was shown to
be capable of simultaneously improving resolution and suppressing noise. By contrast,
the derivative fast Fourier transform (dFFT) amplifies noise with increased derivative
order m [1]. As demonstrated in Refs. [1, 2], using the phase-insensitive magnitude
mode, the derivatives of envelopes in the non-parametric dFPT systematically reduce
the peakwidths and enhance the peak heights. Crucially, these key quantities have been
shown [2] to be uniquely related to the corresponding absorptive peak parameters of
the non-derivative (m=0) fast Padé transform (FPT) [2].

To emphasize, in both Refs. [1, 2], the explicit numerical computations were per-
formed by exclusively employing the non-parametric dFPT. The present investigation
extends these previous examinations to the parametric dFPT. The goal is to compare
the envelopes (from the non-parametric dFPT) and the components (from the para-
metric dFPT), so as to quantitatively validate the former. Of course, viewed on its own,
the non-derivative parametric FPT does not need to resort to the dFPT. This occurs
because in the non-derivative parametric FPT, the peak parameters are already avail-
able by solving the quantification problem. Nevertheless, if the component lineshapes
are computed by the parametric dFPT, the obtained results, as the “gold standard”,
would retroactively confirm the entire spectral lineshape profiles reconstructed as the
envelopes by the non-parametric dFPT. This is what we have set to accomplish in
the present study. This undertaking is necessary in order to validate the full quantita-
tive reliability of the non-parametric dFPT which is, at the onset, exclusively a shape
estimator.

As to the application, this entire context is herein focused on magnetic resonance
spectroscopy (MRS) for breast cancer diagnostics. In this particular problem of utmost
clinical relevance, spectral envelopes abound with closely-overlapping resonances.
Therein lie a number of diagnostically informative metabolites, among which of key
importance is phosphocholine (PC), as a recognized breast cancer biomarker [3]. The
PCpeak is entirely invisible in the non-derivative envelope (computed by anyprocessor
including the non-derivative FPT), due to the presence of a much taller resonance, that
of phosphoethanolamine (PE), which is not a cancer biomarker.

123



2540 J Math Chem (2018) 56:2537–2578

The proof of reliable quantification of PC and reconstruction of its component
lineshape with the correct concentration by the non-parametric dFPT would be pro-
vided by full agreement with the parametric dFPT. This would be the most stringent
benchmarking of derivative magnetic resonance spectroscopy (dMRS) for diagnostics
within clinical oncology. Importantly, PC is also a recognized biomarker of other can-
cers [4, 5]. Of course, the overall power of derivative signal processing is not limited
to this pair of strongly coupled resonances. Rather, it also applies to any number of
tightly overlapping peaks across the entire spectrum under study.

Although our applications of the dFPT are currently within biomedicine, the design
of derivative signal processing has much wider repercussions. The reason is that the
present concept of processing generic data by using high-order derivative estimations
could be directly of use in all spectroscopies (atomic, molecular, nuclear, sub-nuclear)
with several specialized branches, e.g. photoelectron spectroscopy (PES) [6], infrared
spectroscopy (IRS) [7, 8] or Raman spectroscopy [9]. This could also be said for other
areas independent of spectroscopy and signal processing, i.e. whenever the unknown
components or constituents are sought from the given chemical mixture or any other
compound material, as encountered in many fields (powder diffraction phenomena
[10], etc.). For example, from the viewpoint of signal processing alone, the time signals
encoded by ion-cyclotron resonance mass spectrometry (ICRMS) [11–13] or time of
flight mass spectrometry (TOFMS) [14], or IRS [7, 8] are all amenable to exactly the
same type of estimation done presently within MRS, which outside medicine is called
nuclear magnetic resonance (NMR) spectroscopy [15, 16].

2 Theory

We will separately give the outlines of the main ingredients of the two versions of the
derivative fast Padé transform, dFPT, with the non-parametric and parametric aspects.
Prior to this stratified presentation, we shall summarize the customary, non-derivative
fast Padé transform, FPT, by giving its principal features.

2.1 The input spectrum

Let c (t) be a continuous time signal function, where t is the independent variable. In
the process of encoding, the analog data c (t) are digitized (discretized)with the usually
equidistant sampling rate τ (dwell time) according to c (t) → cn where cn � c (nτ)

which comes from t � nτ (0 ≤ n ≤ N − 1) .Here, N is the total signal length, which
is related to the total acquisition time (total duration of time of the signal) T by
N � T/τ. For complex-valued time signals (as inMRS, ICRMS, IRS), the bandwidth
(BW) or the sweep width (SW) is connected to τ by τ � 1/BW (or τ � 1/SW).

Once the input data set {cn}, also called the free induction decay (FID), becomes
available, the corresponding exact spectrum can be directly generated as:

GN (z
−1) �

N−1∑

n�0

cnz
−n, z � eiωt , i � √−1, (2.1)
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where ω is the angular (cyclic) frequency (given in cycles per second) and ω � 2πν

with ν being the linear sweep frequency in hertz (Hz). The spectrum GN
(
z−1

)
is the

MacLaurin polynomial, or the so-called z-transform [17]. This is a truncated version
of the MacLaurin series:

G∞(z−1) �
∞∑

n�0

cnz
−n, |z| > 1, (2.2)

whose convergence region is defined by reference to a circle of the unit radius |z| � 1.
Specifically, G∞

(
z−1

)
is convergent only outside the unit circle (|z| > 1), while it is

strictly divergent elsewhere, i.e. inside the unit circle |z| < 1.

2.2 The output spectra

2.2.1 The non-derivative, non-parametric FPT

When N is finite (N < ∞) , as is always the case in practice (in any measurement
or in any computer simulation), the spectrum (2.1), despite being exact, as the finite-
rank Green function, is nevertheless ill-adapted to analyzing time signals from all
spectroscopies. The reason is in the fact that possible singularities in the analyzed
function are not captured by the polynomial GN from (2.1). On the other hand, the
poles as a type of singularity are omnipresent in general spectra. One of the rescues
from this obstacle is in the realization that the ratio of two polynomials P/Q (i.e. a
rational polynomial) is themathematicalmodel of choice to adequately approximate all
functions with polar singularities that are, by definition, the roots of the denominator
polynomial, Q � 0. Such an observation naturally leads to the introduction of the
following two-fold form of the non-derivative, non-parametric FPT via:

GN (z
−1) � R±

L ,K (z
±1); R±

L ,K (z
±1) � P±1

L

(
z±1

)

Q±1
K

(
z±1

) +O(z±(L+K+1)), (2.3)

where

z±1 � eiωτ± ; τ+ � τ, τ− � −τ (τ > 0). (2.4)

In (2.3), the non-negative integers L and K are the degrees of the numerator (PL) and
denominator (QK ) polynomials. Further, the symbolO is the remainder, which itself
is a series in z±1 beginning with the power L +K +1. The significance of the definition
(2.3) is that it automatically provides the model error which is encapsulated by the
partO (

z±(L+K+1)
)
. This simply means that if we are to truncate the MacLaurin series

G∞ from (2.2) at n � N −1, the resulting MacLaurin polynomial GN from (2.1) will
have only the first N expansion coefficients cn (0 ≤ n ≤ N − 1) of G∞. However, for
this latter truncation level, the corresponding diagonal rational polynomial R±

K ,K with

the remainder O (
z±(2K+1)

)
neglected, would exactly reconstruct the 2N expansion

coefficients cn (0 ≤ n ≤ 2N − 1) of G∞. This clearly amounts to prediction of the
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missing terms cn (N ≤ n ≤ 2N − 1) from G∞ in (2.2). Such a property of the FPT
goes under the name “extrapolation”. In other words, the FPT is able to predict the time
signal points beyond the total acquisition time T and this amounts to extrapolation at
times t > T .

The definition (2.3) involves the two forms of the FPT, written jointly as FPT(±),

depending on the sign of the auxiliary symbols τ± � ±τ . Importantly, the sign of
τ± determines the meaning of the independent harmonic variable z±1 in the FPT(±).
Thus, the input series G∞

(
z−1

)
in the variable z−1 is modeled by either R−

L ,K (z
−1)

in the same variable z−1 for the FPT(−) or by R+
L ,K (z) in the variable z for the

FPT(+). This means that the FPT(−) accelerates the already convergent input series
G∞

(
z−1

)
for |z| > 1. Here, acceleration is based upon the fact that at any truncation

level M of the input MacLaurin series G∞, the diagonal FPT(−) contains twice more
expansion coefficients than the polynomial GM

(
z−1

)
of the type (2.1). On the other

hand, for |z| ≤ 1 (inside and on the unit circle), the input seriesG∞
(
z−1

)
is divergent.

Nevertheless, the associated model via the FPT(+) is able to force the latter divergence
into convergence bymeans of extrapolation via analytical continuation. In otherwords,
the FPT(+) induces convergence within a divergent series. Overall, the FPT(−) is an
accelerator, whereas the FPT(+) is an extrapolator by way of rational polynomials.
Moreover, the FPT(−) is valid at |z| ≤ 1, and so is the FPT(+) at |z| ≥ 1 by the
principle of Cauchy analytical continuation. In other words, both the FPT(+) and the
FPT(−) are valid throughout the complex plane of the harmonic variable z and z−1,

except at the poles z � zk and z−1 � z−1
k that are the roots of the characteristic

equations Q+
K (zk) � 0 and Q−

K (z
−1
k ) � 0, respectively. The diagonal forms of the

FPT(±) are:

FPT(+) : R+
K (z) � P+

K (z)

Q+
K (z)

, (2.5)

FPT(−) : R−
K (z

−1) � P−
K

(
z−1

)

Q−
K

(
z−1

) , (2.6)

where the remaindersO (
z±(2K+1)

)
are ignored. It is recommended to workwith either

the diagonal (L � K ) or para-diagonal (L � K − 1) form of R±
L ,K because they incur

the least modeling errors. Note, that by reference to the general definition (2.3), we
abbreviated R±

K ,K

(
z±1

)
in (2.5) and (2.6) as R±

K

(
z±1

)
.

The polynomials P±
K and Q±

K are given by:

P±
K (z±1) �

K∑

r�r±
p±
r z

±r , Q±
K (z

±1) �
K∑

s�0

q±
s z±s, (2.7)

where r+ � 1 and r− � 0 (i.e. there is no free, constant term p+0 z
0 � p+0 in P+

K , since
p+0 � 0). The expansion coefficients

{
p±
r

}
and

{
q±
s

}
are extracted in such a way that

each of the ensuing rational polynomials R±
K are uniquely determined. This extraction
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of
{
p±
r

}
and

{
q±
s

}
is embedded in solving a single system of linear equations (for one

of the two signs ±), as implied by rewriting (2.5) and (2.6):

Q±
K (z

±1) � GN (z
−1)P±

K (z±1), (2.8)

where the product GN (z−1)P±
K (z±1) reduces to a convolution. The relation (2.8), in

fact, yields two systems of linear equations per one of the two signs ±, one for
{
q±
s

}

and the other for
{
p±
r

}
as follows:

K∑

s�1

q+s cm+s � −cm, p+l �
K−l∑

r�0

crq
+
l+r , (2.9)

K∑

s�1

q−
s ck+m−s � −ck+m, p−

j �
j∑

r�0

crq
−
j−r , (2.10)

where 0 ≤ m ≤ N − K − 1, 1 ≤ l ≤ K and 0 ≤ j ≤ K . Nevertheless, in practice,
only a single system of linear equations for

{
q+s

}
in (2.9) and

{
q−
s

}
in (2.10) needs to

be solved. Once the set
{
q+s

}
or

{
q−
s

}
becomes available, the other system of linear

equations for
{
p+l

}
in (2.9) or

{
p−
J

}
in (2.10) is in itself the solution given by the stated

analytical expressions, i.e. p+l � ∑K−l
r�0 crq+l+r and p−

j � ∑ j
r�0 crq

−
j−r .

This exposition constitutes the formulation of the non-derivative, non-parametric
FPT(±). The resulting spectra R±

K

(
z±1

)
can be generated as soon as the polynomi-

als P±
K and Q±

K are formed by means of the extracted expansion coefficients
{
p±
r

}

and
{
q±
s

}
, respectively. All that is needed is to simply evaluate R±

K

(
z±1

)
at any

desired grid of the sweep frequencies ν which is present in the harmonic variables
z±1 � exp (±2π iντ) . This grid need not be equidistant and, moreover, it need not
be the Fourier grid either. Computing R±

K

(
z±1

)
at any number of running frequency

ν amounts to interpolation features of the FPT(±). By contrast, the Fourier grid k/T
for ν (0 ≤ k ≤ N − 1) in the fast Fourier transform (FFT) limits the resolution by the
total acquisition time T . There is no such restriction in the FPT(±).

2.2.2 The non-derivative, parametric FPT

Overall, the non-parametric FPT(±) canprovide only the envelope lineshapes, or equiv-
alently, the profiles of total shape spectra. This could suffice if such spectra were to
contain solely well-isolated, non-overlapping peaks. However, such an idealization is
hardly ever encountered in practice when dealingwith spectra generated from encoded
time signals. Quite the contrary, real-life spectra abound with overlapped resonances
for which no customary (non-derivative) non-parametric shape estimator could com-
plete the main task of all spectroscopies: quantification of the physical components of
envelopes. One way out of this obstacle, while still working within the realm of the
conventional (non-derivative) estimations, is to resort to parametric signal processing.
Here, the word “parametric” implies a suitable and physically justified parametriza-
tion of a complicated phenomenon under study by a set of quantities that properly
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describe the major aspects of the problem. In the case of spectra, these quantities are
the peak parameters (peak positions, widths, heights and phases). The object of quan-
titative spectroscopies is to faithfully reconstruct these four real-valued parameters for
each physical resonance in the spectrum. The parametric FPT(±) accomplishes this
task by solving the quantification problem consisting of two basic steps: rooting the
denominator polynomials Q±

K and finding the Cauchy residues of the rational polyno-
mials P±

K /Q±
K . The zeros z

±
k of Q±

K

(
z±1

)
give the complex fundamental frequencies

ω±
k � ∓ (i/τ) ln

(
z±k

)
:

Q±
K (z

±1) � 0 ∴ z±k � e±iωkτ , z±1
k ≡ z±k . (2.11)

In practice, we avoid polynomial rooting. Instead, this non-linear operation is replaced
by the linear eigenvalue problemof the correspondingHessenberg (companion)matrix
[17, 18]. This matrix is extremely sparse with its elements being the polynomial
expansion coefficients on the 1st row, unity on the main diagonal and zero elsewhere.
Such an extraordinary sparseness of the Hessenberg matrix permits work with huge
dimensions. The eigenvalues of the Hessenberg matrix are exactly equal to the roots
of the associated polynomial.

For non-degenerate spectra (no confluent fundamental frequencies), the Cauchy
residues of the rational polynomials R±

K yield the complex fundamental amplitudes
d±
k as the analytical, closed formulae:

d±
k � P±

K

(
z±k

)

Q±′
K

(
z±k

) , Q±′
K (z±1) � d

dz±1 Q
±
K (z

±1). (2.12)

Only the simple roots
{
z±k

}
are present in (2.12). The amplitudes d±

k take the more
general forms for degenerate spectra that contain one or more confluent fundamental
frequencies. In such spectra, more than one fundamental amplitude correspond to the
same fundamental frequency. This is modeled by including the multiple (or repeated)
roots of the polynomials Q±

K . In such a case, the amplitudes become:

d±
k,mk

� P±
K

(
z±k

)

Q±(mk )
K

(
z±k

) , Q±(mk )
K (z±1) �

(
d

dz±1

)mk

Q±
K (z

±1), mk � 1, 2, . . . ,

(2.13)

where mk is the multiplicity of the kth root (for brevity, we did not put the superscript
onmk). The essential difference between a non-degenerate and degenerate spectrum is
that the former and the latter are complex Lorentzian and non-Lorentzian lineshapes,
respectively. The fact that the FPT(±) can handle non-Lorentzian lineshapes makes
the Padé-based processing superior to the other existing parametric estimators that are
limited to Lorentzians alone.

The outlined two steps complete the solution of the quantification problemby recon-
structing the pairs of two fundamental complex parameters

{
ω±
k , d±

k

}
per resonance

k (1 ≤ k ≤ K ) , where we can also write ω±
k � 2πν±

k . Note that the degree K of
the denominator polynomial is also the total number of retrieved resonances. The real
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part of ν±
k , i.e. Re(ν±

k ), is the chemical shift, which gives the position of the kth peak.
The imaginary part of ν±

k , i.e. Im(ν±
k ), is proportional to the width of the kth peak. In

fact, the so-called full width at half maximum (FWHM) for the kth peak is defined by
{FWHM}±k � Im(ω±

k ) � 2π Im(ν±
k ). Thus, the reconstructed complex fundamental

frequency ν±
k gives both the location of the center of the lineshape profile of the kth

peak and the width of that peak at its halved maximum. Further, the complex fun-
damental amplitude d±

k , expressed in its polar form, has its magnitude (the absolute
value

∣∣d±
k

∣∣ of d±
k ) and phase ϕ±

k (argument of d±
k ):

d±
k � ∣∣d±

k

∣∣ eiϕ
±
k , ϕ±

k � tan−1

(
Im(d±

k )

Re(d±
k )

)
. (2.14)

The peak heights h±
k for purely absorptive non-derivative Lorentzians are the ratios

of
∣∣d±

k

∣∣ and the peak widths 2π Im(ν±
k ).

After completing the spectral analysis (i.e. after solving the outlined quantification
problem), the parametric FPT(±) can construct the spectra in different forms (canon-
ical, partial fractions, etc.) In practice, the most frequently used is the representation
given by the Heaviside partial fraction decomposition. For non-degenerate spectra,
this representation reads as:

R±
K (z

±1) � p±
0

q±
0

+
K∑

k�1

d±
k z±1

z±1 − z±k
. (2.15)

In the case of degenerate spectra, we have:

R±
K (z

±1) � p±
0

q±
0

+
M∑

k�1

Mk∑

mk�1

d±
k,mk

z±1

(
z±1 − z±k

)mk
, (2.16)

where it is assumed that there are M ≤ K degenerate roots,

Mk � max {mk} , M1 + M2 + · · · + MJ � K . (2.17)

The case mk � 1 corresponds to non-degeneracy, whereas mk > 1 means that the
kth root z±k of Q±

k

(
z±1

)
is repeated mk times. For simplicity, the superscripts ± are

omitted from J and Mk .
Upon convergence reached in both the FPT(+) and the FPT(−), we have:

ω+
k � ω−

k � ωk, d+k � d−
k � dk, (2.18a)

where {ωk} and {dk} are the true fundamental frequencies and amplitudes, respectively,
contained in the input time signal {cn}. Also, irrespective of whether the parametric
or non-parametric versions of the FPT(±) are used, it follows:

R+
K (z) � R−

K (z
−1). (2.18b)
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This is one of the ways in which the FPT achieves its cross-validation by verifying
the overall concordance between its two variants, the FPT(+) and FPT(−).

For noise suppression, Padé-based signal processing uses the so-called signal–noise
separation (SNS) concept. The SNS procedure exploits the pole-zero coincidence,
which is associated with the emergence of Froissart doublets in spectra. Random noise
is inherently unstable. This means that even the slightest perturbation (e.g. varying lev-
els of truncation of the total signal length N ) can significantly change the distribution
of the noisy part of the encoded FIDs. This is replicated in the confluence or near-
confluence of poles and zeros in the given Padé spectrum. Since a polynomial quotient
is a meromorphic function, its zeros and poles are given by the roots of the numerator
and denominator polynomials, respectively. The functions whose only singularities
are poles are called meromorphic functions. Thus, to implement the SNS concept, we
also need to find the roots of the numerator polynomials. If the poles and zeros coincide
exactly for certain resonances, their amplitudes (and, consequently, peak heights) will
all precisely be equal to zero. Such parts of the polynomial quotients cancel each other.
This pole-zero cancellation is most obvious in the canonical representation of the Padé
spectrum [19]. It is also obvious in the Heaviside partial fractions (2.15) where d±

k � 0
whenever z±k satisfies both Q±

K (z
±
k ) � 0 and P±

K (z±k ) � 0,which occurs for pole-zero
coincidences. In the other case, when there are approximate pole-zero confluences,
the associated resonances have negligibly small amplitudes. Any perturbation would
alter the parameters (position, width, height, phase) of such spectral structures. Being
weak and markedly unstable, these resonances share the like characteristics of noise.
They are binned as spurious (unphysical, ghost, extraneous) and are viewed as noise
resonances (or Froissart doublets because of their association with pole-zero pairs).
On the other hand, the resonances with no pole-zero confluences exhibit robust sta-
bility in face of perturbations. These stable resonances are categorized as genuine
(physical) and are, therefore, associated with the true content of the spectra and the
corresponding signals. The genuine and spurious resonances are then retained and
discarded, respectively, from the final output list (linelist) in the parametric FPT(±).
This is the essence of the SNS concept, by which the FPT(±) succeed in automatically
identifying and reducing noise. Such an improvement in signal–noise ratio (SNR) by
the Padé-based estimation is to be credited not only to the SNS concept, but also to
the non-linear mathematical form of the polynomial quotients. Such quotients reduce
noise both in the non-parametric and parametric FPT(±). This is sharply opposed to
the FFT, which as a linear processor transfers the entire unaltered noise from the time
to the frequency domain:

FFT : Fk � 1

N

N−1∑

n�0

cne
−2π ink/N . (2.19)

Strictly speaking, this expression is the discrete Fourier transform (DFT), which we
formally call the FFT in (2.19). As is well-known, the FFT and the associated DFT
have a very significant computational difference. This difference is in some N log2N
(fast) and N 2 (slow) multiplicative complexity for the FFT and DFT, respectively,
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when N is set to be a composite integer of the form N � 2m (m � 0, 1, 2, . . .) [17,
18].

2.3 Physical interpretation of the output linelist of peak parameters

Overall, the FPT (both parametric and non-parametric) is firmly grounded in the
best theory of approximations by means of rational polynomials. According to the
generalized Weierstrass theorem, any function (rational, irrational, with or without
singularities, continuous or discontinuous) can be approximated to within any pre-
scribed level of accuracy, by suitable rational polynomials, provided that the generated
numerator and denominator polynomials are of sufficiently high degree. Even singu-
lar functions with branch points and branch cuts can be successfully described by a
sequence of chained Froissart doublets [19] from rational polynomials. What is more;
the parametric version of the FPT goes beyond the envelope of the analyzed spectrum
by peering into its inner structure and uncovering the hidden components. The physi-
cal information which is unfolded by the parametric FPT is entirely contained in the
output linelist with the peak-by-peak signatures associated with the input time signal
cn , which is modeled as:

cn �
K∑

k�1

dke
iωknτ , ωk � 2πνk, Im (νk) > 0, (2.20)

or equivalently,

cn �
K∑

k�1

cn,k, cn,k � dkz
n
k , zk � e2π iνkτ . (2.21)

This is a geometric progression showing that the factor cn,k , as the kth component
of the nth time signal point cn , is built from the nth power of the complex harmonic
function zk whose strength (complex intensity) is equal todk .Each attribute of this peak
signature tells the physics story (on the level of MR) about the resonances. Thus, the
real part, Re (νk) , of the kth fundamental frequency νk informs about the chemical
shift (i.e. the frequency at which the given molecule resonates with the externally-
applied radiofrequency (RF) pulse, in concert with the gradient and static magnetic
fields). This information, in turn, tells us about the extent of shielding of nuclei by
the surrounding electronic cloud within the parent molecules. The more electrons in
the atomic and molecular environment of MR sensitive nuclei, the more shielding,
the more local weakening of the external static magnetic field strength B0. This is the
essence of the definition of the resonant frequency, which is not the Larmor frequency
νL. Rather, it is a miniscule departure from νL caused by the mentioned electronic
shielding, which locally alters B0. Similarly, the reciprocal of the imaginary part,
Im (νk) , of the kth fundamental frequency speaks about the time rate constant T ∗

2k of
decay of the resonant unstable state of the nucleus. This nucleus, after undergoing the
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external perturbation, is first excited to a transient state, and then recovered or relaxed
through de-excitation to an energetically lower state.

The linewidth itself 2π Im (νk) is interpretationally connected to the spin–spin relax-
ation time T ∗

2k . Namely, transient signals that decay slowly (long T ∗
2k) generate sharp,

narrow peaks with smaller 2π Im (νk). Conversely, signals with faster decays (short
T ∗
2k) correspond to broad peaks with larger 2π Im (νk) in the frequency spectrum.

Further, the magnitude |dk |, as the third parameter of the kth resonance, carries key
information. This is the doubled peak area for a purely absorptive Lorentzian lineshape
resulting from the use of cn from (2.20). This occurs because the peak area ak of a
non-derivative Lorentzian absorption is proportional to the product of the peak height
and peak width. On the other hand, the peak height is proportional to the ratio of |dk |
and the peak width. Therefore, the peak width cancels out from the peak area which,
in turn, becomes proportional to |dk | alone in the setting of the absorptive Lorentzians,
so that ak � |dk | /2. Returning to (2.21), we see that the kth signal component cn,k is
reduced to dk at the time t � 0 (i.e. at nτ � 0):

c0 �
K∑

k�1

c0,k, c0,k � dk ∴
∣∣c0,k

∣∣ � |dk | � 2ak . (2.22)

Thus, in the context of (2.21), the halved magnitude |dk | /2 of the kth component∣∣c0,k
∣∣ of cn is the discussed kth peak area ak . This is the reason for the traditionally

held view that the NMR amplitude of the signal in the time domain (at the onset of
data acquisition, t � 0) can be referred to as the doubled peak area of the absorptive
Lorentzian lineshape in the spectrum from the frequency domain. The peak area itself
is proportional to the metabolite concentration.

Finally, the fourth peak parameter is the phase ϕk of the complex amplitude dk
via ϕk � arg(dk). Any departure of the angle ϕk from zero indicates the degree of
deviation of the kth lineshape from the bell-shaped symmetric absorptive Lorentzian
profile. As per theory for (hypothetically) ideally quadrature-encoded FIDs in NMR
spectroscopy, all the physical phases {ϕk} in the input time signal should be equal to
zero, ϕk � 0 (1 ≤ k ≤ K ) . In any realistic measurement, however, various experi-
mental imperfections and uncertainties produce non-zero phases, ϕk �� 0 for most, if
not all of the resonances. Among these uncertainties are time delays between the end
of the excitation RF pulse and the beginning of the acquisition of the time signal data
points. A part of the delay is also due to the recovery of the electronics (the dead time
of the detector) after the shock caused by the RF pulse. For these reasons, non-zero
values of phase ϕk are generally conceived as phase errors, rather than some important
quantities that should be taken into account for reconstructing e.g. the concentrations
of molecules. The easiest way to correct for this error is to use the phased spectrum as
the sum of the real and complex component spectra multiplied by cos(ϕk) and sin(ϕk),
respectively, instead of the real part of the component spectrum alone [2]. Namely, this
former sum as the “phased spectrum” is in the purely absorptive mode, whereas the
latter spectrum is a mixture of the absorption and dispersion for a complex response
function. Rigorously, this procedure is possible only if every ϕk �� 0 has already been
reconstructed, as is indeed the case in the parametric FPT. It has been shown in Ref.
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[2], that the mentioned linear combination of the real and imaginary part of the com-
ponent spectrum is equivalent to simply redefining all the reconstructed phases ϕk as
zero ϕk � 0 (1 ≤ k ≤ K ) . This amounts to using the magnitude |dk | as the real quan-
tity in lieu of the complex amplitude dk . Earlier [20, 21], this resulting spectrum was
provisionally called the “ersatz spectrum” instead of the “phased spectrum”. Although
both terminologies designate the same purely absorptive spectrum, the name “phased
spectrum” is nevertheless more transparent as it transcribes the alteration of the seed
spectrum by exactly correcting all the phase errors of each individual component
resonance.

Needless to say, such an ideal phase correction is impossible in the current MRS
literature which uses merely the zeroth and the 1st order-phase correction, φ0 and
φ1, respectively. Namely, instead of our exact phasing by the reconstructed angles
ϕk (1 ≤ k ≤ K ), the approximate phasing, as performed in the MRS community,
amounts tomultiplying the entire complex time signal by exp (iφ)whereφ � φ1δ+φ0.

Here, the compound phase correctionφ is arbitrarily assumed to depend linearly on the
chemical shift δ. Clearly, φ cannot correct for all the phase errors of many individual
components. In e.g. analytical chemistry based onNMRspectroscopy, several hundred
resonances are not infrequently encountered in spectra reconstructed from time signals
with some 104−105 measured FID data points. The same can also be said for ICRMS
[13]. As a result, the zeroth and the 1st-order phase correction exp (iφ) leaves many
phase errors uncorrected or wrongly modified across the spectrum. Such a spectrum
is, therefore, never positive definite throughout the Nyquist range. By contrast, our
outlined procedure always generates the strictly positive-definite, “phased spectrum”.
Moreover, since such a phased spectrum is in a purely absorption mode, its interpre-
tation is straightforward for the peak parameters and especially for the resulting peak
areas and metabolite concentrations.

2.4 Derivative fast Padé transform, dFPT

Recently [1, 2], we found yet another Padé-based way to improve resolution and
suppress noise, i.e. to simultaneously overcome the twomajor obstacles to quantitative
analysis of spectra. This alternative methodology called derivative signal processing
belongs to non-parametric, i.e. shape estimation from the onset. Yet, at the end of
the computations, all the physical resonances are adequately parametrized, although
the quantification problem itself is not actually solved. This remarkable occurrence
makes the division between the parametric and non-parametric processors elusive and
eventually obsolete.

In order to explain this success of the derivative Padé-based non-parametric esti-
mation, we resorted in Ref. [2], to parametric processing. This was necessary since
if a signal processor, initially conceived for shape estimation alone, is to yield the
correct peak parameters, then in the end, these findings must be validated by paramet-
ric analysis which gives the explicit solution of the quantification problem within the
same processor. In our first paper [1] on this topic, we presented solely the lineshapes
of the envelopes in the non-parametric dFPT. In the second paper [2], we explained
how the peak parameters can actually be determined from the magnitude modes of the
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envelope profiles in the non-parametric dFPT. Moreover, in that same study [2], we
derived the explicit expressions showing how the peak parameters (positions, widths,
heights) of the general mth derivative envelope for the magnitude mode in the non-
parametric dFPT are connected to the absorptive peak positions, widths and heights
from the non-derivative (m � 0) parametric FPT. In addition to the magnitude modes
in the non-parametric dFPT from Ref. [1], we also presented in Ref. [2] the lineshapes
from the real (”absorptions”) and imaginary (”dispersions”) parts of the associated
complex envelopes. We have shown in Ref. [2] that the central lobes of both these real
(m even) and imaginary (m odd) derivative envelopes from the non-parametric dFPT
can correctly reconstruct the exact input data for the peak heights. In other words,
these “absorptions” and “dispersions” carry the same information. This is in accor-
dance with the Kramers-Kronig general relations that permit obtaining the spectrum
in an absorption from a dispersionmode and vice versa. Although the peak heights and
positions were seen as being correct in the non-parametric dFPT from Refs. [1, 2], it
nevertheless remained to be verified whether the peak widths are also adequate. From
a fuller visualization context of the overall validation of the findings from Refs. [1, 2],
it would, therefore, be advisable to determine whether the entire non-parametrically
reconstructed derivative envelope lineshapes could be appropriately scrutinized and
eventually confirmed as fully correct. The best way to perform such a stringent test
is to compare the results from the non-parametric and the parametric dFPT, as done
in Sect. 3 of the present study. To this end, we have performed the computation of
the component spectra in the parametric dFPT. The goal is to see how the compo-
nent spectra in the parametric dFPT agree with the envelopes from the non-parametric
dFPT. Moreover, in the parametric dFPT, we also generate the total shape spectra (or
envelopes) as the sum of their derivative components.

Both the non-parametric and the parametric dFPTpossess the analytical expressions
for the general mth order derivatives of the complex spectra. These closed formulae
are obtained by applying the derivative operator (d/dν)m to the envelopes in the non-
parametric and parametric dFPT, as well as to the components of the parametric dFPT
via:

Dm
ν �

(
d

dν

)m

(Themth derivative operator) , (2.23)

Dm
ν R±

K (z
±1) � Dm

ν

(
P±
K

(
z±1

)

Q±
K

(
z±1

)
) [

Envelopes: non-parametric dFPT(±)
]
, (2.24)

Dm
ν R±

K (z
±1) � Dm

ν

(
p±
0

q±
0

+
K∑

k�1

d±
k z±1

z±1 − z±k

) [
Envelopes: parametric dFPT(±)

]
,

(2.25)

Dm
ν

(
d±
k z±1

z±1 − z±k

) [
Components: parametric dFPT(±)

]
. (2.26)

Because of amore general significance goingwell beyond the topic of derivative signal
processing, themathematical derivation of the analytical expressions corresponding to
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(2.24)–(2.26) is deferred to a separate paper to be published soon. Presently, as in Refs.
[1, 2], we will simply employ these analytical expressions. In the computations, for
the purpose of cross-validation, we shall use all the variants of the fast Padé transform,
i.e. the FPT(±) and dFPT(±) in both the parametric and non-parametric formulations.
All the results from the FPT(+) and FPT(−) ought to coincide and so must those from
the dFPT(+) and dFPT(−). After verifying that these conditions are fulfilled, it suffices
to present only the “+” or “−” versions of the FPT and dFPT. This will be done with
the FPT(−) and dFPT(−) in Sect. 3, so as to cohere with Refs. [1, 2].

As mentioned, progress in all spectroscopy is hampered by the presence of over-
lapping resonances. Particularly in the MRS literature, this problem is viewed as
practically unsolvable [22]. To cope with the spectrally crowded envelopes with
tightly-overlapped resonances, that are often indiscernibly glued to eachother, research
practitioners have resorted to “short-cuts”. They encode FIDs at long echo times (TE)
to eliminate the faster decaying resonances. The resulting envelopes at e.g. TE=136
or 272 ms (or the likes) are sparser than those at a short TE, e.g. 22 ms. The inten-
tion of this practice is to generate the Fourier total shape spectra with as many as
possible semi-isolated resonances that could presumably be more amenable to fitting
by Lorentzians, Gaussians (or their linear combination approximating Voigtians) in
attempts to extract the peak parameters and, ultimately, the metabolite concentrations.
While the aim of obtaining isolated resonances when trying to avoid overlapping peaks
is an understandable motivation, the mentioned encoding protocols to achieve such a
goal are, in fact, ill-designed. The first reason is that even at longer TEs, there will
always be overlapping resonances, often located at chemical shifts that house some
of the diagnostically-informative metabolites. The second reason is that even the res-
onances that are subjectively visualized as being isolated, single peaks at long TEs,
could well be comprised of their constituent components. In such cases, the estimated
metabolite concentrations would be incorrect for the resonances that are assumed
to be structureless, i.e. with no sub-peaks. Thus, altogether this approach of using
long TEs, while encoding FIDs, and subsequently fitting the presumed single peaks
is misleading, and, as such, fruitless.

As noted, it is understandable to strive to deal with single, isolated structureless
peaks, preferably in the positive-definite absorption mode to facilitate interpretation
and extraction of metabolite concentrations. We can take that justifiable motivation
at its “face value” and ask the question of paramount importance as to whether there
could be a mathematically rigorous way to convert a congested envelope (from FIDs
encoded at short, middle or long TEs) by lineshape estimation alone into its com-
ponents, comprised exclusively of single isolated resonances. The answer is in the
affirmative for both noise-free and noisy synthesized times signals, provided that the
non-parametric dFPT is employed [1, 2]. With this prospect at our disposal, the aim
of quantitatively tackling only single, isolated peaks comes to its full fruition. This
is where the non-parametric dFPT comes to rescue the long-lasting trouble in the
MRS community regarding the earlier stated insurmountable problem of faithfully
disentangling all the overlapping peaks in the total shape spectra without recourse to
the explicit quantification problem. Extension of this powerful methodology to FIDs
encoded at short, middle and long TEs is currently underway, and the results shall be
reported shortly.
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Thementionedmathematical reason behind the overlapping resonances is a consid-
erable spread of the long tails of resonances, especially those that are strong (tall peaks)
[2]. The peak overlap is further exacerbated by the constructive and destructive inter-
ference of complex-valued spectral lineshapes of neighboring resonances for ϕk �� 0.
A way to avoid this obstacle is to reduce these tails, preferably to an extent where they
would be mostly “cut-off”, so as to scale the dominant content around the resonant
frequency. This amounts to a simultaneous flattening of the tails and narrowing of
the peak widths. Both effects would synergistically improve SNR. Firstly, lowering
the tails would reduce the baseline, which, by definition, is the averaged noise in the
spectrum. Secondly, the physical signal would be enhanced, since narrowing of the
resonance widths would concomitantly result in increasing the peak heights. To put
this plausible concept into practice, it remains only to find a mathematical tool which
accomplishes the outlined simultaneous width narrowing and tail flattening. Given the
form (2.15) of the complex Lorentzian spectrum, it is clear that a transformed spectrum
with the higher powers of the component denominators, i.e. using 1/

(
z±1 − z±k

)m
with

m >1 instead of 1/
(
z±1 − z±k

)
would yield narrower, taller peaks with reduced tails.

These higher powers 1/
(
z±1 − z±k

)m
of the component denominators 1/

(
z±1 − z±k

)

in (2.15) are generated precisely by the derivatives
(
d/dz±1

)m
of the sufficiently high-

derivative order m (for a derivative spectrum, a connecting formula is used between
(d/dν)m and

(
d/dz±1

)m
). Such an observation made in Ref. [2] led to the dFPT. The

explicit computations in both Refs. [1, 2] fully confirmed this expectation.
When plotting the derivative spectra, the peak heights continue to increase with

augmented differentiation order m. Thus, for the purpose of monitoring stabilization
and convergence of derivative spectra, a convenient normalization is necessary. This
normalization can be made to the peak height of a reference peak (e.g. tetramethylsi-
lane (TMS) in organic solvent or trimethylsilyl-tetradeutero-propionic acid (TSP), as
used for the in vitro study of Ref. [23]) or the “pivotal peak” at one of the far ends
of the given spectrum (e.g. lactate (Lac) in the case of the applications from Refs. [1,
2], and herein as well). Such a procedure, besides being useful in monitoring stabi-
lization/convergence, is also helpful for the main practical purpose, since the relative
concentration of the givenmetabolite can be read off directly from the normalized peak
height and the corresponding FWHM. Passing from such a relative to an absolute con-
centration of the metabolite is made through multiplication of the former quantity by
the number of the MR active nuclei and by the concentration of the chosen reference
metabolite [2].

2.4.1 Stopping criteria for completing the computation of the derivative envelopes

There remains a question of certain practical significance: where do we stop with the
estimation by the non-parametric dFPT alone? Earlier [1, 2], as well as presently,
we used an exhaustive range for m (1 ≤ m ≤ 50) . The question is then which of
these widely varying derivative orders should be deemed sufficient to formulate a
stopping criterion for ending the computations when only the non-parametric dFPT
is employed? First of all, such computations in the non-parametric dFPT are so fast,
that covering literally hundreds of values of m would be of no concern whatsoever
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regarding the used central processing unit (cpu) time on customary personal computers
(the usual lap-tops of researchers). Nevertheless, the stopping criterion to finish the
computations can be given as that value of m at which the normalized envelopes
from the non-parametric dFPT have converged to a stable distribution throughout the
spectral region of interest (SRI). Such a steady distribution of physical resonances
can provide the reliable peak parameters of the magnitudes of the derivative spectral
profiles, to be related to the absorptive peakpositions,widths andheights.Weknow that
the spectral structures that survive are physical (genuine), whereas the unphysical ones
(spurious) are washed out by the Padé-implemented higher-order derivative operator
(d/dν)m .

2.4.2 Peak parameters for the non-parametric dFPT

The key stage of estimation at which the non-parametric dFPT for the magnitudes
of envelopes becomes quantitative is at the point where this processor can deliver
the most correct numerical values of the peak positions, widths and heights as in the
physical absorptive non-derivative (m � 0) component spectra. This is achieved by
computing the normalized magnitude spectrum (stabilized with increased derivative
order m) at a very dense grid of the sweep frequencies ν. Unlike Fourier processing,
in the Padé-based estimation, such a grid is entirely independent of the total duration
(or acquisition) time T of the input FID. This computation simultaneously yields two
resonance parameters. One of these parameters is the mth derivative peak height hk,m
as hk,m � max

{∣∣Dm
ν (PK /QK )

∣∣}
ν∈SRIk . Here, SRIk is the spectral region of interest

for the sweep frequencies ν around the detected kth peak of themth derivative profile.
The other parameter is the corresponding location of the kth peak height, ζk,m �
Re

(
νk,m

)
, which is the value of the sweep frequency ν at which the magnitude profile

attains its maximum. The associated complex frequency νk,m is νk,m � ζk,m + iλk,m ,
where λk,m is the halved FWHM of the corresponding peak of the magnitude profile,
λk,m � (1/2) {FWHM}k,m . The latter profile breadth {FWHM}k,m is provided by
the non-parametric dFPT as the distance between the two crossing points of the mth
derivative envelope and the straight line parallel to the chemical shift abscissa at the
level of the halved maximum, (1/2)hk,m . The earlier found peak location ζk,m can
be verified to coincide with the middle point of the mentioned two crossings. It is in
this way that the same program for the dFPT, which non-parametrically computes the
lineshapeof themagnitude spectrum

∣∣Dm
ν (PK /QK )

∣∣ , also automatically generates the
peak positions

{
ζk,m

}
, half-widths

{
λk,m

}
and heights

{
hk,m

}
(1 ≤ k ≤ K ) of the kth

resonance in themth derivative envelope. This is the case because for sufficiently high
derivative order m, the profiles of the envelope

∣∣Dm
ν (PK /QK )

∣∣ and its kth component∣∣Dm
ν (PK /QK )k

∣∣ coincide locally around the kth peak, as will be illustrated in Sect. 3.
Once the derivative set

{
ζk,m, λk,m, hk,m

}
is produced by the explained procedure,

the corresponding non-derivative (m � 0) absorptive peak positions ζk , widths λk
and heights hk are immediately deduced from the explicit relations from Ref. [2]
summarized as:
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with the reconstruction of the former {ζk, λk, hk} from the latter set
{
ζk,m, λk,m, hk,m

}

via the connecting expressions,

Note that in the first string with the heading “Non-derivative (m � 0) absorption
spectral mode”, the peak height reads, by definition, as hk � |dk | / (2πλk) . On the
other hand, in the third string, the relation |dk | � 2πλkhk gives the absolute value |dk |
of dk in terms of the other two connecting expressions for λk and hk (therein, all the
parameters |dk |, λk and hk are for the non-derivative absorption mode, m � 0).

2.4.3 Advantage of the dFPT over the dFFT regarding noise

The most favorable aspects of derivative signal processing are best appreciated when
viewed in the dFPT. This becomes most evident when the input time signals are
noise-corrupted, which mimics the situations with encoded FIDs. It has been demon-
strated in Ref. [1] that the dFPT suppresses noise, which is, however, amplified by
the dFFT. In other words, the same operator (d/dν)m has two opposite effects by act-
ing as a noise filter in the dFPT and as a noise amplifier in the dFFT. Namely, since
(d/dν)m exp (−2π iνnτ ) � (−2π inτ)m exp (−2π iνnτ ) , it follows that the dFFT,
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generated using (2.19), does not process the time signal cn directly, but rather its
windowed (weighted) counterpart (−2π inτ )mcn according to:

dFFT: Dm
ν Fk � 1

N

N−1∑

n�0

(−2π inτ)m cne
−2π ink/N . (2.27)

Here, the window function w � (−2π inτ)m puts a higher weight on the tail parts of
the time signals, that in encoded FIDs are comprised mainly of noise. In other words,
the dFFT emphasizes the noisy part of the encoded FID and de-emphasizes the earlier
encoded data points that house the most intense and, thus, most important oscillations.
In sharp contrast, the dFPT does not multiply the input time signal cn by any weight
function. Rather, we first process the original, raw time signal cn by the non-derivative
(m � 0) FPT and it is to the resulting analytical expression PK /QK that we apply the
Dm

ν operator (2.23) to arrive at the dFPT as in (2.24). This latter step further reduces
noise as per the features of derivative envelopes by reference to the discussed width
narrowing and the tail flattening.

3 Results

Here, we shall report on the results from the present computations using both the
non-parametric and the parametric versions of the dFPT. Of course, we could have
chosen any relevant application, but for continuity of the systematic scrutiny, we opt
to complement our two previous studies [1, 2] and, thus, we shall also focus here on
MRS for breast cancer diagnostics. To this end, we will employ the same synthesized
time signals as in Refs. [1, 2], all in accordance with the corresponding encoded FIDs
reported in Ref. [23]. Both noiseless and noisy simulated time signals will be subjected
to non-derivative and derivative estimations.

3.1 Input data

The input data for the simulated noiseless time signals are sampled from the linear
combination (2.20) of 9 complex damped harmonics, i.e. with the model order K � 9.
The complex fundamental linear frequencies {νk} and corresponding complex ampli-
tudes {dk} (1 ≤ k ≤ 9) are listed in the following string:

Mk � {Lac,Ala,Cho,PC,PE,GPC, β − Glc,Tau,m − Ins}
Re (νk) � {1.332, 1.471, 3.212, 3.220, 3.221, 3.232, 3.251, 3.273, 3.281} ppm
Im (νk) � 0.0008 ppm (1 ≤ k ≤ K ) ; Im (νk) > 0

hk � {691.150, 62.832, 7.854, 23.562, 176.715, 17.671, 56.941, 219.911, 70.686} au
|dk | � {0.325, 0.032, 0.004, 0.012, 0.090, 0.009, 0.029, 0.012, 0.036} au
ϕk � 0 rad (1 ≤ k ≤ K ) , K � 9. (3.1)

Here, the real part of νk, i.e. Re (νk) , is the chemical shift, whereas the imagi-
nary part, Im (νk) , is proportional to the reciprocal of the spin–spin relaxation time
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T ∗
2kvia Im (νk) � 1/(2πT ∗

2k) for the kth resonance. Both Re (νk) and Im (νk) are
expressed in dimensionless units called parts permillion (ppm). The generally complex
amplitudedk , as themagnitude |dk |multiplied by the phase factor,dk � |dk | exp (iϕk) ,

is presently set to be real (dk � |dk |) by choosing ϕk � 0 (1 ≤ k ≤ 9) . The magni-
tudes of amplitudes are in arbitrary units (au). Also, in the sequence (3.1) are the peak
heights of metabolites alongside their abbreviations, whose full names are given in
the list of abbreviations. The kth metabolite concentration is proportional to the peak
area ak , which is equal to |dk | /2 for an absorptive Lorentzian non-derivative (m � 0)
lineshape as per (2.22). Since all the peak widths are chosen to be the same in (3.1),
it is seen therein that lactate, Lac, is the most abundant metabolite which resonates at
1.332 ppm. The listed chemical shifts cover the band of the fundamental frequencies
from 1.332 to 3.281 ppm. In the spectral range [1.332, 3.281] ppm, the narrow interval
[3.219, 3.222] ppm is of our primary interest because it contains the overlapping PE
and PC resonances, separated by a mere 0.001 ppm. The peak heights of PE and PC,
being vastly different, 176.715 versus 23.562 au, respectively, represent the biggest
challenge to quantitative visualization by estimations when only envelopes are used.
The specific values of the parameters in (3.1) are derived from the corresponding
estimation with encoded time signals from Ref. [23].

These latter encoded FIDs [23] were of long total length with 65536 data points
that the Fourier frequency grid necessitate and yet the ensuing resolution is low in
the FFT. In Ref. [23], the bandwidth, BW, was 6000 Hz, resulting in the sampling
time τ � (1/6000) s. The static magnetic field strength was B0 ≈ 14.1 T, which
corresponds to the Larmor frequency νL � 600 MHz. Since we have in mind the FPT
and dFPT, the signal length can be much shorter and, thus, we initially set N � 2048.
The entire computation was repeated with N � 4096 to test the convergence and
stability of all the reconstructions in the non-parametric and parametric FPT and
dFPT.

Regarding the encoded FIDs and the related spectra [23], the chemical shifts are
measured relative to the location (taken to be at the zero frequency) of TSP (not present
in the tissue). Relative to this zero frequency of TSP, we set the water resonance to
be positioned at νH2O (ppm)=4.68 ppm. All the other chemical shifts ν (ppm) are
obtained from their counterparts ν (Hz) by using the relation:

ν (ppm) � νH2O (ppm) − ν (Hz)

νL (Hz)
, (3.2)

and likewise for the fundamental frequencies νk :

Re (νk) (ppm) � νH2O (ppm) − Re (νk) (Hz)

νL (Hz)
, (3.3)

Im (νk) (ppm) � Im (νk) (Hz)

νL (Hz)
, (3.4)

where, of course, no translational scaling by νH2O (ppm) appears in the resonance
widths from (3.4).
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As to the synthesized noisy time signals, these are generated following Ref. [1].
Therein, a noise model is used according to the following prescription. Given that the
main uncertainties in encoded FIDs come from the unavoidable presence of random
noise, the synthesized noiseless time signals should be corrupted with a similar type
of stochastic perturbations. This is modeled in Ref. [1] by adding complex random
noise {rn} to the noiseless complex FID data points {cn}. Both data sets {rn} and
{cn} (0 ≤ n ≤ N − 1) must be of the same length N . The added disturbance {rn} is
random Gaussian zero-mean white noise with a prescribed standard deviation σ (the
square root of the variance). In Ref. [1], the simulated noisy time signal {cn} + {rn}
has been processed with σ � 0.0289 RMS, where the root mean square (RMS) error
refers to the noiseless part {cn} , i.e. RMS � ∑N−1

n�0 |cn|2 /N . This same standard
deviation σ will also be used in the present work.

3.2 Output data

In Sect. 3.2.1, we shall first recapitulate what is already partially known from Refs.
[1, 2] on the non-parametric dFPT. To this, we shall add the previously non-displayed
lineshapes (on the same graphs) of the magnitudes, absorptions and dispersions, so as
to make in evidence their combined patterns and the interference effects. Section 3.2.2
is devoted to a detailed comparison of the envelope lineshapes reconstructed by the
non-parametric dFPT with the corresponding components from the parametric dFPT.
In the present work, all the computations in the FPT and dFPT have been carried out
for both noiseless and noisy time signals. The obtained results are indistinguishable
from each other (as was also seen in Ref. [1]), such that the presently-reported spectra
refer simultaneously to the Padé-based reconstructions for the noiseless and noisy time
signals.

3.2.1 Processing by the dFPT with comparisons to the dFFT

The problem of resolution and noise in spectra The frequency resolutionνFFT in the
spectral envelopes from the FFT is limited by the total signal length N , or equivalently,
by the total acquisition time T .This is implied by the relationsνFFT ≡ νFFTk+1 −νFFTk �
N/τ � 1/T , where νFFTk is the Fourier grid, νFFTk � k/T (0 ≤ k ≤ N − 1) . To
approximately determine the spectral poles and the corresponding residues (ampli-
tudes), most researchers in the MRS community first plot the FFT spectrum and then
fit the peaks seen therein by some model functions (Lorentzians, Gaussians, …). By
contrast, the parametric FPT exactly determines the poles and residues of the spectrum
prior to ever plotting the spectrum. This is done by exactly solving the secular equation
(the characteristic polynomial equation) in (2.11) which is equivalent to diagonalizing
the associated sparse Hankel matrix treated in our Padé-based reconstructions. In fact,
for a given set

{
a j

}
of a polynomial AM (u) , e.g. the Matlab command “roots (a)”

returns the roots of the equation AM (u) � 0 as the eigenvalues of the eigenproblem
of the corresponding Hessenberg matrix. The roots of the secular equations are the
spectral poles. According to (2.12), the corresponding amplitudes are obtained analyt-
ically as the Cauchy residues of the response function given by the rational polynomial
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in the FPT spectrum. Once these complex fundamental frequencies {νk} (poles) and
the complex amplitudes {dk} (whose absolute values are proportional to the concen-
trations of the detected metabolites) are reconstructed, the spectrum can be plotted
in any desired mode (absorption, dispersion, magnitude, power). Such a Padé-based
strategy improves the resolution beyond νFFT and, moreover, this is achieved with
much shorter signal length than that required by the FFT.

Reconstruction of the complex amplitudes dk � |dk | exp (iϕk) immediately per-
mits the complete elimination of the inevitable phase errors incurred in the process
of encoding the time signal. This exact phase correction is made through multiplica-
tion of dk by exp (−iϕk) which yields the pure absorption spectrum (the “phased
spectrum”) containing the magnitudes {|dk |} instead of the complex amplitudes
{dk} � {|dk | exp (iϕk)} (for details see Ref. [2]). As is well-known, this phase problem
enormously troubles the FFT by causing severe lineshape distortions that make their
fitting practically meaningless. These are three major advantages (better resolution,
shorter total acquisition time, no phase problem) of the parametric FPT over the FFT.

A fourth advantage of the former relative to the latter processor is brought to light by
noise reduction. This is accomplished in the parametric FPT by the binning procedure,
as described in Sect. 2.2.2, consisting of separating stable (physical) from unstable
(unphysical, noisy) components. Here, we exploit the fact that the noise poles and
their strengths (amplitudes) are not representable in a stable manner. Such a circum-
stance is the basis of the said binning of unstable versus stable peak parameters, by
which much of the noise can be safely removed, resulting in absorption spectra of
even higher resolution. This feature of the parametric FPT runs opposite to the FFT
whose corresponding attempt to reduce noise (by e.g. apodization, i.e. multiplication
of the input time signal cn by a decaying exponential e−αnτ for a fixed positive con-
stant α) causes lineshape broadening (resolution deterioration). That the apodizing
procedure widens the peak width Im (ωk) is clear from transforming the apodized
FID’s kth constituent, cn,k exp (−αnτ) � dk exp {inτRe (ωk) − nτ [α + Im (ωk)]} ,

to the frequency domain, where cn,k � dkexp (iωknτ) as per (2.21). The resulting kth
component spectrum is idk/ {[ω − Re (ωk)] − i [α+ Im (ωk)]}:

(3.5)

The mentioned characteristics (increased resolution, removed noise) are illustrated
for both non-derivative and derivative lineshapes in the FPT (m � 0) and dFPT
(m > 0) in Figs. 1 and 2, respectively. Thus, Fig. 1 starts with the noisy FID on panel
(a). Therein, only the real part of the complex time signal is shown (the imaginary part
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is of a similar waveform, except for the standard phase mismatch by π/2 radians).
The displayed FID used for the Padé-based processing is of the length N � 2048.
This is some formidable 32 times shorter than the corresponding 65536 FID data
points required by Fourier analysis from Ref. [23]. Shorter FIDs are advantageous,
as they imply faster encoding and this, in turn, leads to more expedient protocols for
the patient undergoing the MR scanning. The un-normalized spectral envelopes in the
absorption mode from the non-parametric FPT are depicted on panels (b) and (c) in
Fig. 1 for all the nine resonances. The peak of lactate, Lac, from panel (b) appears
as the dominant resonance from 1.30 to 3.29 ppm. Note that the full names for the
metabolites, abbreviated in the figures, are in the list of abbreviations. The input peak
heights {hk} (1 ≤ k ≤ K , K � 9) from (3.1) in panels (b) and (c) fully match the
maximae of the absorptive lineshapes of envelopes for all the seven isolated, single
resonances. The exception being the two overlapped resonances (PC, PE) that are seen
as a single, amalgamated peak in which PC is completely invisible. Its presence in
Fig. 1c is indirectly suggested by the discrepancy between the input peak height for PE
and the profile maximum at the chemical shift 3.221 ppm of phosphoethanolamine.
The un-normalized absorptive spectra from the parametric FPT are shown in panels
(d) and (e) of Fig. 1. Here, the component spectra on panel (d), of course, delineate all
the individual resonances, including the two separate peaks at 3.220 and 3.221 ppm
for PC and PE, respectively. On panel (e), the total shape spectrum from panel (c) is
superimposed on top of the component lineshapes from panel (d). The components
and the envelope coincide for the lineshapes above the baseline for the five isolated
resonances. The only difference is at the PC–PE location. Therein, the envelope is
almost entirely determined by the PE component, which dominates the hidden PC
peak. The envelope from panels (c) or (d) reconstructed by the non-parametric FPT is
verified to be identical to the envelope (the sum of the component spectra) from the
parametric FPT. The same holds true for panel (b).

Figure 2 is for the normalized total shape spectra, reconstructed by the dFFT
(m � 6), as well as by the non-parametric FPT (m � 0) and dFPT (m � 6,m � 50) .

The magnitude mode is shown alone. On panel (a), the non-derivative (m � 0) enve-
lope in the FPT appears as a broad single peak due mainly to PE. This lineshape
does not have any noticeable curvature change around the PC location. This perspec-
tive is dramatically altered for the better in the derivative envelopes from the dFPT
(m � 6,m � 50) on panel (b). Therein, atm � 6, a visible shoulder emerges at the PC
position alongside the clear PE peak. This shoulder eventually becomes a completely
delineated PC resonance, whosemaximum entirely coincideswith the associated input
peak height, just as in the case of PE on the same panel (b). Amore expanded presenta-
tion of the comparison between the lineshapes for the two derivative ordersm � 6 and
m � 50 in the dFPT is given on panels (c) and (d), respectively. Relative to Fig. 1c for
the absorptive envelope in the FPT (m � 0), the peak breadths are noticeably narrower
for themagnitudemodes of the six (out of seven) well-delineated resonances (Cho, PE,
GPC, β-Glc, Tau, m-Ins) in the dFPT (m � 6) on Fig. 2c. As to the PC shoulder, it is
seen to be leaning towards the lower part of the PE lineshape. All the input peak heights
for the mentioned six profiles exactly match the maximae of the envelopes at the res-
onance chemical shifts. The top of the PC shoulder is seen to overestimate the input
peak height at 3.220 ppm for m � 6 on panel (c). However, on panel (d) with m � 50
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Fig. 1 Non-derivative FPT with a noisy time signal or FID (σ � 0.0289RMS) for exact reconstructions of
the un-normalized non-parametric envelopes and parametric components. The real part of the FID is on (a),
spectra are on (b–e). The envelopes are on (b), (c) and (e), while the components are on (d) and (e). The
envelope on (c) cannot resolve the recognized cancer biomarker phosphocholine, PC (3.220 ppm) masked
by phosphoethanolamine, PE (3.221 ppm). These delineated overlapped peaks are seen in the components
on (d) and (e) (Color figure online)
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Fig. 2 Non-parametric estimations of envelopes for a noisy FID (σ � 0.0289RMS) by 2 processors: com-
parison of the dFPT (b–d) with the dFFT (e). The un-normalized non-derivative (m � 0)magnitude profile
in the FPT is on (a), while (b–e) are for magnitude modes, normalized to the tallest peak (lactate, Lac) from
Fig. 1b. A striking resolution improvement and noise suppression in the dFPT is seen on (b) and (d) with
the PC–PE double peak resolved for high derivatives of envelopes (e.g.m � 50). The dFFT amplifies noise
even at lower derivative orders (e.g. m � 6) for the normalized magnitude envelope on (e) (Color figure
online)
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for the dFPT, the PC and PE peaks are fully separated all the way down to the baseline
level. In Fig. 2d, all seven resonances in the displayed window [3.205, 3.290] ppm
are extremely thin, especially when compared to the non-derivative (m � 0) absorp-
tion from Fig. 1c. The results in the FPT and dFPT on panels (a)–(d) are checked to
be identical for the noise-free (σ � 0) and noise-corrupted (σ � 0.0289RMS) input
time signals. This implies that both the FPT and the dFPT effectively eliminate the
entire noise. Particularly, the dFPT is remarkably successful not only in complete noise
removal, but also in a total flattening of the long tail ends of all the resonances. This
is best appreciated by comparing the Lorentzian tails near the resonance frequencies
in Fig. 1c with Fig. 2d. In Fig. 1c, with the FPT (m � 0), the lower parts of all the
single peaks are quite wide. Moreover, in the same Fig. 1c, they mix together for e.g.
m-Ins and Tau through an interference effect which lifts the baseline above the level
of the abscissa for the chemical shifts. All such interference effects have completely
disappeared in Fig. 2d for the dFPT (m � 50), where the Lorentzian tails of every
single (Cho, GPC, β-Glc, Tau, m-Ins) and initially overlapped (PC, PE) resonances
are entirely immersed into the baseline, which is itself embedded into the chemical
shift axis. This means that the dFPT for high derivative order m hugely improves the
SNR compared to the non-derivative FPT (m � 0). In other words, the differentiation
transform Dm

ν from (2.23) and (2.24) acts as a powerful noise filter in the dFPT.
This is in sharp contrast to the dFFT from (2.27), where the same derivative trans-

form Dm
ν amplifies noise, as illustrated for m � 6 on panel (e) of Fig. 2. Such a

breakdown of the dFFT for noisy FIDs is checked to worsen for m > 6 (not shown
to avoid clutter with the uninformative Fourier processing). This failure of the dFFT
is rooted in the fact that the operator Dm

ν yields the time-dependent factor (nτ)m for
m > 0 which weights heavily the noisy portion with larger values of nτ in the syn-
thesized {cn + rn} or encoded FIDs. With this feature, as stated earlier, the derivative
operator Dm

ν (m > 0) in the dFFT emphasizes the unphysical, noisy tail of the FID
and de-emphasizes the physical, more intense time signal oscillations towards the
beginning of the data acquisition.

Such a drawback which flagrantly invalidates the dFFT is absent from the dFPT,
which first uses the non-derivative FPT (m � 0) to process the original time signal, e.g.
{cn + rn}, unaltered by the operator Dm

ν . Subsequently, the derivative spectrum in the
dFPT (m > 0) is generated by subjecting the mentioned seed spectrum from the FPT
(m � 0) to the operator Dm

ν . The second step does not introduce any new noise. This
occurs because the results of the application of Dm

ν to the closed formulae P±
K /Q±

K
for the seed spectra in the FPT are also the analytical expressions for any derivative
order m. In other words, since the analytical expressions for Dm

ν P±
K

(
z±1

)
/Q±

K

(
z±1

)

are the working formulae in the Padé derivatives, the dFPT never actually employs
any numerical differentiation, which is known to be prone to computational errors.
Moreover, the derivative operator Dm

ν itself removes noise when applied to P±
K /Q±

K .

The reason for this is that the analytical expressions for Dm
ν P±

K /Q±
K are also the

ratios of two polynomials. It is this non-linearity feature of the polynomial quotients
in the dFPT which gives the noise filtering property to the derivative operator Dm

ν .
Thus, any trace of noise, which is eventually left after passing the input data {cn + rn}
through the zeroth order (m � 0) filters P±

K /Q±
K , will be further suppressed by the

subsequentmth order (m > 0) filters Dm
ν P±

K /Q±
K .After two such consecutive rational
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polynomial filters, noise has no chance of surviving to any noticeable extent, especially
for large values of m. This is what is evidenced on panel (d) of Fig. 2. Similarly, the
unprecedented noise removal capability of the dFPT is also encountered for othermore
noise-corrupted FIDs with higher standard deviation σ than σ � 0.0289RMS used in
the present illustrations.

Relative patterns of triple lineshape modes (magnitudes, absorptions, dispersions)
Our aim in this subsection is to superimpose the different modes of spectral line-
shapes on the same subplots of multi-trace figures. For systematics, we first do so by
simultaneously displaying on Fig. 3 the magnitudes and the real parts of the com-
plex envelopes form the non-parametric dFPT. This is followed by Fig. 4, where each
subplot contains derivative lineshapes for magnitudes and the imaginary parts of the
complex envelopes. Finally, Fig. 5 shows all three derivative envelope lineshapes (mag-
nitudes, real and imaginary parts). Figures 3, 4 and 5 are for normalized envelopes
associated with the varying model orders m � 8 (8) 48. Note that for ϕk � 0, the
real part of the complex non-derivative Lorentzian spectrum (m � 0) is a bell-shaped
single absorptive symmetric profile. The imaginary part of the same complex spec-
trum (m � 0) is the single dispersive asymmetric lineshape for ϕk � 0. These notions
cease to apply to derivative spectra of the general order m > 0. For example, taking
the real part of a complex derivative envelope for m even and odd results in the parity
change, since maximae become minimae and vice versa. Moreover, peaks and dips
appear for a single kth resonance in either the real or imaginary derivative lineshapes
for any order m. Nevertheless, for an easier and shorter nomenclature, despite the
differences among non-derivative (m � 0) and derivative (m > 0) envelopes, we can
still preserve the adjectives “absorptive” and “dispersive” for the real and imaginary
derivative lineshapes, as long as we are aware of the meaning behind the quotation
marks for these more familiar notions.

Naturally, nomagnitudemode profile, being strictly positive-definite, can ever cross
the abscissae of chemical shifts. This results in the emergence of the single peak per
resonance in the spectral magnitude mode of lineshapes, as is clear from Figs. 3, 4
and 5. By contrast, the “absorptions” (Fig. 3) and “dispersions” (Fig. 4) have multiple
lobes. These correspond to zeros (per the single kth resonance) of the numerator
polynomial of the real or imaginary parts of the complex derivative envelopes for
m > 0 in the dFPT. In the derivative “absorptions” (Fig. 3), the central lobe located at
the kth fundamental chemical shift, Re (νk) , has the peak heights which coincide with
those of the magnitude mode and the corresponding input data for hk from (3.1). The
“absorptive” side lobes (Fig. 3) are placed symmetrically and equidistantly around the
central lobe. The heights of the side lobes are systematically and gradually lower than
the central lobe with the increased separation from the central chemical shift Re (νk)

of the kth resonance.
Both maximae (peaks) and minimae (dips) emerge per each kth “absorptive” line-

shape in Fig. 3.With increased derivative orderm, Fig. 3 shows that all the “absorption”
lobes are narrowed. This follows the same pattern exhibited by the magnitude modes
(except that the latter are the strict, single maximum per kth resonance). The maximae
of every such “absorption” lobe is strictly bounded by the lineshape of the magnitude
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Fig. 3 Non-parametric dFPT for a noisy FID (σ � 0.0289RMS): comparison of 2 modes, the real parts of
normalized envelopes versus their magnitudes. Variation of the derivative order m from 8 to 48 in the step
of 8, i.e. m � 8 (8) 48. Magnitude modes exhibit a single peak per resonance. The real parts show multiple
lobes, the strongest of which are at the resonant frequencies and with the peak heights coinciding with
the associated input data. No positive-definite lobe of the envelope real parts is taller than the magnitude
lineshapes (i.e. the lineshapes of the real parts of complex envelopes are all confined within the magnitude
profiles) (Color figure online)
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Fig. 4 Non-parametric dFPT for a noisy FID (σ � 0.0289RMS): comparison of 2 modes, the imaginary
parts of normalized envelopes versus their magnitudes. Variation of the derivative order m from 8 to 48 in
the step of 8, i.e. m � 8 (8) 48. The imaginary parts show multiple lobes, the upward-oriented intensities
of which are always weaker than the maximum of the single peak per resonance in the magnitude mode
(Color figure online)
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Fig. 5 Non-parametric dFPT for a noisy FID (σ � 0.0289RMS): comparison of 3 modes, the real and
imaginary parts of normalized envelopes versus their magnitudes. Variation of the derivative order m from
8 to 48 in the step of 8, i.e. m � 8 (8) 48. For the same derivative order m, the interference of the real and
imaginary parts of the given envelope reproduces exactly the lineshape profile of the associated magnitude
mode (Color figure online)
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mode. In other words, the kth magnitude of the mth-order derivative envelope is itself
the envelope for all the maximae (peaks) of the “absorptive” lineshape lobes (Fig. 3).

The situation with the “dispersions” (Fig. 4) differs from their “absorption” coun-
terparts in several aspects. The “dispersive”maximae lobes are also all confinedwithin
the magnitude modes. However, their heights are considerably smaller than any point
on the envelope for the magnitude mode. Moreover, the highest maximum (peak) of
the “dispersion” lobes is not placed at the location Re (νk) of the kth resonance. These
features occur because we chose to present the “dispersions” in Fig. 4 for the same
derivative order m (even, m � 2m′,m′ � 4, 8, . . .) as for the “absorptions” from
Fig. 3. Had we chosen the odd value of m (m � 2m′ − 1) for the “dispersions” in
Fig. 4, their central lobes would have the peak heightsmatching those of themagnitude
(and of the input data hk), as shown in Ref. [2]. The reason for whichwe have presently
chosen the same derivative orderm for both “absorptions” and “dispersions” is to ana-
lyze their interference pattern (Fig. 5). Such an analysis would only make sense when,
of course, both “absorptive” and “dispersive” lineshapes refer to the same values of
the derivative order m.

The intricacies of “absorptive” and “dispersive” derivative lineshapes are best
appreciated when viewed in concert on the same graph. Namely, the interference
pattern of derivative “absorptions” and “dispersions” is most clearly delineated when
they are both juxtaposed to the magnitude modes on the same plots, as done in Fig. 5.
Therein, the phase mismatching (by π/2) of “absorptions” and “dispersions” is fully
reminiscent of the similar behaviors of the ordinary sine and cosine trigonometric
functions. In particular, it becomes evident why the sole “absorption” recovers the
entire peak height of the magnitude mode (and, in turn, of the input data hk). This is
due to the stated phase mismatch of π/2 between “absorption” and “dispersion” lobes:
the former peak is at the resonant chemical shift Re (νk) , where the latter attains its
zero value. More generally, the constructive-destructive interference of “absorption”
and “dispersion” is at play on all the panels of Fig. 5. As a net result of this interplay,
the multiple lobes of “absorptions” and “dispersions” are combined in such a way
that, in the end, only a single maximum survives, and this is the peak of the magnitude
mode.

3.2.2 Non-parametric dFPT versus parametric dFPT

This subsection is devoted to the critical test of the non-parametric dFPT by com-
parison with the parametric dFPT. Initially, the parametric non-derivative (m � 0)
FPT has already undergone the quantification step by explicitly solving the spectral
analysis problem. Subsequently, the obtained fundamental frequencies and amplitudes
{νk, dk} (1 ≤ k ≤ K ) are used to generate both the components and total shape spectra
in the non-derivative parametric FPT. Finally, the analytical expressions from (2.25)
for the spectra of components are subjected to the derivative operator (d/dν)m for
1 ≤ m ≤ 50, and their sums from (2.24) are the envelopes from the parametric dFPT.
This yields the derivative components and the derivative total shape spectra in the para-
metric dFPT. It is the plots of the latter two types of lineshapes that are to be compared
with their counterparts from the non-parametric dFPT, which explicitly computes only
the envelopes (total shape spectra) and not the components, as it never addresses the
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quantification problem. The first check along these lines is to restrict the comparisons
to the envelopes alone. By doing this test, we verified that exactly the same results
are obtained in the parametric and non-parametric dFPT for the derivative total shape
spectra with 1 ≤ m ≤ 50. This conclusion has been checked to also hold true for
m > 50. Such a finding fully coheres with the well-known fact that the parametric and
non-parametric non-derivative (m � 0) FPT yield identical envelope spectra [24, 25].
The second check is to extend the comparison to the critical case which juxtaposes
the component spectra from the parametric dFPT alongside the envelopes from the
non-parametric dFPT.

This is carried out in Figs. 6, 7, 8 and 9 that compare the lineshapes for the compo-
nents (parametric dFPT)with the envelopes (non-parametric dFPT) for two increments
or rates m of m, that are set to m � 1 and m � 4. The smallest grid m � 1 is
used to more closely monitor the changes of the derivative lineshapes. Some features
of the profile alterations might be overlooked for larger values of the increment m
of the derivative order. Thus, Figs. 6, 7 and 8 are for the rate m � 1 of the deriva-
tive order: m � 1 (1) 21 or m � 1, 2, 3, . . . , 21. Figure 9 is for m � 4 between
m � mmin (m)mmax � 24 (4) 48 or m � 24, 28, . . . , 48. On each panel (a) of
Figs. 6, 7, 8 and 9, we plot the pure absorption un-normalized lineshapes for the
non-derivative (m � 0) envelope (coincident for the non-parametric and parametric
FPT) and its two components, respectively. This serves as a reminder of the starting
lineshapes, so as to comparatively follow the changes of the spectral profiles with
increased derivative order m in the dFPT.

It is immediately clear from Fig. 6 that for increasingm the component peak heights
are systematically enhanced with a concomitant narrowing of the peak widths. To
emphasize the increase of the peak heights with augmentation of the derivative order
m, all the component and envelope lineshapes are plotted in their un-normalized form
on Figs. 6, 7, 8 and 9.

It is seen on panels (a) and (b) in Fig. 6 form � 0 andm � 1, respectively, that the
PC peak is completely masked in the envelopes by the long tail of the dominant PE
resonance. This explains the fact that the sum of the PE and PC resonances appears
as a single, unresolved peak. However, with the gradual increase of the derivative
order m, the widths of the individual resonances in the envelopes are systematically
narrowed, the peak heights augmented and the wings of the tail lowered towards the
baseline level. This three-fold trend evidently gears toward the peak separation with
a significant diminution in the waveform overlaps between the PC and PE lineshapes.
In Fig. 6, such a trend of the envelopes becomes most pronounced on panel (h) for the
derivative order m � 7.

The lineshapes for the three groups with m � 1, each referring to seven deriva-
tives, are shown in Fig. 6 (m � 1, 2, . . . , 7), Fig. 7 (m � 8, 9, . . . , 14) and Fig. 8
(m � 15, 16, . . . , 21). In Figs. 6, 7, 8 and 9, the component spectra from the para-
metric dFPT are drawn as red curves, whereas the blue curves are reserved for the
envelopes from the non-parametric dFPT. Returning to panel (b) on Fig. 6, we see that
the 1st derivative envelope in the non-parametric dFPT is overall quite similar to the
PE component peak from the parametric dFPT. In other words, this former processor in
conjunctionwith the 1st derivative alone gives no hint of the presence of a smaller peak
in Fig. 6b, other than a slight change in the curvature of the envelope at the chemical
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Fig. 6 Comparison of the parametric and non-parametric un-normalized spectra for components and
envelopes, respectively, in the dFPT for lower derivative orders m � 1 (1) 7 using for a noisy FID
(σ � 0.0289RMS). The reference non-derivative (m � 0) absorption in the FPT is on (a), while (b–h)
are for magnitudes. Envelopes for m=0(1)6 on (a–g) do not separate phosphocholine, PC, from phospho-
ethanolamine, PE, that are, however, clearly visualized for m=7 on (h) with an approximate match of their
lineshapes (Color figure online)
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Fig. 7 Comparison of the parametric and non-parametric un-normalized spectra for components and
envelopes, respectively, in the dFPT for higher derivative orders m � 8 (1) 14 using a noisy FID
(σ � 0.0289RMS). The reference non-derivative (m � 0) absorption in the FPT is on (a), while (b–h)
are for magnitudes. For systematically increased m, the envelopes from the non-parametric dFPT are seen
to gradually tend to the components from the parametric dFPT, with the best outcome for m � 14 on (h)
(Color figure online)
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Fig. 8 Comparison of the parametric and non-parametric un-normalized spectra for components and
envelopes, respectively, in the dFPT for higher derivative orders m � 15 (1) 21 using a noisy FID
(σ � 0.0289RMS). The reference non-derivative (m � 0) absorption in the FPT is on (a), while (b–h)
are for magnitudes. For systematically increased m, the envelopes from the non-parametric dFPT are seen
to gradually tend to the components from the parametric dFPT,with the best agreement (in fact, coincidence)
on (g) and (h) for m � 20 and m � 21, respectively (Color figure online)
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Fig. 9 Comparison of the parametric and non-parametric un-normalized spectra for components and
envelopes, respectively, in the dFPT for higher derivative orders m � 24 (4) 48 using a noisy FID
(σ � 0.0289RMS). The reference non-derivative (m � 0) absorption in the FPT is on (a), while (b–h)
are for magnitudes. For systematically increased m, the envelopes from the non-parametric dFPT are seen
to be in perfect agreement with the components from the parametric dFPT. The components are fully
confluent with the envelopes and all that is seen from the former are their zero-valued tails. This implies
that the non-parametric dFPT with its lineshape estimation alone is capable of exact quantification, on a
component-by-component basis (Color figure online)
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shift 3.220 ppm of PC. Such an observation is modified already with the 2nd derivative
lineshapes shown in panel (c) of Fig. 6. Therein, the non-parametric envelope exhibits
a protrusion which is pushed a bit away from the location 3.220 ppm of PC.

With increase of the derivative order from m � 3 to m � 5 on panels (d) to (f),
respectively, an oscillatory pattern is observed in Fig. 6. Namely, for these low-order
derivative envelopes in the non-parametric dFPT, the structure near the position of
PC is seen as fluctuating, and it even completely disappears for m � 4 on panel (e).
Had we not taken the smallest step m � 1, this fluctuation would not have been
noticed. When the PC structure begins again to emerge for m � 5 on panel (f) of
Fig. 6, still the ensuing envelope has merely a slight shoulder (near the PC location),
which is much less delineated than the bump form � 2 on panel (c) in the same figure.
Such an instability of the secondary structure (i.e. that related to PC) in this narrow
frequency range [3.219, 3.222] ppm for m ≤ 5 indicates that low-order derivative
envelopes are unreliable if the motivation for their use is to separate the overlapping
resonances. Eventually, the secondary structure near PC enters a more stable regimen
for m � 6 and m � 7 on panels (g) and (h), respectively, in Fig. 6. This emergence of
stabilization of the PC peak is steadily continued throughout panels (b) – (h) in Figs. 7
and 8. Taken together, Figs. 6, 7 and 8 with the minimal increment m � 1 of m
indicate the need for higher-orders of derivatives of envelopes in the non-parametric
dFPT. Further, the peak stabilization of the PC resonance is maintained for a larger
increment m � 4, as illustrated for m � 24 (4) 48 or m � 24, 28, . . . , 48 in Fig. 9.

Regarding Figs. 6, 7, 8 and 9, the word “stabilization” refers to a stable maintenance
of the well-delineated, isolated peaks. Since these lineshapes are not normalized, they
are seen in Figs. 6, 7, 8 and 9 to undergo a huge increase in the peak heights, as per the-
ory [2], when the derivative orderm is augmented fromm � 1 tom � 48. The outlined
remarks on the stability of the PC peak with respect to the value of the derivative order
m for the envelope in the non-parametric dFPT need to be quantitatively confirmed by
the spectra that serve as the gold standard. This is critically important for Figs. 6, 7,
8 and 9, where the input peak heights hk from (3.1) are not plotted alongside the un-
normalized derivative lineshapes with gigantic maximae. The needed gold standard
is the collection of the un-normalized derivative component spectra reconstructed by
the parametric dFPT. Comparisons of these latter components with the envelopes pro-
vide the quantitative value of the non-parametric dFPT. To this end, it suffices to see
how closely the blue (non-parametric dFPT) and red (parametric dFPT) curves for the
envelopes and components, respectively, match each other for varying differentiation
orderm. It was seen in Figs. 6 and 7 that the discrepancy between the spectra from the
non-parametric dFPT (envelopes) and parametric dFPT (components) is most notice-
able at lower derivative orders 1 ≤ m ≤ 8. However, it is evident that the agreement
between the envelopes and components is systematically improved from m � 9 to
m � 14 on panels (c) to (h) in Fig. 7, aswell as on panels (b)–(h) form=15–21 in Fig. 8,
to become perfect on panels (b)–(h) in Fig. 9 (m � 24, 28, . . . , 48). This conclusively
indicates that the non-parametric dFPT for estimation of the envelopes alone is fully
capable of exactly reconstructing all the constituent components with their entire line-
shapes. This is what we have set to prove in the present study. Due to the uniqueness
of the converged Padé-based reconstructions, coincidence of the envelopes and com-
ponents from the non-parametric and parametric dFPT, respectively, must necessarily
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also yield the samequantitative data (complex fundamental frequencies {νk} and ampli-
tudes {dk} retrieved by these two types of estimations. We have explicitly verified in
the present study that indeed the pertinent numerically determined equalities between
the fundamental pairs, {νk, dk}non−parametric dFPT � {νk, dk}parametric dFPT do hold true.
Here, the set {νk, dk}non−parametric dFPT has been presently determined by the proce-
dure from Ref. [2]. On the other hand, the gold standard set {νk, dk}parametric dFPT has
been reconstructed by explicitly solving the quantification problem. This verification
has been made in the dFPT(−) and dFPT(+), with the findings

{
ν−
k , d−

k

} � {
ν+k , d+k

}
.

These latter two fundamental pairs reconstruct the corresponding input data {νk, dk}
from (3.1), so that

{
ν−
k , d−

k

} � {
ν+k , d+k

} � {νk, dk} as in (2.18a).

4 Clinical relevant of derivative magnetic resonance spectroscopy

In this work, all the expounded features of derivative signal processing are exempli-
fied in the case of magnetic resonance spectroscopy, MRS, for the problem of breast
cancer. In this particular problem of major public health concern, clinically reliable
quantitative identification of cancer biomarkers is the prerequisite for diagnostics and
treatment of patients. Among several diagnostically-informative metabolites, phos-
phocholine, PC, stands out as a recognized breast cancer biomarker. It is, therefore,
of utmost importance to properly visualize and quantify this particular metabolite.
Recall that PC is also a recognized biomarker of other malignancies, including ovar-
ian cancer and brain tumors [4, 5]. Our systematic focus on various cancer biomarkers,
including PC, and the development of data analytical methods aims to help physicians
incorporate molecular imaging by way of MRS into their routine armamentarium.
In particular, radiologists need firmly established procedures with clinically reliable
information extracted from the tissue scanned byMRS. These conditions translate into
the demand for accuracy, stability, robustness and trustworthy cross-validation of all
the reconstructions during data analysis by way of signal processing. We have consis-
tently shown that the customary (non-derivative) fast Padé transform, FPT, answers
most favorably to this multi-faceted requirement [17, 21, 24–35]. Moreover, the FPT
has been demonstrated to be of practical use, since its high-resolution capabilities
can considerably reduce the scanning time, and this would make MRS more cost-
effective, as well as more comfortable for patients [36]. Nevertheless, despite these
achievements, there is always room for further strengthening of signal processing.

Our most recent advances [1, 2] have initiated yet another upgrade to break the
ground in combating anew the two major stumbling blocks that hamper a deservedly
faster entry ofMRS into the standard diagnostic protocol for everyday clinical practice.
As mentioned, these stumbling blocks are resolution improvement (with a particular
emphasis on separating overlapping peaks) and noise suppression. For example, many
cancer biomarkers do not show up in spectral envelopes as isolated resonances that
are easy to spot and then parametrize. Quite the contrary, many cancer biomarkers,
including PC, are hidden in the crowded parts of total shape spectra. The art is to single
them out by confidently peering into the substructure of spectral complexes with a
number of tightly packed and indiscernible resonances. Moreover, the unavoidable
presence of noise additionally masks weak resonances near the background baselines
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where cancer biomarkers often reside. Faced with these obstacles, physicians are, of
course, well aware that mathematical methods are needed to solve such problems.

Yet, physicians are in need of a clear-cut “bottom line” of the mathematical
descriptions for any level of the involved sophistication. In other words, what would
clinically be most practical is to glean the gestalt of the output of signal process-
ing in a straight-forward, visual, yet quantitative representation with all the relevant
information available on a single screen display. Alongside the initial, crowded and
noise-corrupted envelope spectrum, the radiologist would optimally like to see the
processed data with clearly delineated lineshapes of components for metabolites,
particularly those assigned to recognized cancer biomarkers such as PC, superim-
posed on a maximally flattened background baseline. Additionally, this visualization
should be completed with the numbers (chemical shift, T ∗

2k , and concentration for the
kth metabolite) above the peaks, especially for the most diagnostically informative
molecules. This maximal level of optimization is precisely what the newly-developed
non-parametric high-order derivative fast Padé transform, dFPT, offers, as per the
presently expounded theory and results sections. These findings fully justify proceed-
ing to applications of the dFPT to encoded data from in vivo MRS as envisaged in our
work to be reported soon.

5 Discussion and conclusions

Derivative signal processing by the Padé-based non-parametric, or equivalently, shape
estimation alone is presently established as a special and far-reaching quantitative
analysis of spectra. The gist of the matter with this unique strategy in the estimation
processes is that the quantification problem itself is never set to be solved. This is indi-
cated already in the adjective “non-parametric” for the term estimation, meaning that
from the onset, the peak parameters (position, widths, heights) are not envisaged to be
found by explicitly solving the spectral analysis problem, which is how the quantifica-
tion problem is called in themathematical literature. Yet, at the end of the estimation of
themere envelope lineshapes, the non-parametric derivative fast Padé transform, dFPT,
provides the profiles of the underlying components. We show that for high-order m of
the frequency-dependent derivative operator (d/dν)m these components from the non-
parametric dFPT coincide exactly with the corresponding components reconstructed
by the parametric dFPT (which explicitly solves the quantification problem). With
such a finding, we have confirmed that the entire high-order derivative component
lineshapes from the envelopes given by the non-parametric dFPT are, in fact, exact.

Tomake the non-parametric dFPT quantitative, two additional conditions need to be
fulfilled, besides predicting the exact component lineshapes. First, the non-parametric
dFPT should give the numerical values of the peak signatures (position, width, height)
of each component for anym > 0 (especially for higher derivative ordersm for which
the components from exclusively a shape estimation are most accurate). Second, in
the most convenient phase-insensitive spectral magnitude mode, the mentioned peak
locations, widths and heights for any fixed order m > 0 in the non-parametric dFPT
should uniquely relate to the corresponding peak parameters of the true absorptive
profile for the non-derivative (m � 0) parametric fast Padé transform, FPT. This is
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verifiable by computing the envelopes in the non-parametric dFPT at the finest grid of
the freely-chosen set of sweep frequencies. This permits precise reconstruction of the
numerical values of the peak positions, widths and heights of every resonance. Our
algorithm simply reads off these parameters from the evaluated derivative envelopes
that we now know are, in fact, the components. It is in this straight-forwardway that we
extract the peak parameters of the derivative lineshapes by the non-parametric dFPT
for any order m > 1. This fulfills the first of the two cited supplementary conditions.
To satisfy the remaining, second condition, the parametric dFPT can be used to show
that the peak parameters of the components reconstructed by this estimation for any
m > 1 are uniquely related to the pure absorptive components in the non-derivative
(m � 0) parametric FPT. On the other hand, the envelopes of the non-parametric
dFPT for high derivative order m coincide with the components from the parametric
dFPT. Such a coincidence implies that the peak parameters of the envelopes with high
order m from the non-parametric dFPT are also explicitly related to the absorptive
peak positions, widths and heights of the components retrieved by the non-derivative
(m � 0) parametric FPT. This settles the issue for the second supplementary condition.
As such, although being only a shape estimator at the onset of the analysis, the non-
parametric dFPT becomes in the end a quantification-equipped estimator of proven
validity.

Hence, the non-parametric high-order derivative fast Padé transform is a stand-
alone, quantifying processor for robust and accurate estimation of the peak positions,
widths and heights of all the physical resonances. It expediently solves the two major
problems in signal processing: resolution improvement and noise suppression. It
increases the frequency resolution of envelopes to such an unprecedented extent that
they fully coincide with their component spectra. At the same time, it is a powerful
noise filter with complete removal of all the unphysical information from the processed
data. The unique mechanism for solving the two mentioned main problems is in the
occurrence that the derivative operator (d/dν)m narrows the peak widths, enhances the
peak heights of the physical resonances and diminishes those that are unphysical. This
simultaneously improves the resolution and signal-to-noise ratio. This remarkable fea-
ture of the derivative transform (d/dν)m runs counter to the integral transform. An
integral transform is a smoothing operator: it averages over the fine structural details.
A derivative transform does just the opposite: it performs a “differential diagnosis”,
so to speak, by disentangling and emphasizing the inner substructures. Nowhere does
the occasionally-used alternative name “anti-integrals” for derivatives become more
relevant and astoundingly evidenced as in the present application of the dFPT to diag-
nostics of breast cancer by magnetic resonance spectroscopy, MRS.
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25. Dž. Belkić, K. Belkić, Iterative averaging of spectra as a powerful way of suppressing spurious reso-
nances in signal processing. J. Math. Chem. 55, 304–348 (2017)

123



2578 J Math Chem (2018) 56:2537–2578
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