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Abstract Motivated by recent progress on the port-Hamiltonian formulation of
isothermal chemical reaction networks and of the continuous stirred tank reactor, the
present paper aims to develop a port-Hamiltonian formulation of chemical reaction
networks in the non-isothermal case, and to exploit this for equilibrium and stability
analysis.

Keywords Chemical reaction networks · Port-Hamiltonian systems ·
Network dynamics · Irreversible thermodynamic systems

1 Introduction

Modeling of chemical reaction networks has attracted much attention in the last
decades due to its wide application in systems biology and chemical engineering.
Previous work, such as [8,14,15], provides the foundation of a structural theory of
isothermal chemical reaction networks governed by mass action kinetics. From then
on, a series of papers about the modeling and analysis of mass action kinetics chemical
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reaction networks appeared (see [1,16,29,35]). In most of these papers, the chemical
reaction networks are assumed to take place under isothermal condition.Consequently,
the influence of in/outflowof heat can not be taken into account.Hence, non-isothermal
chemical reaction networks still pose fundamental challenges.

In this paper, we aim to use the port-Hamiltonian framework for the modeling of
non-isothermal mass action kinetics chemical reaction networks. Port-Hamiltonian
systems theory (PHS) has been intensively employed in the modeling and passivity-
based control of electrical, mechanical and electromechanical systems (see [20,30,
31]).

In [32,33], a port-Hamiltonian formulation of isothermal mass action kinetics
chemical reaction networks was provided. A first step to non-isothermal chemical
reaction networks was taken in [36]. Here, based on the previous works [5,7,24,25],
a quasi port-Hamiltonian formulation for non-isothermal chemical reaction networks
was developed.

The main contributions of the present paper are as follows. First, based onmass and
energy balance equations, a port-Hamiltonian formulation for non-isothermal mass
action kinetics chemical reaction networks which are detailed-balanced is developed.
This formulation directly extends the port-Hamiltonian formulation of isothermal
chemical reaction networks of [32,33], in contrast with the quasi port-Hamiltonian
formulation in [36]. It exhibits the energy balance and the thermodynamic principles
in an explicit way. Based on the obtained port-Hamiltonian formulation, we provide
a thermodynamic analysis of the existence and characterization of thermodynamic
equilibria and their asymptotic stability. Being directly related with the energy and
entropy functions, this port-Hamiltonian formulation is easily applicable to chemi-
cal and biological systems. The second contribution of this paper is the extension of
the port-Hamiltonian formulation and the thermodynamic analysis to non-isothermal
chemical reaction networks with external ports.

The structure of the paper is as follows. In Sect. 2, some notation will be intro-
duced which will be used in the remainder of the paper. Section 3 surveys the main
elements of non-isothermal chemical reaction networks. Section 4 develops the port-
Hamiltonian formulation of non-isothermal chemical reaction networks, and shows
how this formulation is in linewith themain laws of thermodynamics. In Sect. 5, a ther-
modynamic analysiswill be carried out, including the characterization of equilibria and
their asymptotic stability. In Sect. 6, an example—a genetic protein synthesis circuit
with internal feedback and cell-to-cell communication—is discussed as an illustra-
tion of the developed theory. Section 7 extends the previous results to non-isothermal
chemical reaction networks with external ports.

2 Notation

R
m denotes the space of m-dimensional real vectors, and R

m+ the space of m-
dimensional real vectors whose entries are all strictly positive. The element-wise
natural logarithm Ln : Rm+ → R

m , x �→ Ln(x), is defined as the mapping whose i th
component is given as (Ln(x))i := ln(xi ). Similarly, Exp : Rm+ → R

m , x �→ Exp(x),
is the mapping whose i th component is given as (Exp(x))i := exp(xi ). Note that
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Exp(x+ z) = Exp(x)Exp(z), Ln(xz) = Ln(x)+Ln(z), and Ln( xz ) = Ln(x)−Ln(z),
where xz ∈ R

m is the element-wise product (xz)i := xi zi , i = 1, . . . ,m, and x
z ∈ R

m

is the element-wise quotient ( xz )i = xi
zi
, i = 1, . . . ,m. Also, we define the mapping

Diag : R
m → R

m×m , v �→ Diag(v), where Diag(v) is the diagonal matrix with
(Diag(v))i i = vi . Finally, the i × i identity matrix is denoted as Ii , the i × i zero
matrix is denoted as 0i×i , while the i × 1 zero vector is denoted as 0i . The notation
ztr is used to denote the transpose of the vector z.

3 The chemical reaction network structure

In this section, we will survey the basic topological structure of chemical reaction
networks which will be used in the following sections. Consider a chemical reaction
network composed of r reactions, m species and c complexes, given by the following
reversible reaction scheme:

m∑

i=1

αi j Ai
j

�
m∑

i=1

βi j Ai , j = 1, . . . , r (1)

with αi j , βi j being stoichiometric coefficients. The graph-theoretic formulation,
according to [9,11,15], is to consider the chemical complexes defined by the left-hand
and the right-hand sides of the chemical reactions, and to associate to each complex
a vertex of a graph, while each reaction from left-hand to right-hand complex corre-
sponds to a directed edge.

The concentrations of the species are denoted as xi , i = 1, . . . ,m, and the total
vector of concentrations is denoted as x = [x1, . . . , xm]tr . In order to capture the basic
conservation laws of the chemical reactions, we define anm×r matrixC , known as the
stoichiometric matrix, whose (i, j)th element is the signed stoichiometric coefficient
of the i th species in the j th reaction. Similarly, to define the connection between
the complexes of each chemical reaction, we define an m × c matrix Z , called the
complex stoichiometric matrix, whose ρth column captures the expression of the ρth
complex in the i th chemical species. Any directed graph is characterized by an c × r
matrix B, called the incidence matrix, whose (i, j)th element equals to −1 if vertex
i is the tail vertex of edge j and 1 if vertex i is the head vertex of edge j , while 0
otherwise. The relation between these three matrices for the graph of complexes is
C = Z B.

The dynamics of the chemical reaction network can now be written as

ẋ = Cv = Z Bv, (2)

where v is the r-dimensional vector of reaction rates, whose j th element represents the
j th reaction rate of the chemical reaction network. Each reaction is considered to be
a combination of a forward reaction with forward rate equation and a reverse reaction
with reverse rate equation, both given by mass action kinetics. Thus, the reaction rate
of the j th reaction can be written as
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v j (x, T ) = k f
j (T )

m∏

i=1

x
ZiSj
i − kbj (T )

m∏

i=1

x
Zi P j
i (3)

where Ziρ is the (i, ρ)th element of the complex stoichiometricmatrix Z . Here, k f
j (T ),

kbj (T ) are the forward/backward rate reaction coefficients of the j th reaction defined
by the Arrhenius equation ([4])

k f
j (T ) = k f

j exp

⎛

⎝− E f
j

RT

⎞

⎠ (4)

kbj (T ) = kbj exp

(
− Eb

j

RT

)
, (5)

where E f
j , E

b
j are the activation energies, k f

j and kbj the forward and backward rate
constants, and R is the Boltzmann constant. Using the element-wise natural logarithm
Ln(x) defined in Sect. 2, the j th element of rate equation vector can be equivalently
written as

v j (x, T ) = k f
j (T ) exp

(
Ztr
S jLn(x)

)
− kbj (T ) exp

(
Ztr
Pj
Ln(x)

)
(6)

where ZSj and ZPj denote the columns of the complex stoichiometry matrix Z corre-
sponding to the substrate complex S j and the product complex Pj of the j th reaction.

4 The standard form of balanced mass action and balanced energy
action for non-isothermal chemical reaction networks

In this paper,wewill focus ondetailed balancedmass action kinetics chemical reaction
networks (see [10,28,34]). First, we assume that in the chemical reaction network, the
equilibration following any reaction event is much faster that any reaction time scale.
Thus, all intensive thermodynamic variables are well defined and equal everywhere
in the system. Then, we assume that the chemical reaction network is closed and
undergoes an adiabatic process. That means there is no heat or mass transfer between
the system and external environment. Moreover, the chemical reaction network is
isochoric so that the volume change can be neglected, i.e. dV = 0.

The definition of thermodynamic equilibrium for isothermal chemical reaction net-
works, see e.g. [32], is extended to non-isothermal networks as follows.

Definition 4.1 Avector of concentrations x∗ is called an equilibrium for the dynamics
ẋ = Cv(x, T ) for a certain temperature T if Cv(x∗, T ) = 0, and a thermodynamic
equilibrium if v(x∗, T ) = 0. A chemical reaction network ẋ = Cv(x, T ) is called
detailed-balanced if it admits a thermodynamic equilibrium for every temperature T .

In order to stress the dependence on T , the thermodynamical equilibrium will be
denoted by x∗(T ). The conditions for existence of a thermodynamic equilibrium will
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be discussed in Sect. 5.1. Throughout this section we assume that there exists at least
one thermodynamic equilibrium, like in the isothermal case, see e.g. [32,33]. We will
use the existence of this thermodynamic equilibrium to develop a port-Hamiltonian
formulation.

4.1 Mass balance equations

Let us recall the mass balance equations of a detailed balanced reaction network
according to [32]. Let x∗(T ) ∈ R

m+ be a thermodynamic equilibrium for a certain
temperature T , i.e.,

v(x∗(T ), T ) = 0 (7)

Then we define the conductance κ j (T ) of the j th reaction as:

κ j (T ) := k f
j Exp

⎛

⎝Ztr
S j ln(x

∗(T )) − E f
j

RT

⎞

⎠ = kbjExp

(
Ztr
Pj

ln(x∗(T )) − Eb
j

RT

)
(8)

Furthermore the reaction rate of the j th chemical reaction (6) can be rewritten as

v j (x, T ) = κ j (T )

[
exp

(
Ztr
S jLn

(
x

x∗(T )

))
− exp

(
Ztr
Pj
Ln

(
x

x∗(T )

))]
(9)

Now define the r × r diagonal matrix of conductances K (T ) as

K (T ) := diag(κ1(T ), . . . , κr (T )) (10)

Collecting all the reaction rates in (9) and employing the incidence matrix B defined
in Sect. 3, the rate vector of a detailed balanced non-isothermal reaction network can
be written as

v(x, T ) = −K (T )BtrExp

(
ZtrLn

(
x

x∗(T )

))
(11)

Hence the dynamics of a detailed balanced mass action kinetics reaction network can
be expanded as

ẋ = Cv(x, T )

= −Z BK (T )BtrExp
(
ZtrLn

(
x

x∗(T )

))

= −Z BK (T )BtrExp
(
Ztrμ
RT

)

= −ZLExp
(
Ztrμ
RT

)
(12)

where μ = RTLn( x
x∗(T )

) is the vector of chemical potentials and L := BK (T )Btr

is the weighted Laplacian matrix for the reaction network graph, with weights given
by the conductances κ1(T ), . . . , κr (T ).

Note that the value of the conductances κ1(T ), . . . , κr (T ) is not only dependent on
the temperature T , but also on the choice of the thermodynamic equilibrium x∗(T ).
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However, if the reaction network graph is connected, then for any other thermodynam-
ical equilibrium x∗∗(T ) for the same temperature T , there exists a positive constant d
such that

K (x∗∗(T ), T ) = dK (x∗(T ), T ) (13)

Exp

(
ZtrLn

(
x

x∗∗(T )

))
= 1

d
Exp

(
ZtrLn

(
x

x∗(T )

))
(14)

This property of thematrix K has been proved in [32]. It implies that the dependence
on x∗(T ) is minor; choosing another thermodynamical equilibrium only involves a
uniform scaling of K , and thus of L . Another well-known property of L is the fact
that the matrix L is independent of the orientation of the graph [2].

4.2 Energy balance equations

In this section we will express the energy conservation for a closed chemical reaction
network in order to encompass the thermodynamic properties of the system.

Assuming that in the system the variation of the volume may be neglected, i.e.
dV = 0, Gibbs’ relation reduces to

dU = μtr dx + TdS (15)

where U denotes the internal energy, S the entropy, and the conjugated intensive
variables are the chemical potential ∂U

∂x = μ and the temperature ∂U
∂S = T . This

implies
dU

dt
= μtr dx

dt
+ T

dS

dt
(16)

Using the Eq. (12), the first term on the right-hand side of (16) also equals

μtr dx

dt
= −μtr Z LExp

(
Ztrμ

RT

)
(17)

Since the system is considered to be isolated, the energy balance equation is

dU

dt
= 0 (18)

This implies that the second term in (17) equals

T
dS

dt
= μtr Z LExp

(
Ztrμ

RT

)
(19)

In the next section we will combine these equations with (12) in order to derive a
port-Hamiltonian formulation of non-isothermal and isolated reaction networks.
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4.3 Port-Hamiltonian formulation

In this section, we show how Sects. 4.1 and 4.2 can be combined into a port-
Hamiltonian formulation of the dynamics of detailed-balanced chemical reaction
networks. Firstly, we define the state vector z = [ xtr U ]tr = [

x1 · · · xm U
]tr ,

where x is the vector of concentrations and U the internal energy. Then we define the
Hamiltonian function H = −S, where S is the entropy. Note that the Gibbs’ relation
(15) can also be written in the entropy formulation

dS =
m∑

i=1

(
dS

dxi

)tr

dxi + dS

dU
dU,

where dS
dxi

= −μi
T and dS

dU = 1
T are the intensive thermodynamic variables conjugated

to xi and the internal energyU . This implies that the co-state vector corresponding to
H = −S is

∂H

∂z
= ∂(−S)

∂z
= [

μ1
T · · · μm

T − 1
T

]tr
(20)

Note that μ and T can be expressed as function of the components of this co-state
vector. Now define the skew-symmetric matrix

J
(

∂H

∂z
(z)

)
:=

⎡

⎢⎢⎢⎢⎣

0 · · · 0
...

. . .
...

0 · · · 0

T ZLExp
(
Ztrμ
RT

)

−T
(
ZLExp

(
Ztrμ
RT

))tr
0

⎤

⎥⎥⎥⎥⎦
(21)

and the symmetric matrix

R
(

∂H

∂z
(z)

)
:=

⎡

⎢⎢⎢⎢⎣

0 · · · 0
...

. . .
...

0 · · · 0

0m

(0m)tr Tμtr Z LExp
(
Ztrμ
RT

)

⎤

⎥⎥⎥⎥⎦
(22)

It follows that the dynamics of the non-isothermal mass action kinetics chemical
reaction network (1) given by the mass balance equation (12) and the energy balance
equation (18), can be written into quasi port-Hamiltonian form

ż =
(
J

(
∂H

∂z
(z)

)
− R

(
∂H

∂z
(z)

))
∂H

∂z
(z) (23)

As we will see in Sect. 4.4, Tμtr Z LExp( Z
trμ
RT ) ≥ 0 and thus R is positive

semi-definite. The formulation (23) is called ’quasi port-Hamiltonian’, since the
structure matrices J and R depend on the co-state variables ∂H

∂z = ∂(−S)
∂z =

[
μ1
T · · · μm

T − 1
T

]tr
, instead of on the state variables

[
x1 · · · xm U

]tr as in a standard
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port-Hamiltonian formulation. This formulation is comparable to the formulation of
the mass balance and energy balance equations such as GENERIC, suggested in [18],
or the port-Hamiltonian formulation with generating function being the availability
function derived from the entropy function in [12].

4.4 Entropy balance equation

In this section, we shall relate the positive semi-definiteness of the dissipation matrix
R in (22) with the second law of thermodynamics. With this in mind let us compute
the time-derivative of the entropy S

dS
dt = ∂ tr S(z)

∂z ż

=
[
−μtr

T
1
T

]
⎡

⎣
0m×m T ZLExp

(
Ztrμ
RT

)

−T
(
ZLExp

(
Ztrμ
RT

))tr −Tμtr Z LExp
(
Ztrμ
RT

)

⎤

⎦
[ μ

T− 1
T

]

= 1
T μtr Z LExp

(
Ztrμ
RT

)

(24)
Denote γ = Ztrμ

RT . It has been shown in [28] (using the properties of the Laplacian
matrix L) that for any γ ∈ R

c

γ tr LExp(γ ) ≥ 0, (25)

while γ tr LExp(γ ) = 0 if and only if Btrγ = 0. Hence, the entropy balance equation
becomes

dS

dt
= Rγ tr LExp(γ ) =: σ ≥ 0 (26)

Here σ is the irreversible entropy source term. Note that in Eq. (26), the time-
derivative of the entropy S is deduced from the port-Hamiltonian formulation (23)
defined in Sect. 4.3. It is consistent with Eq. (19), which is deduced from the Gibbs’
relation.

Furthermore, note that the positivity of the irreversible entropy source term is equiv-
alent to the positive semi-definiteness of the dissipation matrix R in (22). Indeed the
only non-zero term ofR is the (m+1,m+1)th element, denoted asRm+1,m+1, which
is related to the entropy source term as

Rm+1,m+1 = σT 2 (27)

In summary, the quasi port-Hamiltonian representation of chemical reaction net-
works given in (21), (22) and (23) represents the mass and energy balance equations.
Moreover from its structure, it implies the entropy balance equation. It differs from
the expression of energy and entropy balance equations in [23], which are expressed
for the non-equilibrium biochemical systems and in [27], where the free energy and
entropy balance are considered in an isothermal case when the species are diluted in a
solvent, which acts as a thermal bath, while the pressure P is set by the environment.
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It differs from the quasi port-Hamiltonian representation of the mass and entropy bal-
ance equations of chemical reaction networks in [26,36], by the fact that it is based
on the energy balance equation instead of on the entropy balance equation. Note that
the description based on the energy balance equation is classical [6], and more eas-
ily derived than the description based on the entropy balance equation. Moreover, the
quasi-port-Hamiltonian formulation given in (21), (22) and (23) fundamentally differs
from the representation of chemical reaction networks as port Hamiltonian systems
in [21] as well, by the fact that this quasi port-Hamiltonian representation is estab-
lished on the whole space of concentration vectors instead of only locally around an
equilibrium point, as in [21].

Finally the quasi port-Hamiltonian directly extends the port-Hamiltonian formula-
tion of isothermal chemical reaction networks obtained in [32,33] by including the
energy balance equation.

5 Thermodynamic equilibria and asymptotic stability

The discussion in Sect. 4 is based on the assumption of existence of a thermody-
namic equilibrium. Starting from the definition of a thermodynamic equilibrium of
non-isothermal chemical reaction networks, wewill derive in this section a full charac-
terization of the set of equilibria, analogous to the case of isothermal chemical reaction
networks in [32].

Subsequently, for stability analysis,wewill useLyapunov function as an availability
function which is directly based on the quasi port-Hamiltonian representation given
in (21), (22) and (23). Note that the use of availability functions for stability analysis
is classical, see e.g. [12,13,19].

5.1 Thermodynamic equilibria

In this section, the existence of a thermodynamic equilibriumwill be derived in the fol-
lowing linear-algebraicway [10].Recall the definition of a thermodynamic equilibrium
for non-isothermal chemical reaction networks from Sect. 4. Let z∗ be a thermody-
namic equilibrium under a certain temperature T , i.e., v(z∗) = 0. This implies that
for any j = 1, . . . , r ,

k f
j exp

⎛

⎝− E f
j

RT

⎞

⎠ exp
(
Ztr
SjLn(x

∗)
)

− kbj exp

(
− Eb

j

RT

)
exp(Ztr

P jLn(x
∗)) = 0

or equivalently

k f
j exp

⎛

⎝− E f
j

RT

⎞

⎠ exp
(
Ztr
SjLn(x

∗)
)

= kbj exp

(
− Eb

j

RT

)
exp

(
Ztr
P jLn(x

∗)
)
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These equations are referred to as the detailed-balance equations.Denote Keq
j (T ) =

k f
j

kbj
exp(

Eb
j−E f

j
RT ),

Keq
j (T ) = k f

j

kbj
exp

⎛

⎝ Eb
j − E f

j

RT

⎞

⎠ = exp
(
Ztr
P jLn(x

∗) − Ztr
P jLn(x

∗)
)

Collecting all chemical reactions from1 to r , andmaking use of the incidencematrix
B, we obtain the following condition for a thermodynamical equilibrium x∗(T )

Keq(T ) = Exp(Btr Z trLn(x∗(T ))) = Exp(CtrLn(x∗(T ))) (28)

where Keq is the r -dimensional vector with j th element Keq
j , which is dependent on

the temperature T . Therefore, for a given temperature T , there exists a thermodynamic
equilibrium x∗(T ) ∈ R

m+ if and only if k f
j > 0, kbj > 0 for all j = 1, . . . , r , and

Ln(Keq(T )) ∈ imCtr

In general, the equilibrium concentration x∗(T ) may not be unique. Let x∗∗(T ) be
another thermodynamic equilibrium for the same temperature T . Then

Keq(T ) = Exp(CtrLn(x∗∗)) = Exp(CtrLn(x∗)) (29)

That is to say, for a certain temperature T , once one thermodynamic equilibrium
x∗(T ) is given, the whole set of thermodynamic equilibria at the same tempera-
ture T can be found. Furthermore, since dU = 0, we have U∗ = U∗∗. Denote
z∗ = (x∗(T ),U∗) and z∗∗(T ) = (x∗∗(T ),U∗∗), then it follows that the set of ther-
modynamic equilibria at the same temperature T can be written as

ΣT = {
z∗∗ = (x∗∗(T ),U∗∗)|CtrLn(x∗∗(T )) = CtrLn(x∗(T )),U∗ = U∗∗} (30)

This directly extends the classical result for isothermal chemical reaction networks,
see e.g. [32]. Note that the value of the terms Exp(CtrLn(x∗)) depend on tempera-
ture T , while the relation Exp(CtrLn(x∗∗)) = Exp(CtrLn(x∗)) is not dependent on
temperature T .

Since Keq(T ) = Exp(CtrLn(x∗)) as a function of T is monotone and injective,
it follows that the set of thermodynamic equilibria ΣT1 is disjoint from ΣT2 , i.e.,
ΣT1 ∩ ΣT2 = ∅ for any T1 	= T2.

5.2 Asymptotic stability

For isothermal chemical reaction networks, it was shown in [15,32,33], that theGibbs’
free energy canbeused as aLyapunov function for proving asymptotic stability towards
a unique equilibrium depending on the initial condition. In this section we aim at
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proving a similar result for the non-isothermal case based on the port-Hamiltonian
formulation obtained in the previous section, employing the availability function.
Note that this is different from [24,36], where an energy-based availability function
was employed.

We define the entropy based availability function as

A(z) := −S(z) + S(zo) + ∂ tr S

∂z
(zo)(z − zo) (31)

where zo is a reference point taken as a thermodynamic equilibrium, cf. Sect. 4.

Theorem 5.1 Consider a detailed balanced chemical reaction network given by (21),
(22) and (23), with A : Rm+1+ → R given by (31). Then A has a strict minimum at
zo with A(zo) = 0, while the time-derivative d A

dt is less than or equal to zero with
equality only at zo.

Proof For homogeneous mixtures, the entropy function is necessarily concave [3].
Moreover, the entropy is strict concave if at least one global extensive property (such
as volume, total mass, or total mole number) is fixed [17]. Recall the assumption that
the chemical reaction network is isochoric, i.e. dV = 0, so the entropy is strict concave
and A has a strict minimum at zo. Moreover, the time derivative of A(z) is given as

d A
dt = ∂A

∂z (z)ż

= −
(
dS
dz (z) − dS

dz (z
o)

)tr
dz
dt

= −
[

(μo)tr

T o − (μ)tr

T
1
T − 1

T o

]

×
⎡

⎣
0m×m T ZLExp

(
Ztrμ
RT

)

−T
(
ZLExp

(
Ztrμ
RT

))tr −Tμtr Z LExp
(
Ztrμ
RT

)

⎤

⎦
[ μ

T− 1
T

]

= −
(

μtr Z
T − (μo)tr Z

T o

)
LExp

(
Ztrμ
RT

)

= −Rγ tr LExp(γ ) + R(γ o)tr LExp(γ )

(32)

where μ = RTLn x
x∗ is the vector of chemical potentials, μo = RT oLn xo

x∗ ,

γ = Ztrμ
RT = ZtrLn x

x∗ and γ o = Ztrμo

RT o = ZtrLn xo
x∗ . Since x∗ and xo are both

thermodynamic equilibria, we obtain from Eq. (29)

CtrLn(xo) = CtrLn(x∗)

⇒ CtrLn

(
xo

x∗

)
= (Z B)trLn

(
xo

x∗

)
= 0c

⇒ Btr
(
ZtrLn

(
xo

x∗

))
= Btrγ o = 0c
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Recall [28] that since L is a balanced weighted Laplacian matrix, for any γ ∈ Rc, we
have γ tr LExp(γ ) ≥ 0, while γ tr LExp(γ ) = 0 if and only if Btrγ = 0. Hence

(γ o)tr LExp(γ o) = 0

Therefore the time derivative of A(z) satisfies

d A

dt
= −Rγ tr LExp(γ ) ≤ 0

�

Let the system converge to a point denoted as

z∗ ∈ ΣT ∗

and denote the equilibrium temperature associated with the equilibrium point z∗ by
T ∗. We know that at equilibrium the entropy is maximal, implying that

dS

dt

∣∣∣∣
z=z∗

= 0

This is a classical statement in Chemical Engineering, and is comparable with the
statement in [27], where for isothermal systems the Gibbs’ free energy is minimized.
According to Eq. (26), we have

σ |z=z∗ = 0 (33)

and for an isolated system we have

dU = 0 (34)

By using the Eqs. (33) and (34), the equilibrium point z∗ and T ∗ can be determined.
Then, by using a similar argument as in [11,32] , the following theorem will imply
the asymptotic stability towards the set ΣT ∗ .

Theorem 5.2 Consider the detailed-balanced chemical reaction network (21), (22)
and (23) with T ∈ R+. Then for any x1 ∈ R

m+1+ , T1 ∈ R+, there exists a unique x∗ ∈
R
m+1+ and T ∗ ∈ R+, such that x∗ − x1 ∈ imC, and z∗ = (x∗,U∗(x∗, T ∗)) ∈ ΣT ∗ .

Proof Let W = imC . Then W⊥ = kerCtr . Let z1(x1, T1), z∗∗(x∗∗, T ∗) ∈ R
m+1+ ,

where z∗∗(x∗∗, T ∗) ∈ ΣT ∗ is a thermodynamic equilibrium for temperature T ∗. As
proved in [11,32], there exists a unique β ∈ kerCtr such that x∗∗Exp(β)−x1 ∈ imC .
Define z∗(x∗, T ∗) ∈ R

m+1+ with x∗ = x∗∗Exp(β). Clearly, Ctrβ = CtrLn( x∗
x∗∗ ) = 0,

which is in line with (29) so that z∗(x∗, T ∗) ∈ ΣT ∗ . Moreover, we have x∗ − x1 =
x∗∗Expβ − x1 ∈ imC .

Combining with Theorem 4.1, this implies that the equilibrium z∗ is asymptotically
stable with respect to all initial conditions in near z∗. Hence the asymptotic stability
of the quasi port-Hamiltonian system defined by (21), (22) and (23) is proved. �
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6 Example: a genetic circuit with internal feedback and cell-to-cell
communication

The approach of the previous section will be illustrated on a chemical reaction net-
work, taking place in a very common protein synthesis circuit in the cell of E. Coli
in the large intestine of human beings [22]. When the cell of E.Coli receives a ’mes-
sage’ from the environment (a kind of transcription process from extracellular space
into the E. Coli cell), three chemical reactions will take place at the intercellular
level:

LuxR + AHL � LuxR − AHL

2(LuxR − AHL) � (LuxR − AHL)2

(LuxR − AHL)2 + DNA � DNA − (LuxR − AHL)2

When the chemical reaction network reaches an equilibrium state, the cell will send
out a ‘message’ to the environment (a reversed transcription process). This is a very
efficient gene circuit for adjustment of the concentrations on different kind of protein
in the E. Coli cell, with internal feedback and cell-to-cell communication.

6.1 Modeling

Let us denote the concentration of the species LuxR, AHL, LuxR − AHL,
(LuxR − AHL)2, DNA and DNA − (LuxR − AHL)2 as x1, . . . , x6. Hence, the state
vector is defined as z = [x1, . . . , x6,U ]tr and the gradient vector of Hamiltonian
function −S is given as d(−S)

dz = [μ1
T , . . . ,

μ6
T , 1

T ]tr . With m = 6, r = 3 and c = 5,
the stoichiometric matrix C ∈ R

6×3 is written as

C =

⎡

⎢⎢⎢⎢⎢⎢⎣

−1 0 0
−1 0 0
1 −2 0
0 1 −1
0 0 −1
0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

The complex stoichiometric matrix Z ∈ R
6×5 becomes

Z =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
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and the incidence matrix B ∈ R
5×3 is

B =

⎡

⎢⎢⎢⎢⎣

−1 0 0
1 −1 0
0 1 0
0 0 −1
0 0 1

⎤

⎥⎥⎥⎥⎦

Since the chemical reactions will take place naturally when the cell gets the ‘mes-
sage’ from the environment, this means that the activation energies in Arrhenius
equation are so small that they can be ignored, i.e., E f

j = 0, j = 1, . . . , r and

Eb
j = 0, j = 1, . . . , r . Hence, the matrix of conductances K becomes independent of

T and takes the form

K =
⎡

⎢⎣
x∗
3 0 0

0
(x∗

3 )2

35 0

0 0
(x∗

3 )2x∗
5

4900

⎤

⎥⎦

Therefore, the Laplacian matrix L = BK Btr ∈ R
5×5 is equal to

L =

⎡

⎢⎢⎢⎢⎢⎢⎣

x∗
3 −x∗

3 0 0 0

−x∗
3 x∗

3 + 2x∗2
3

35
−2x∗2

3
35 0 0

0
−2x∗2

3
35

2x∗2
3

35 0 0

0 0 0
x∗2
3 x∗

5
4900

−x∗2
3 x∗

5
4900

0 0 0
−x∗2

3 x∗
5

4900
x∗2
3 x∗

5
4900

⎤

⎥⎥⎥⎥⎥⎥⎦

which is independent of T . Therefore, the port-Hamiltonian formulation (23) for the
genetic protein synthesis circuit is

⎡

⎢⎢⎢⎣

x1
...

x6
U

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎣
J − R

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎣

μ1
T
...

μ6
T− 1
T

⎤

⎥⎥⎥⎦

where the matrix J (− dS
dz ) − R(− dS

dz ) can be written as

[
06×6 p
ptr (∗)

]
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where p = [ p1 p2 p3 p4 p5 p6 ]tr , with

p1 = p2 = −T x∗
3

(
exp

(
μ1 + μ2

RT

)
− exp

μ3

RT

)

p3 = T x∗
3

(
exp

(
μ1 + μ2

RT

)
− exp

μ3

RT

)
− T

x∗2
3

35

(
2 exp

μ3

RT
− 2 exp

μ4

RT

)

p4 = T
x∗2
3

35

(
2 exp

μ3

RT
− 2 exp

μ4

RT

)
− T

x∗2
3 x5
4900

(
exp

(
μ4 + μ5

RT

)
− exp

μ6

RT

)

p5 = p6 = −T
x∗2
3 x5
4900

(
exp

(
μ4 + μ5

RT

)
− exp

μ6

RT

)

and (∗) = (μ1 + μ2)[T x∗
3 (exp(

μ1+μ2
RT ) − exp μ3

RT ] + μ3[−T x∗
3 (exp(

μ1+μ2
RT ) −

exp μ3
RT ) + T

x∗2
3
35 (2 exp μ3

RT − 2 exp μ4
RT )] + μ4[−T

x∗2
3
35 (2 exp μ3

RT − 2 exp μ4
RT ) +

T
x∗2
3 x5
4900 (exp(μ4+μ5

RT ) − exp μ6
RT )] + (μ5 + μ6)[T x∗2

3 x5
4900 (exp(μ4+μ5

RT ) − exp μ6
RT )]

6.2 Equilibrium and Lyapunov function

At thermodynamic equilibrium v(z∗) = 0, it can be verified that the equilibrium set
ΣT is the 3-dimensional set given as

ΣT =
{(

x∗
1 , . . . , x

∗
6 , T

∗) ∣∣x∗
1 = 150x∗

3
x∗
2

, x∗
4 = (x∗

3 )2

35 , x∗
6 = (x∗

3 )2x∗
5

4900 ,

x∗
i ∈ R

m+, i = 1 . . . 6, T ∗ ∈ R
m+
}

To study its asymptotic stability, we define the availability function as in (31),

A(z) = −S(z) + S(z) + ∂ tr S

∂z
(zo)(z − zo) (35)

where the reference point zo is taken to be a thermodynamic equilibrium under the
temperature T . We have A(z) = 0 at z = zo, and as discussed in Sect. 5.2, the time
derivative of A(z) can be written as

d A
dt = −

(
dS
dz − dS

dz (z
o)

)tr
dz
dt

= −Rγ tr LExp(γ ) + Rγ otr LExp(γ )

= −Rγ tr LExp(γ ) ≤ 0

(36)

Therefore A(z) is awell-definedLyapunov candidate. The port-Hamiltonian system
(23) for the genetic protein synthesis circuit is asymptotically stable under temperature
T .
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7 Non-isothermal chemical reaction networks with ports

In many application areas, the chemical reaction networks under consideration are
not isolated. That is to say, there exist mass exchange or heat exchange between the
chemical reaction network and its environment.

In this section we will extend the port-Hamiltonian formulation for non-isothermal
chemical reaction networks to the case of mass and heat exchange. As in the previ-
ous work (see [12,13,24,26]) when modeling and control of the Continuous Stirred
Tank Reactor (CSTR), we define ‘external ports’ as the inflow/outflow of a mixture.
Furthermore, we suppose that the output flow is such that the volume and pressure are
constant [4].

Then Eq. (2) can be rewritten as

ẋ = Cv + Fe − Fi (37)

where the vectors Fe and Fs are respectively the input and output concentration flows.
The previous formulation (23) can be extended to the non-isothermal chemical reaction
network with external ports as

ż =
(
J

(
dH
dz

)
− R

(
dH
dz

))
∂H
∂z (z) +

[
Fe − Fs

ΔU

]
(38)

where as before the Hamiltonian function is given as H = −S. The internal energy
can be written as

U =
m∑

i=1

xi (cpi (T − T0) − u0i )

where cpi , u0i T0 are respectively the heat capacity at constant pressure, reference
molar energy and reference temperature. With constant volume and pressure the bal-
ance equation for the internal energy U can be written as

ΔU = Q +
m∑

i=1

(Fei hei − Fsi hsi )

where Q is the heat flux from the environment, and Fei and Fsi are the i th element
of Fe and Fs . Furthermore, hei and hsi are respectively the input and output specific
enthalpies.

Note that in the port-Hamiltonian formulation for non-isothermal chemical reaction
network with ports (38), we still use the thermodynamic equilibrium z∗(T ) for the
chemical reaction network without ports under given temperature T , as defined in
Sect. 4.

As before, in order to verify the asymptotic stability, we define the availability
Eq. (31) as:

A(z) = −S(z) + S(zo) + ∂ tr S

∂z
(zo)(z − zo) (39)
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It then remains to prove that A(z) is a Lyapunov function. Obviously, we have
A(zo) = 0.

Here, we assume that ΔF = Fe − Fs is a vector which can be described by mass
action kinetics. That is to say, it can be developed as

ΔF = −ZL ′Exp
(
ZtrLn

x

x∗
)

= −ZL ′Exp
(
Ztrμ

RT

)

with L ′ = B ′K ′(B ′)tr a constant balanced weighted Laplacian matrix corresponding
to some incidence matrix B ′ and ΔU = 0. Note that under this assumption, the
external ports added to the network can be considered as another chemical reaction
network, with the same complex Z , but with the different incidence matrix B ′ and
different rate coefficients K ′.

Then the time derivative of A(z) becomes

d A
dt = −

(
dS
dz − dS

dz (z
o)

)tr
dz
dt

= −
[

μo

T o − μ
T

1
T − 1

T o

]tr

×
⎛

⎝

⎡

⎣
0m×m T ZLExp

(
Ztrμ
RT

)

−T
(
ZLExp

(
Ztrμ
RT

))tr −Tμtr Z LExp
(
Ztrμ
RT

)

⎤

⎦ +
[

ΔF
ΔU

]⎞

⎠

= −
(

μ
T − μo

T o

)tr
Z LExp

(
Ztrμ
RT

)
+

(
μ
T − μo

T o

)tr
ΔF − ( 1

T − 1
T o

)
ΔU

= −R(γ − γ o)tr LExp(γ ) − R(γ − γ o)tr L ′Exp(γ )

= −Rγ tr LExp(γ ) − Rγ tr L ′Exp(γ )

Since

−Rγ tr LExp(γ ) ≤ 0

−Rγ tr L ′Exp(γ ) ≤ 0

we have d A
dt ≤ 0, and thus the port-Hamiltonian system for non-isothermal chemi-

cal reaction networks with ports is asymptotically stable for temperature T . Let us
illustrate this on the following example.

7.1 Example: a genetic circuit with internal feedback and cell-to-cell
communication (continued)

Recall the genetic protein synthesis circuit described in Sect. 1. Assume that there
exists a port of flows ΔF = −ZL ′Exp(ZtrLn x

x∗ ) with

L ′ = B

⎡

⎣
l1 0 0
0 l2 0
0 0 l3

⎤

⎦ Btr =

⎡

⎢⎢⎢⎢⎣

l1 − l1 0 0 0
− l1 l1 + 2l2 − 2l2 0 0
0 − 2l2 2l2 0 0
0 0 0 l3 − l3
0 0 0 − l3 l3

⎤

⎥⎥⎥⎥⎦
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where l1, l2 and l3 are positive constants. The port-Hamiltonian formulation (23)
extends to

⎡

⎢⎢⎢⎣

x1
...

x6
U

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎣
J − R

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎣

μ1
T
...

μ6
T− 1
T

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎣
Fe − Fs

ΔU

⎤

⎥⎥⎦

where the matrix J − R is equal to

[
06×6 p
ptr (∗)

]

where p = [ p1 p2 p3 p4 p5 p6 ]tr , with

p1 = p2 = −T x∗
3

(
exp

(
μ1 + μ2

RT

)
− exp

μ3

RT

)

p3 = T x∗
3

(
exp

(
μ1 + μ2

RT

)
− exp

μ3

RT

)
− T

x∗2
3

35

(
2 exp

μ3

RT
− 2 exp

μ4

RT

)

p4 = T
x∗2
3

35

(
2 exp

μ3

RT
− 2 exp

μ4

RT

)
− T

x∗2
3 x5
4900

(
exp

(
μ4 + μ5

RT

)
− exp

μ6

RT

)

p5 = p6 = −T
x∗2
3 x5
4900

(
exp

(
μ4 + μ5

RT

)
− exp

μ6

RT

)

with (∗) = (μ1 + μ2)[T x∗
3 (exp(

μ1+μ2
RT ) − exp μ3

RT ] + μ3[−T x∗
3 (exp(

μ1+μ2
RT ) −

exp μ3
RT ) + T

x∗2
3
35 (2 exp μ3

RT − 2 exp μ4
RT )] + μ4[−T

x∗2
3
35 (2 exp μ3

RT − 2 exp μ4
RT ) +

T
x∗2
3 x5
4900 (exp(μ4+μ5

RT ) − exp μ6
RT )] + (μ5 + μ6)[T x∗2

3 x5
4900 (exp(μ4+μ5

RT ) − exp μ6
RT )] , and

[
Fe − Fs

ΔU

]
=

[
ΔF
0

]
=

[−ZL ′Exp(ZtrLn x
x∗ )

0

]

Then the availability function (39) can be rewritten as

A(z) = −S(z) + S(zo) + ∂ tr S

∂z
(zo)(z − zo) (40)

A(zo) = 0 and the time derivative of A(z) becomes

d A
dt = −

(
dS
dz − dS

dz (z
o)

)tr
dz
dt

= −Rγ tr LExp(γ ) − γ tr L ′Exp(γ ) ≤ 0
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Hence A(z) is a well-defined Lyapunov candidate. We conclude that the port-
Hamiltonian system for genetic protein synthesis circuit with a specific port ΔF is
asymptotically stable for temperature T .

8 Conclusions and outlook

In this paper, a (quasi) port-Hamiltonian formulation has been developed for non-
isothermal mass action kinetics chemical reaction networks. As an extensive result of
the port-Hamiltonian formulation for isothermal chemical reaction network, and based
on the mass balance and energy balance equations, this port-Hamiltonian formulation
provides us a very explicit way to represent the chemical reaction networks and their
thermodynamic properties, including the entropy balance and the conditions for the
existence of thermodynamic equilibrium. As for the asymptotic stability, a comparable
statement with the one in [27] has been found.

Moreover, this (quasi) port-Hamiltonian formulation and its thermodynamic anal-
ysis have been extended to non-isothermal chemical reaction networks with external
ports. The results have been illustrated on a chemical reaction network in our body:
the genetic circuit with internal feedback and cell-to-cell communication.

The focus of future work will be on the extension of current results to the mod-
eling of interconnection of non-isothermal chemical reaction networks. Inspired by
Rao and Esposito [27] and Qian and Beard [23], the interconnected port-Hamiltonian
formulation will be considered as the combination of two driven (or chemostatted)
chemical reaction networks with shared species.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
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