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Abstract Sole lineshape estimation of non-parametrically computed higher-order
derivatives of spectral envelopes in different modes (complex, real, imaginary, mag-
nitude) is investigated. The processed time signals are sums of complex attenuated
exponentials (harmonics). The peak parameters of the derivative spectra are directly
connected to those of the customary (non-derivative) absorption lineshapes. Crucially,
this permits the reconstruction of the latter from the former parameters (the latter are
sought since they are unknown, whereas the former are extractable from the deriva-
tive envelopes). The cross-checking relationships of the lineshapes for the magnitude
modes with the real and imaginary parts of the complex-valued envelopes (total shape
spectra) are established. The explicit procedure and the necessary analytical expres-
sions are presented for reconstruction of the exact locations, widths and heights of all
the retrieved physical resonances (spectral peaks). These facets are illuminated in the
derivative fast Padé transform (dFPT) using its non-parametric version, i.e. without
solving the quantification problem (no polynomial rooting, no tackling of eigen-value
problems, etc.). Two kinds of illustrations for derivative spectra are reported. One
deals with the general Breit-Wigner resonance formula and its first three derivatives.
The other is concerned with the dFPT in clinical diagnostics of relevance to breast
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cancer detection by magnetic resonance spectroscopy. A systematic parallel between
these two examples is drawn to highlight, in a stepwise manner, the role of paramount
importance played by derivative lineshapes, especially for disentangling overlapping
resonances that invariably plague all quantitative analyses of spectra.

Keywords Magnetic resonance spectroscopy · Breast cancer diagnostics · Mathe-
matical optimization · Fast Padé transform · Derivative spectra

Abbreviations

ADC Analogue-to-digital converter
AR Auto-regression
ARMA Auto-regressive moving average
au Arbitrary units
BW Bandwidth
dFFT Derivative fast Fourier transform
dFPT Derivative fast Padé transform
dMRS Derivative magnetic resonance spectroscopy
dMRSI Derivative magnetic resonance spectroscopic imaging
FFT Fast Fourier transform
FID Free induction decay
FPT Fast Padé transform
FWHM Full-widths at half-maximum
g Gram
HLSVD Hankel-Lanczos singular value decomposition
Hz Hertz
Lac Lactate
MA Moving average
MHz Megahertz
MR Magnetic resonance
µM Micromole
mM Millimole
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
NMR Nuclear magnetic resonance
PA Padé approximant
PC Phosphocholine
PE Phosphoethanolamine
ppm Parts per million
s Second
SNR Signal-to-noise ratio
SRI Spectral region of interest
SVD Singular value decomposition
T Tesla
ww Wet weight
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1 Introduction

Avery common stumbling block in signal processing across inter-disciplinary fields of
scientific, as well as technological/industrial research and development, is the occur-
rence of unresolvent components in compound spectral peaks [1]. Processed time
signals, irrespective of their origin, are given in their ubiquitous forms of linear com-
binations of exponentials. These can be either oscillatory (i.e. containing sine and
cosine functions of time) or non-oscillatory (i.e. without such trigonometric func-
tions). Both variants are encompassed in complex damped exponentials. An example
of spectral crowding is the abundance of closely overlapped peaks generated from
time signals encoded by conventional magnetic resonance spectroscopy (MRS) used,
e.g. in medicine through cancer diagnostics [2].

A number of procedures exist in attempts to tackle this difficult problem, with vary-
ing chances of success. Primarily due to its computational efficiency, the fast Fourier
transform (FFT), with the Cooley-Tukey algorithm [3] is most frequently employed
to generate total shape spectra or envelopes. These, however, invariably exhibit unre-
solved components that the FFT cannot autonomously quantify to determine the peak
positions, widths, heights and phases. To estimate the latter parameters, most tech-
niques resort to post-processing of the envelopes from the FFT by fitting the compound
peaks with several Lorentzians or Gaussians. Also, linear combinations of these two
lineshapes are used in fitting as surrogates of the Voigt profile, which is a convo-
lution via integration of the product of a Lorentzian and a Gaussian. These are all
inadequate approaches. The reasons for the inadequacy of all the fitting techniques
are non-uniqueness and subjectivity. Any number of components (including those of
a spurious character) can be adjusted to reproduce some of the unresolved peaks.
However, there is no way to separate the physical lineshapes from the non-physical
component profiles that are used to merely minimize the errors of fitting by way of
some, more or less, arbitrary constraints [4–6].

There are other, mathematically founded signal processors that do not rely at all
upon fitting of envelopes from the FFT. Such are the methods that treat the set of
time signal points as a data matrix (the Hankel matrix) to be processed by various
algorithms of linear algebra. These are matrix diagonalizations, solving systems of
linear equations, singular value decomposition (SVD), polynomial rooting by the
equivalent Hessenberg eigen-value problem, etc. The well-known examples are, e.g.
the Hankel-Lanczos SVD (HLSVD) [7] and the fast Padé transform (FPT) [1,2]. The
HLSVD diagonalizes the Hankel matrix with the help of the SVD and, further, it uses
the Lanczos algorithm. The HLSVD solves two systems of linear equations, one to
obtain the frequencies and the other for the amplitudes. Once the latter parameters
are found, the HLSVD computes the envelopes by the FFT. This is the case because
the HLSVD does not have its own formula for the spectrum. The FPT first extracts
the expansion coefficients of two polynomials PL and QK using only the input time
signal points by solving a single system of linear equations with an optional refinement
through the SVD. This first step immediately gives the frequency-dependent spectrum
as the polynomial quotient PL/QK which is the complex envelope in the FPT. The
peak parameters are obtained subsequently by rooting the denominator polynomial
QK . This gives the fundamental (nodal, eigen) complex frequencies. These provide
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the positions and widths of the peaks, as the real and imaginary parts of complex
frequencies, respectively. Then, the Cauchy residue analytical formula of PL/QK

comes into play, to yield the complex amplitudes. Each of these latter quantities is
a pair of a magnitude and a phase, as the absolute value and argument (angle) of a
complex amplitude. The ratios of the magnitude of the amplitude and the lineshape
widths produce the peak heights. The resonance peak area of an absorptive Lorentzian
is the halved absolute value of the amplitude of the given component of the input time
signal. The concentration of a component metabolite in MRS is directly proportional
to the corresponding peak area. Such a determination of the peak positions, widths,
heights and phases in the FPT completes the linelist of the resonance parameters
obtained by explicitly solving the quantification problem, which is equivalently called
the problem of spectral analysis. The number K of physical resonances, as yet another
unknown quantity, is the number of stable components. Further, unlike the HLSVD,
the fast Padé transform, on its own, possesses a number of different expressions for
the frequency spectrum. For example, the non-parametric FPT gives the envelope as
the rational function PL/QK . On the other hand, the parametric FPT yields the same
spectrum as the sum of the Heaviside partial fractions. This latter spectrum can also
be written in the canonical form involving only the roots of PL and QK , as yet another
Padé-based response function. The success of the parametric, quantification version
of the FPT has been abundantly documented in the MRS literature both for simulated
(noiseless and noisy) and encoded time signals [1,2,8–25].

Of late, the non-parametric variant of the FPT has been promoted from its custom-
ary lineshape estimation to the stage of component retrieval. To this end, two different
strategies have been introduced, one qualitative and the other quantitative. The former
is the partitioned FPT [26,27], whereas the latter is the derivative fast Padé trans-
form (dFPT) [28]. The partitioned FPT, through the two separate contributions to the
non-parametric envelope PL/QK , can visualize the hidden components of compound
peaks. Here, one contribution to PL/QK comes from its moving average (MA) part,
and the other is due to the remaining auto-regressive (AR) process. The two constituent
partitions, AR and MA, form the combined process known as auto-regressive moving
average (ARMA). The so-called z-transform of the time-domain ARMAprocess gives
the rational response function PL (z) /QK (z), which is the FPT [1]. The quantity z is
the complex frequency dependent harmonic variable. The partitioned FPT is qualita-
tive, since it does not yield the accurate numerical values of peak parameters. Although
the partitioned FPT can split apart overlapped resonances, it cannot reconstruct the
exact quantitative characteristics of the visualized peaks. Nevertheless, the partitioned
FPT is useful as it can give an initial hint into the substructure of compound peaks.
In fact, this option is automatically built into the Padé algorithm to provide the very
first output. In other words, the algorithm of the FPT runs several pathways in concert,
from the partitioned spectra to quantification with the linelist of spectral parameters.

The other non-parametric processing, which can both visualize and exactly quan-
tify all the recovered single, isolated peaks as well as the components of compound
resonances, is the derivative fast Padé transform, dFPT. This variant has recently been
introduced within MRS, where it was shown that high-order derivatives in the dFPT
can reconstruct the exact input peak parameters, despite using only estimation of
lineshapes of spectral envelopes [28]. No solution of the quantification problem, and
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no envelope fitting either, is involved in the dFPT. All that is needed is to first non-
parametrically compute the Padé-Green function G (ν) ≡ PL (ν) /QK (ν), where ν

is the linear real-valued sweep frequency. This is followed by the application of the
differential transform (d/dν)m (m = 1, 2, 3, . . .) to G (ν) yielding the mth derivative
spectrum G(m) (ν) = (d/dν)m PL (ν) /QK (ν).

In the present work, the dFPT is further explored. The goal is to provide the com-
plete procedure with the explicit theoretical expressions that enable the attainment of
the exact peak parameters (position, width, height) from the reconstructed envelope
lineshapes in the dFPT, especially with high derivative order m. The significance of
this goal would be best appreciated if the unknown non-derivative (m = 0) absorp-
tion peak parameters could be deduced from the corresponding extracted derivative
(m ≥ 1) peak parameters of real, imaginary and magnitude lineshapes. This is a key
to signal processing since the absorptive, symmetric, bell-shaped Lorentzian peak is
the most straightforward for analysis and interpretation. The practical usefulness of
this complete procedure in the dFPT is illuminated for early tumor diagnostics by
single-voxel derivative magnetic resonance spectroscopy (dMRS). Also highlighted
are the advantages offered by the dFPT in processing time signals for volumetric
coverage of the examined tissue by multi-voxel magnetic resonance spectroscopic
imaging (MRSI). When equipped by production of derivative spectra, this modality
becomes the derivative magnetic resonance spectroscopic imaging (dMRSI). The new
nomenclature dMRS and dMRSI were first coined in Ref. [28].

2 Theory

2.1 Use of external perturbations of generic systems to elicit their internal
structure

The analog (continuous) time signal c (t) and the corresponding frequency spectrum
G (ν) are two dual, equivalent representations of the same information. In MRS, and
indeed throughout nuclear magnetic resonance (NMR) spectroscopy, the time signals
are the input data from either encoding (measurements) or computing (theory). Both
the time, t, and the linear frequency, ν, are continuous independent variables of func-
tions c (t) and G (ν) , respectively. These independent variables are expressed in units
of seconds (s) and hertz (Hz), respectively. The time signal c (t) is equivalently called
the free induction decay (FID) response. The clause “response” transcends the physi-
cal meaning of c (t). This is reflected already in the understanding that a response is
ordinarilymadewhen a question is asked.A question comes as a kind of “perturbation”
which triggers an answer. Such an intuitively self-evident notion, taken for granted in
everyday life, is also ingrained in the scientific quest concerning the structure of mat-
ter. Matter, in its equilibrium with the environment, would not spontaneously reveal
its structure. Only when externally perturbed would the matter respond. It is through
a response to an external perturbation that the matter would uncover some (or all)
of its internal structure. Thus, generally, one needs to perturb a system to tease out
its composition or structure. How much of the matter’s structure could be deciphered
depends on the number of degrees of freedom (or kinds of motions) affected by the
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external perturbation. The outside agents with their energies imparted onto the sys-
tem set its constituents in motion through various types of “oscillations” (rotations,
vibrations, …). Since all matter is built from molecules, atoms and their components
(electrons, nuclei, elementary particles,…), the response of the perturbed system cru-
cially depends on the perturbing energy whose extent determines which distances
can be probed. The larger the imparted energy, the deeper the penetrated distance.
When the studied matter is human tissue, the external perturbations can be ionizing
(X-rays,…) or non-ionizing (electromagnetic fields, ultrasound,…). Interactions of
sufficiently intense ionizing radiation with biological systems can cause severe dam-
age. Individual ionizing events can involve enough energy absorbed by the cell to
disrupt chemical bonds within the constituent molecules (called metabolites if the
biological system is tissue). This is the reason why human exposure to ionizing radi-
ation should be minimized. By contrast, repeated exposures of humans to scanning is
permitted by non-invasive MRS, MRSI and anatomical magnetic resonance imaging
(MRI) in the clinical setting with magnetic field strength B0 = 1.5 or 3 tesla (T) or
even stronger. The reason is that in these clinical scanners, the triple magnetic fields
(static, gradient and radiofrequency pulses) are of a weak intensity, which is below the
excitation thresholds of the tissue’s molecules. This is why the enumerated magnetic
resonance (MR) diagnostic modalities can be used for frequent monitoring of patients,
initial diagnostics, post-therapeutic follow-up as well as for screening, e.g. for early
tumor detection.

In MRS, a single voxel of the scanned tissue is excited by the mentioned external
fields. The tissue’s reaction to these external perturbations induces a current in the coil
surrounding the part of the examined human body. Such a current is mapped to the
analogue time signal c (t). The signal c (t) is subsequently switched by the analogue-
to-digital convertor (ADC) to its discretized counterpart cn . In this way, the continuous
variable t becomes discretized via t = nτ (0 ≤ n ≤ N − 1), where τ is the sampling
rate (dwell time). The total duration T of the time signal (or the total acquisition time)
and the total signal length N are related by T = Nτ . The scanned tissue slice is excited
over a fixed bandwidth (BW), which is selected according to the desired part of the
spectrum G(ν) under study. In MRS, encoded FIDs are complex-valued numbers, in
which case τ and BW are inversely proportional, with unity as the proportionality
constant, i.e. τ = 1/BW. The BW in Hz gives τ directly in s.

2.2 From time signals to frequency spectra and vice versa

The duality of c (t) and G (ν) involves the two conjugate variables, t and ν .The
dual time-frequency representation implies that G (ν) and c (t) are unambiguously
obtainable from each other. Such representations with continuous t and ν are given
by the integral transforms of the type:

G (ν) =
∞∫

0

dte−2π iνt c (t) . (1)
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Here, the total duration T of c (t) is equal to infinity, T = ∞. In MRS, as stated
earlier, the time signal c (t) is acquired (encoded), whereas the frequency spectrum
G (ν) can be in principle computed from (1). In practice, however, the digital set
{cn} is finite (N < ∞) , and the integral in (1) is truncated at t = T . Irrespective of
whether t ∈ [0,∞] or t ∈ [0, T ] (T < ∞), the time signal c (t) can be unequivocally
reconstructed from G (ν) by the inverse integral transformation:

c (t) =
∞∫

0

dνe2π iνtG (v) . (2)

Such integrals, either the direct version (1), or its inverse (2), are known as the Fourier
integrals or the continuous Fourier transforms. The term “transform” is very important,
since it is used here with the understanding that c (t) and G (ν) are exactly extractable
from each other, without any concern about the level of noise encoded in c (t) along-
side the physical part of the time signal. This can be viewed as being favorable and
unfavorable. It is favorable from the standpoint that switching from one to another
dual representation leads to no loss of information. On the other hand, it is unfavor-
able because the price for this latter feature is high, as the entire noise from c (t) is
brought as intact to the spectrum G (ν) due to the linearity of the transforms (1) and
(2). A practical goal, however would be to strike a delicate balance between these
two “extremes”, within an alternative frequency representation. First, such an alterna-
tive representation should reduce noise from c (t) by passing to G (ν) . Second, G (ν)

should inherit the entire physical information from c (t). This implies that the true,
physical part of the entire content (signal + noise) from the encoded c (t) should be
retrievable by inverting the computed G (ν) . As shown in Ref. [1], and more specifi-
cally in Ref. [2], regarding recovery of c (t) from G (ν), the fast Padé transform, FPT,
fully accomplishes the stated task imposed upon this more powerful alternative to the
Fourier representations.

There is yet another Fourier feature which can also be considered as being favor-
able and unfavorable. Favorable is the Fourier universality by which general time
signals can be processed. Unfavorable is the same Fourier generality, as it yields
low resolution, possesses no noise suppression power and, most critically, has no
autonomous quantification capabilities. These latter, well-documented drawbacks are
indeed caused by the Fourier generality, mainly due to ignorance of the structure of the
time signal c (t). Further limitations of the Fourier analysis are restriction to periodic
time signals and production of merely line or stick spectra (no intrinsic interpolation),
due to the pre-assigned grid frequencies unrelated to the nature of c (t). The same
Fourier grid (νF

k = k�νF ≡ k/T, 0 ≤ k ≤ N − 1) applies to all signals of the same
duration T . As soon as the Fourier analysis is used for G (ν), the input time signal is,
by definition, treated as if it were a periodic function of time, i.e. c (t + T ) = c (t) ,

for t > T . This provides no extrapolation and, thus, no prediction of the non-encoded
c (t) beyond T . In general, practice abundantly confirms that time signals c (t) exper-
imentally measured in inter-disciplinary fields are most often not periodic. Fourier
spectra exist only on superficial Fourier grid frequencies that have nothing in common
with the fundamental frequencies from which c (t) is built. Generally speaking, line
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spectra have vertical bars (sticks) of zero widths. In the FFT spectra, the sticks are
not seen as a sequence of vertical bars stacked next to each other at the fixed dis-
cretized frequencies νF

k (k = 0, 1, . . . , N − 1). Rather, smooth curves are drawn to
connect the tips of the sticks, while plotting the given Fourier spectrum. By contrast,
the spectrum PL (ν) /QK (ν) is a function of the continuous variable ν. Even when
ν is necessarily discretized for plotting PL (ν) /QK (ν) versus ν, the Padé grid fre-
quencies can be arbitrarily dense, with the sampling rate �ν which does not need to
be equal to �νF = 1/T .

Considered strictly, a general line spectrum is associated only with for purely sta-
tionary, stable bound states (e.g. ground states of atoms/molecules) of practically
infinite lifetimes. On the other hand, peaks in spectra are resonances that represent
non-stationary, transient states of molecules. Such metastable states last for a given
lifetime, after which they decay. This is reflected in distributions of frequencies in
the spectral lineshapes, instead of the stick spectra. These distributions are mainly
the Lorentzian functions that are in mathematics known as the Cauchy distributions.
In physics, they are also called Breit-Wigner lineshape profiles from the theory of
resonant scattering of particles and photons on general targets. The Cauchy, Lorentz
and Breit-Wigner distributions coincide with one of the simplest forms of the Padé
approximant (PA), symbolized as [0/2], and given by:

YA (ν) = d0
2π

Γ0

(ν − ν0)
2 + (Γ0/2)2

(Absorptive Lorentzian). (3)

It is seen that the Padé spectrum YA (ν) depends on ν in a continuous way. If YA (ν) is
written in the general form PL (ν) /QK (ν), it would follow that P0 (ν) = d0Γ0// (2π)

and QK (ν) = Q2 (ν) = (ν − ν0)
2+(Γ0/2)2. Here, d0 is the amplitude, ν0 andΓ0 are

the resonant frequency and the full width at half-maximum (FWHM), respectively. All
three parameters ν0, Γ0 and d0 are real-valued quantities, with the understanding that
the phase of the generally complex amplitude is equal to zero. Thenotation [L/K ] is the
usual symbol for the general PA as a ratio of two polynomials PL and QK of degrees L
and K , respectively. The physical meaning of a stick or bar spectrum is that it consists
of lines associated with mono-energetic (mono-chromatic) absorption or emission of
radiations. These latter processes result from transitions between discrete rotational,
vibrational or rovibrational molecular levels for the ground state as well as for excited
states. As noted, such line spectra belong to pure bound, stable states of molecules.
Metastable states are prone to decay and their spectra are not lines or sticks. Rather,
due to the underlying dissipative dynamics (there is a loss of energy), the absorptive
radiations cannot be mono-energetic. This implies that the resulting spectra do not
have sharp lines, in lieu of which a distribution of energies (or frequencies) appears.
The most typical example of such frequency distributions is the absorptive Lorentzian
function (3). In other words, the Lorentzian lineshape centered at ν0 is a broadened
line of breadth or full width Γ0. These notions are also familiar by reference to a
vibrating dipole which radiates energy according to classical physics. As a result, the
vibrational amplitudes decrease. In other words, the dipole vibrations are attenuated,
and the lineshape of the emitted radiation energy or frequency is the same Lorentzian
distribution (3) instead of a simple mono-chromatic phenomenon.
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2.3 Structure of time signals

Damped oscillations are also present in the time domain when considering the FID,
c (t), in (2). Therein, as stated, a general time signal is a linear combination of complex
attenuated exponentials that, hence, must be associated with the Lorentzian (3) from
the frequency domain. To elicit this connection, we first write what has just been said
regarding the universal form of c (t):

c (t) =
K∑

k=1

dke
iωk t , Im (ωk) > 0, (4)

dk = |dk | eiϕk , (5)

where ωk and dk are, respectively, the characteristic or fundamental complex angular
frequencies (ωk = 2πνk) and complex amplitudes, whose phases are denoted by ϕk .
The total number K of the fundamental harmonics (harmonic oscillations) should
correspond to the total number of Lorentzians in the frequency domain.

2.4 Complex, absorption and dispersion components and envelope spectra

To proceed alongside the stated anticipation, the insertion of (4) into (1) gives the
complex spectrum of the type:

G (ν) = 1

2π i

K∑
k=1

dk
ν − ζk − iλk

(Envelope: Heaviside partial fractions), (6)

νk = ζk + iλk; ζk = Re (νk), λk = Im (νk), (7)

{FWHM}k ≡ ξk = 2λk (Full width at half maximum) . (8)

This indeed shows that the envelope G (ν) is the sum of K complex components
Gk (ν):

G (ν) =
K∑

k=1

Gk (ν) , (9)

Gk (ν) = 1

2π i

dk
ν − ζk − iλk

= [0/1] (Component) . (10)

The sum in (9) over the K components Gk (ν) can be carried out and the result is the
para-diagonal Padé approximant symbolized as [(K − 1) /K ]:

G (ν) = PK−1 (ν)

QK (ν)
= [(K − 1) /K ]

(
Envelope: the Padé approximant

)
, (11)

where PK−1 (ν) and QK (ν) are polynomials in variable ν of degrees K − 1 and K ,
respectively. The expansion coefficients of these polynomials are uniquely identified
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from (6) and are given in terms of the fundamental frequencies {νk} and amplitudes
{dk}. Note that the diagonal PA is PK (ν) /QK (ν) as written by [K/K ]. The para-
diagonal and diagonal PAs are particular cases of the PA of order or rank {L , K } as
given by [L/K ] = PL (ν) /QK (ν) , which forms the so-called Padé table when the
polynomial degrees L and K are varied. With the Padé nomenclature, the component
Gk (ν) is also a special case of [L/K ] with L = 0 and K = 1, i.e. Gk (ν) = [0/1], as
stated in (10).

Inserting (5) into (10), the kth component can be expressed in terms of its absorption
Ak (ν) and dispersion Dk (ν):

Gk (ν) = Re(Gk (ν)) + i · Im(Gk (ν)), (12)

Re(Gk (ν)) = Ak (ν) cosϕk + Dk (ν) sinϕk, (13)

Im(Gk (ν)) = Ak (ν) sinϕk − Dk (ν) cosϕk, (14)

Ak (ν) = |dk |
2π

λk

(ν − ζk)
2 + λ2k

(Pure absorption) , (15)

Dk (ν) = |dk |
2π

ν − ζk

(ν − ζk)
2 + λ2k

(Pure dispersion) . (16)

The quantities in (15) and (16) are the pure absorption Ak (ν) and dispersion Dk (ν),
respectively, since the three invoked parameters {ζk, λk, |dk |} are all real. Further, it
is seen that for ϕk �= 0, both the real Re(Gk (ν)) and imaginary Im(Gk (ν)) parts of
Gk (ν) mix the absorption Ak (ν) and dispersion Dk (ν) . However, it is possible to
combine Re(Gk (ν)) and Im(Gk (ν)) to uniquely extract Ak (ν) and Dk (ν) . This is
done throughmultiplication of (13) and (14) by cosϕk and sinϕk , respectively.Addition
of the two resulting equations yields the absorption Ak (ν):

Ak (ν) = (cosϕk)Re (Gk (ν)) + (sinϕk) Im (Gk (ν)) . (17)

Similarly, multiplication of (13) and (14) by sinϕk and cosϕk , respectively, followed by
subtraction of the first from the second ensuing equation, gives the dispersion Dk (ν):

Dk (ν) = (sinϕk)Re(Gk (ν)) − (cosϕk) Im(Gk (ν)). (18)

Likewise, inserting (12)–(14) into (9), the complex envelope G (ν) becomes:

G (ν) = Re (G (ν)) + i · Im (G (ν)) , (19)

Re (G (ν)) =
K∑

k=1

[Ak (ν) cosϕk + Dk (ν) sinϕk], (20)

Im (G (ν)) =
K∑

k=1

[Ak (ν) sinϕk − Dk (ν) cosϕk]. (21)

This shows that the real Re (G (ν)) and imaginary Im (G (ν)) parts of the complex
G (ν) are not the sum of the pure K absorptions Ak (ν) and dispersions Dk (ν). Rather,
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the two differently combined mixtures of Ak (ν) and Dk (ν) appear in Re (G (ν)) and
Im (G (ν)). Thus, for ϕk �= 0, the lineshapes of neither the envelopes Re (G (ν)) and
Im (G (ν)) nor their components Re (Gk (ν)) and Im(Gk (ν)) can be thought of as
being purely absorptive and dispersive Lorentzians, respectively. This will not be the
case either when all the K phases ϕk (1 ≤ k ≤ K ) are set to a constant angle, say ϕ.
In this special circumstance, the k-independent phase ϕ still mixes Ak (ν) and Dk (ν)

through the cosϕ and sinϕ terms in (20) and (21).
In fitting techniques fromMRS, the real part of the given complex total shape spec-

trum in the FFT is used in trying to crudely reconstruct the fundamental parameters
{νk, dk}. However, since for complex amplitudes dk , the phases ϕk are non-zero, the
real part of the FFT spectrum is not absorptive. In an attempt to obtain an approximately
positive-definite envelopes, the complex spectrum is modified (prior to taking its real
part) through multiplications by the so-called zeroth- and/or first-order phase correc-
tions (eiφ0 , eiφ1), respectively. For example, using the zeroth-order phase correction,
(19)–(21) become:

eiφ0G (ν) = Re
(
eiφ0G (ν)

)
+ i · Im(eiφ0G (ν)), (22)

Re(eiφ0G (ν)) =
K∑

k=1

[Ak (ν) cos (ϕk + φ0) + Dk (ν) sin(ϕk + φ0)], (23)

Im(eiφ0G (ν)) =
K∑

k=1

[Ak (ν) sin (ϕk + φ0) − Dk (ν) cos (ϕk + φ0)] . (24)

Thus, in general, just like the unmodified (20) and (21), the zeroth-order phase correc-
tion eiφ0 of the complex spectrumG (ν) cannot give Re

(
eiφ0G (ν)

)
and Im(eiφ0G (ν))

as purely absorptive and dispersive envelopes, respectively. This is possible only in
a special, idealized case when all the fundamental phases ϕk are made equal to the
same constant angle ϕ equal to −φ0. Namely, for ϕk ≡ ϕ = −φ0 (1 ≤ k ≤ K ) ,

it follows from (23) and (24) that Re
(
eiφ0G (ν)

)
and Im(eiφ0G (ν)) are absorptive

(positive-definite) and dispersive envelopes, respectively:

Re(eiφ0G (ν)) =
K∑

k=1

Ak (ν) , ϕk = −φ0 (1 ≤ k ≤ K ) , (25)

Im(eiφ0G (ν)) = −
K∑

k=1

Dk (ν) , ϕk = −φ0 (1 ≤ k ≤ K ) . (26)

Of course, in reality, the angle correction−φ0 cannot ever simultaneouslymatch all the
phases ϕk (1 ≤ k ≤ K ), since generally ϕk′ �= ϕk (k′ �= k). It is for this reason that φ0
(with or without φ1) would never be able to yield Re

(
eiφ0G (ν)

)
as a positive-definite

lineshape throughout the spectral range of interest (SRI).
When the linelist of two complex parameters {νk, dk} for the kth resonance, or

equivalently, of four real parameters {ζk, λk; |dk | , ϕk} has been reconstructed, one can
choose any desired spectralmode for presentation. To this end, positive-definite spectra
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are generallymore amenable to visualization, interpretation and further analysis. Since
such spectra are not the real parts of complex envelopes for ϕk �= 0, one is directed
towards some judicious combinations of the components Re (G (ν)) and Im (G (ν)).
Thus, for ϕk �= 0, one can consider such combinations from, e.g. (17) and (18) to
define an alternative envelope, say G̃ (ν) as:

G̃ (ν) = Re(G̃ (ν)) + i · Im(G̃ (ν)), (27)

Re(G̃ (ν)) =
K∑

k=1

[(cosϕk)Re(Gk (ν)) + (sinϕk)Im(Gk (ν))], (28)

Im(G̃ (ν)) =
K∑

k=1

[(sinϕk)Re(Gk (ν)) + (cosϕk)Im(Gk (ν))]. (29)

The square brackets in (28) and (29) are equal to the pure absorption Ak (ν) and
dispersion Dk (ν) from (15) and (16), respectively:

Re(G̃ (ν)) =
K∑

k=1

Ak (ν) = 1

2π

K∑
k=1

|dk | λk
(ν − ζk)

2 + λ2k

, (30)

Im(G̃ (ν)) =
K∑

k=1

Dk (ν) = 1

2π

K∑
k=1

|dk | (ν − ζk)

(ν − ζk)
2 + λ2k

. (31)

The same results (30) and (31) are obtained by replacing dk with |dk |, i.e. taking
dk as real by setting ϕk = 0 in (5) and (6) from the onset. Thus, the identical pure
absorption total shape spectral envelopes can be constructed in three different and
equivalent ways:

• ϕk �= 0 : Re(G̃ (ν)) & Eqs. (27), (28), (32)

• ϕk = ϕ (constant) , 1 ≤ k ≤ K :
Re(eiφ0G (ν)), φ0 = −ϕ & Eqs. (23), (25), (33)

• ϕk = 0, 1 ≤ k ≤ K : Re (G (ν)) & Eq. (25). (34)

The same applies to the pure dispersion spectra for which (29) for ϕk �= 0 and (31)
for ϕk = 0 give the identical results. Here, for the third possibility with the constant
ϕk (1 ≤ k ≤ K ) equal to the negative zeroth-order phase (−φ0), again the pure disper-
sion is obtained, but with changed polarity (multiplied by−1), as per (24) and (26). An
analogous reasoning with the three possibilities also applies to the component shape
spectra.

Absorptive (15) and dispersive (16) component lineshapes contain the same infor-
mation. Thismeans that the fundamental parameters {ζk, λk, |dk |} can be reconstructed
from either absorption (15) or dispersion (16), as will be illustrated in the Results sec-
tion. In particular, the linebreadth {FWHM}k of the absorption Ak (ν) is alreadydefined
in (8) as twice the imaginary fundamental frequency λk , i.e. {FWHM}k = 2λk . The
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peak height hk of Ak (ν) follows from (15) at ν = ζk via:

hk = 1

2π

|dk |
λk

(Peak height of Ak (ν)) . (35)

The peak area ak under the absorptive Lorentzian profile Ak (ν) from (15) is:

ak = |dk |
2

. (36)

In MRS, components are assigned to metabolites. The concentration Ck of the kth
metabolite is proportional to the peak area ak , i.e. Ck ∼ ak . Here, the proportionality
constant is the number nk of the resonating MR sensitive nuclei in the excited slice of
the tissue. The resulting product nkak needs to be calibrated to have the proper units:

Ck = nkakCref , (37)

where Cref is the concentration of the reference molecule (which is a matter of choice,
e.g. water or any other substance not necessarily present in the tissue). Metabolite
concentration Ck from (37) is expressed in the same units as Cref , which is usually
given in millimole (mM) or micromole (µM) per gram (g) of wet weight (ww) of
the scanned tissue. The running (ν) and the fundamental (νk) frequencies are counted
from the resonant frequency (taken as zero) of the reference molecule.

2.5 Magnitude mode for component and envelope spectra

Themagnitude mode for the component and total shape spectra are the absolute values
|Gk (ν)| and |G (ν)| of their complex counterparts Gk (ν) and G (ν), respectively:

|Gk (ν)| = 1

2π

|dk |
[(ν − ζk)

2 + λ2k]1/2
, (38)

|G (ν)| = 1

2π

∣∣∣∣∣
K∑

k=1

dk
ν − ζk − iλk

∣∣∣∣∣ . (39)

The absolute value |dk | of dk and the peak position ζk are the same in the magnitude
|Gk (ν)| and absorption Ak (ν) modes. However, the peak breadth is broadened by a
factor of

√
3 in the magnitude mode (“Magn”) relative to its absorptive (“Absorp”)

counterpart:
{FWHM}Magn

k = √
3 {FWHM}Absorpk . (40)

2.6 The mathematical reason for overlapping resonances

To re-emphasize, as soon as a total shape spectrum is mentioned in MRS and beyond,
the problem of utmost importance arises, and that is the abundance of resonances
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that overlap with each other. The critical aspect of this obstacle occurs when the
peak-to-peak distance (chemical shift-wise in MRS) is shorter than the individual
linebreadths (FWHM-wise) of the adjacent resonances. The mathematical reason for
the emergence of overlapped peaks in envelopes with e.g. Lorentzian lineshapesG (ν)

is rooted in the asymptotic behavior of the corresponding componentsGk (ν) for those
sweep frequencies ν that are far away from the nodal chemical shifts ζk . This is seen by
extracting the leading term from the binomial series for the reciprocal of the frequency
denominator in (10):

Gk (ν) = dk
2π i

1

ν − ζk

(
1 − iλk

ν − ζk

)−1

= dk
2π i

[
1

ν − ζk
+ iλk

(ν − ζk)
2 + (iλk)2

(ν − ζk)
3 + . . .

]
. (41)

In this development, when the running frequency ν increases relative to the fixed ζk
and with λk � ζk , the higher-order terms (iλk)l/ (ν − ζk)

l+1 for l ≥ 1 are negligible
compared to 1/ (ν − ζk). In such a case, the entire content from the square brackets
in (41) is dominated by the leading term 1/ (ν − ζk). This gives the sought asymptote
of Gk (ν) as:

Gk (ν) ∼ dk
2π i

1

ν − ζk

(
ν distant from ζk and ζk � λk

)
. (42)

However, the function 1/ (ν − ζk) itself decreases very slowly with the augmented ν.
The asymptote 1/ (ν − ζk) generates long, symmetric tails on both sides of ζk and,
consequently, leads to a broad base, i.e. a wide lower part of the lineshape or the peak
profile. Thus, it is the asymptotic behavior (42) which, in an envelope G (ν) from
(9) with K components Gk (ν), represents the mathematical reason for the existence
of overlapped resonances. With this explanation, it is clear that especially intense
components Gk may have more extended wings that, in turn, can substantially alter
(through constructive and/or destructive interference effects) even some distantweaker
resonances, let alone the neighboring smaller peaks. This becomes very problematic
for understanding spectral envelopes and for identifying the physical components,
without which no meaningful assignment can be made with the known metabolites in
MRS.

2.7 Derivative spectra

2.7.1 Complex mode of derivative spectra

The abundance of overlapped resonances in spectral envelopes impacts directly and
adversely on resolution. Thus, resolution enhancement (as the capacity to separate
overlapped peaks) rests upon the possibility of lineshape narrowing. The analysis
from subsection 2.6 shows that the asymptotic behavior (42) generates broader peak
baselines that, in turn, lead to overlapped resonances. Therefore, one of the possibilities

123



946 J Math Chem (2018) 56:932–977

for reducing such spectral crowding is to diminish the elevation of the tails from the
background on both sides of resonating frequency ζk . The merit of the asymptote (42)
is in pointing towards a way to achieve this goal consisting of finding a lineshape
which, in its lowest order, falls off as ∼1/ (ν − ζk)

2, or faster as ∼1/ (ν − ζk)
m with

m > 2, at frequencies ν that are distant from ζk . With a sufficiently high m, the
leading asymptotic term ∼1/ (ν − ζk)

m could localize any original Lorentzian to a
wave-packet type lineshape narrowed to the immediate neighborhood of the resonant
position ζk . This would amount to a powerful separation of the adjacent components
that were masked in the seed envelope (6) in any clustered peak with slow decaying
component asymptote ∼1/ (ν − ζk) of Gk (ν) from (10).

As just rationalized, one way to diminish the tails/wings of the given Lorentzian
lineshape is secured by raising the power of the denominator in (10) for each com-
ponent Gk (ν) . This is precisely what the mth derivative (d/dν)m Gk (ν) offers by its
mathematical form:

G(m)
k (ν) ≡ dm

dνm
G(m)

k (ν) (The mth derivative component k), (43)

G(m)
k (ν) = dk

2π i

(−1)m m!
(ν − ζk − iλk)m+1 (m = 1, 2, . . .) . (44)

The binomial expansion of the mth derivative Padé spectrum G(m)
k (ν) for ν departing

from ζk and with λk � ζk gives the series:

G(m)
k (ν) = dk

2π i

(−1)m m!
(ν − ζk)m+1

(
1 − iλk

ν − ζk

)−m−1

= dk
2π i

(−1)m m!
[

1

(ν − ζk)m+1 + (m + 1)
iλk

(ν − ζk)m+2 + . . .

]
. (45)

The leading term in the square bracket of (45) is 1/(ν − ζk)
m+1 and, thus, for ν distant

from ζk , it follows:

G(m)
k (ν) ∼ dk

2π i

(−1)m m!
(ν − ζk)m+1 (m = 1, 2, . . .) . (46)

Here, even the first derivative (m = 1) via G(1)
k (ν) decreases faster as∼ [idk/ (2π)] /

(ν − ζk)
2 than its non-derivative (or zeroth-order,m = 0) counterpart ∼ [dk/ (2π i)] /

(ν − ζk) in G(0)
k (ν) ≡ Gk (ν) from (42). Moreover, the implication from the

Lorentzian derivative asymptote (46) is: the higher the derivative orderm, the stronger
lowering of the lineshape tails. Note that even though we explicitly write m > 0 in
(44) and (45), the non-derivative case with m = 0 is also included therein.

The maximum of the mth order derivative complex component spectrum G(m)
k (ν)

is attained for ν = ζk in (44):
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Hk,m ≡ max {G (m)
k (ν)} = G(m)

k (ζk), (47)

Hk,m = m!
2π im

dk

λm+1
k

. (48)

2.7.2 Real and imaginary modes of derivative spectra

Alternatively, the derivative spectrumG(m)
k (ν) fromsub-section 2.7.1 can be generated

by applying the operator (d/dν)m not directly to the complex profileGk (ν) from (10),
as we have done in (44), but to its equivalent combination of absorption Ak (ν) and
dispersion Dk (ν) from (15) and (16) that are the PAs of the rank [0/2] and [1/2],
respectively. In other words, the degree of the numerator polynomial of Dk is larger
than that of Ak by one unit. Thus, the numerators of the mth derivatives A(m)

k (ν) =
(d/dν)m Ak (ν) and D(m)

k (ν) = (d/dν)m Dk (ν) will be the polynomials of degrees

m andm+1, respectively. By implication, A(m)
k (ν) and D(m)

k (ν)will havem andm+1

zeros, respectively. The same statement holds true for the resulting Re(G(m)
k (ν)) and

Im(G(m)
k (ν)) obtained by subjecting (13) and (14) to the operator (d/dν)m in the

case of the purely real amplitudes dk (ϕk = 0, 1 ≤ k ≤ K ) . As a consequence of
these numerators’ zeros, the real and imaginary derivative spectra Re(G(m)

k (ν)) and

Im(G(m)
k (ν)) will have m and m + 1 lobes, respectively, symmetrically distributed

around the resonance chemical shift, ζk . The polarity of each given individual lobe
will be switched from positive to negative when m passes from an even (m = 2l) to
an odd (m = 2l + 1) number, where l is a positive integer. This will be illustrated in
the Results section.

2.7.3 Magnitude modes of derivative spectra

The appearance of multiple lobes (with the main lobes and side lobes) in the plots
of real and imaginary derivative spectra would be an additional task for interpreta-
tion and metabolite assignments. Instead, it is more straightforward to analyze the

corresponding magnitude mode
∣∣∣G(m)

k (ν)

∣∣∣ of complex spectrum G(m)
k (ν):

gk,m (ν) ≡
∣∣∣G(m)

k (ν)

∣∣∣ (Magnitude: derivative spectrum) , (49)

gk,m (ν) = |dk |
2π

m!
[
(ν − ζk)

2 + λ2k

]−m+1
2

(m = 1, 2, . . .) . (50)

The peak height hk,m of the lineshape in the magnitude mth derivative spectrum is
deduced from (40) at ν = ζk as:

hk,m = gk,m(ζk) (Peak height: Magnitude of the derivative spectrum) , (51)

∴ hk,m = m!
2π

|dk |
λm+1
k

(m = 1, 2, . . .) . (52)
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Of course, the same result (52) is obtained by taking the absolute value of the complex
rhs of (48) at ν = ζk , i.e. hk,m = ∣∣Hk,m

∣∣ . It is seen that the numerator of hk,m
increases factorially, i.e. asm!whenm is augmented. Anotherm−dependence of hk,m
comes from its denominator λm+1

k . However, for reconstruction of the fundamental
parameters from themagnitude of themth derivative spectrum, what matters in the end
is their relations to the reference non-derivative (m = 0) absorption lineshape Ak (ν).
The sought absorptive peak height hk from (35) and hk,m from (52) are related by:

hk,m = m!
λmk

hk . (53)

Thus, if we have hk,m and λk , the peak height hk of absorption can be deduced from
(53). However, λk is yet to be found. This can be done by connecting the breadth ξk of
absorption (m = 0) from (8) to its counterpart for the magnitude of the mth (m > 1)
derivative spectrum.

To determine the lineshape breadth of the magnitude of themth derivative spectrum
gk,m (ν), it suffices to resort to the very definition of the full width at half maximum,
FWHM. The lineshape of gk,m (ν) is a single bell-shaped symmetric Lorentzian func-
tion. The FWHM of this profile is the distance between the two crossing points of the
constant line hk,m/2 (the half maximum) and the Lorentzian gk,m (ν) itself in a plot
with ν as the abscissa. Prior to using this condition, inherent in the definition of the
FWHM, we first rewrite (53) as follows:

2π

|dk |m!gk,m (ν) =
[
(ν − ζk)

2 + λ2k

]−m+1
2

, (54)

or equivalently,

[ |dk |m!
2πgk,m (ν)

] 2
m+1 = (ν − ζk)

2 + λ2k . (55)

It is here that we evoke the mentioned crossing of the constant line (constant in the
sense of being independent of ν). To place that line at the half maximum of gk,m (ν) ,

we set ν = ζk on the lhs of (55) and divide the result gk,m (ζk) = hk,m by 2 to obtain
hk,m/2 so that the condition for the FWHM reads as:

[ |dk |m!
2πhk,m/2

] 2
m+1 = (ν − ζk)

2 + λ2k . (56)

Using (52), the lhs of (56) is reduced to 22/(m+1)λ2k ≡ β2
k,m . With this latter quantity

at hand, the algebraic form (55) becomes:

ν2 − 2ζkν + αk = 0, αk = ζ 2
k + λ2k − β2

k,m, βk,m = 21/(m+1)λk . (57)
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The roots of the quadratic equation (57) are given by:

ν
{k,m}
± = ζk ± λk

[
22/(m+1) − 1

]1/2
. (58)

The frequencies ν
{k,m}
+ and ν

{k,m}
− are the positions of the crossings between the men-

tioned horizontal line drawn at the half of the maximum of the magnitude of the mth
derivative peak, hk,m/2, and the peak profile itself. The crossing points ν

{k,m}
+ and

ν
{k,m}
− are located to the right and to the left of the peak position ζk , respectively.
Their difference is the sought quantity {FWHM}k,m of the magnitude mode of themth
derivative of the kth component peak. Thus, we have:

�ν{k,m} ≡ ν
{k,m}
+ − ν

{k,m}
− = {FWHM}k,m , (59)

∴ {FWHM}k,m = 2λk
[
22/(m+1) − 1

]1/2
. (60)

Moreover, the half sum of ν
{k,m}
+ and ν

{k,m}
− gives the peak position, ζk :

1

2

(
ν

{k,m}
+ + ν

{k,m}
−

)
= ζk . (61)

In (60), the term 2λk is the {FWHM}k ≡ ξk of absorption Ak (ν) according to (8).
This gives the relationship between the full width at half maximum of the magnitude
of the mth derivative spectrum {FWHM}k,m and that of the absorption {FWHM}k :

{FWHM}k,m =
[
22/(m+1) − 1

]1/2 {FWHM}k (m = 0, 1, 2, . . .) , (62a)

{FWHM}k,m < {FWHM}k ,
[
22/(m+1) − 1

]1/2
< 1 (m = 2, 3, 4, . . .) . (62b)

The result (62a) is for any m (m = 0, 1, 2, . . .) . In the special case for m = 0
(non-derivative magnitude spectrum), it follows from (62) that {FWHM}k,0 =√
3 {FWHM}k , which also reads as {FWHM}Magn

k,0 = √
3 {FWHM}Absorpk , in agree-

ment with (40). Another particular case is m = 1 (magnitude of the 1st derivative
spectrum), for which (62) yields {FWHM}k,1 = {FWHM}k , or equivalently,

{FWHM}Magn
k,1 = {FWHM}Absorpk . In other words, the full width at half maximum

is the same in the absorption and the magnitude of the 1st derivative spectrum. For
m ≥ 2, according to (62b), the linebreadth of the magnitude of the mth derivative of
the kth component spectrum is narrower than that of the corresponding non-derivative
(m = 0) absorption profile. Therefore, such derivative spectra make the profile thinner
and, hence, improve resolution. This circumstance simultaneously highlights the roles
of both derivatives and linebreadths: the higher the derivative order, the thinner the
profile width, and the better the resolution. It is seen from (62a) that relative to the
non-derivative width {FWHM}k , the rate of narrowing of the linebreadth {FWHM}k,m
of the derivative spectrum decreases slowly with augmentation of the differentiation
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orderm.This is implied by a very slow decrease of the exponent 2/(m+1) of the num-

ber 2 in the multiplicative factor
[
22/(m+1) − 1

]1/2
from (62a). Such a circumstance

implies that the higher order derivatives (largerm) are needed for substantial resolution
improvement of derivative lineshapes, compared to their non-derivative counterparts.

3 Exact fundamental parameters from high-order derivatives of total
shape spectra

Recently [28], we have used the dFPT to show that the lineshapes of the components
can be reconstructed directly from non-parametrically computed total shape spectra
or envelopes without solving the quantification problem. This was possible for high-
order derivatives of envelopes whose magnitude modes were the most straightforward
for interpretation. In Ref. [28], these computed envelopes were plotted to visualize
and monitor the main features of the obtained magnitude derivative spectra. The most
salient characteristics of the components of the magnitudes of the derivative envelopes
(m > 0), relative to the non-derivative (m = 0) absorptions, as a function of the
increased derivative orderm, were the pronounced: (i) constancy of the peak positions,
(ii) narrowing of the peak widths and (iii) augmentation of the peak heights. The cause
of such properties was attributed in Ref. [28] to the significantly reduced or nearly
eliminated interference effects among resonances in a given total shape spectrum or
envelope. It is this suppressed interference which, for sufficiently high derivative order
m, facilitated a clear visualization of the individual components that were completely
hidden in some compound peaks from the given non-derivative (m = 0) envelope.
Further, besides the stable peak positions, it is also important to have the peak heights
stabilized. This can be achieved with peak height normalization by equalizing the
heights of the same tallest peak in both the entire magnitude derivative envelope∣∣G(m) (ν)

∣∣ for a fixed m ≥ 1 and in the corresponding non-derivative absorption
(m = 0):

max
{∣∣∣G(m) (ν)

∣∣∣
}

= max
{
Re G(0) (ν)

}
(m = 1, 2, . . .) , (63)

where G(0) (ν) = G (ν). It should be emphasized that this normalization is made only
for the single, isolated tallest peak. If the reconstruction is truthful, all the other heights
of the identified component peaks in the given envelope will also be correct. This was
indeed the case in the dFPT from Ref. [28], where the input peak heights associated
with synthesized time signals were recovered exactly. Note that max {|G (ν)|} was
used in Ref. [28], instead of the corresponding max {Re G (ν)} in the rhs of (63). This
was justified since in the considered example with lactate (Lac) as the single, isolated
tallest resonance, max

{∣∣G(m) (ν)
∣∣} (m > 0) and max {Re G (ν)} (m = 0) coincide.

All the mentioned features (i)–(iii), established computationally and visually
observed in Ref. [28], have been theoretically confirmed in subsection 2.7.3. More-
over, in the current study, we proceed one critical step beyond Ref. [28]. This is
to be accomplished by explicitly showing how subsection 2.7.3 should be used to
deduce the non-derivative (m = 0) absorption peak parameters from the extracted
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peak parameters of the magnitude of the derivative total shape spectrum
∣∣G(m) (ν)

∣∣ of
a given differentiation order m. The provision for this demonstration is that the non-
parametric FPT and the dFPT have converged relative to: (a) the model order K and
(b) the derivative order m (regarding the positions and normalized heights) of all the
identified components. This was the case with the present computations, the findings
of which will be given in the Results section.

Another remark should also be made to clarify the connection of the findings from
Ref. [28] with the present paper. Namely, in Ref. [28], the main goal was to show
through exclusively non-parametric processing that the component spectra of a non-
derivative absorption (m = 0) in the FPT can be extracted from the magnitude of the
high-order derivative envelope in the dFPT. On the other hand, subsection 2.7.3 does
not deal with the total shape spectra, i.e. envelopes. Rather, it explicitly deals with the
magnitude

∣∣G(m)
k (ν)

∣∣ of the mth derivative of the kth component of the total shape
spectrum

∣∣G(m) (ν)
∣∣ with K resonances:

∣∣G(m) (ν)
∣∣ =

∣∣∣∣∣
K∑

k=1

G(m)
k (ν)

∣∣∣∣∣ . (64)

Moreover, by reference to (44), if (66) is to relate to subsection 2.7.3, it would explicitly
read as:

∣∣G(m) (ν)
∣∣ = m!

2π

∣∣∣∣∣
K∑

k=1

dk
(ν − νk − iλk)m+1

∣∣∣∣∣ . (65)

The rhs of (65) is the parametric representation of the envelope
∣∣G(m) (ν)

∣∣ for the
known pairs {νk, dk}. However, the same fundamental pairs {νk, dk} (k = 1, 2, . . . , K )

were treated as unknown in Ref. [28], where the task was to extract them by the non-
parametrically computed

∣∣G(m) (ν)
∣∣ in the dFPT.

The stated remark is properly taken into account in the dFPT under the already
formulated condition for the stabilization of peak positions and peak heights in the
normalized amplitudemode of themth derivative envelopes for sufficiently high values
of both K andm. Namely, when the latter condition is fulfilled, it was seen in Ref. [28]
that the non-parametrically computed envelope

∣∣G(m) (ν)
∣∣ correctly reconstructed all

its components, such that the peak position and peak heights in the normalized total
shape spectrum could clearly be seen to coincide with the corresponding input data. In
Padé-based processing, the non-parametric estimation of

∣∣G(m) (ν)
∣∣ and its parametric

version (65) yield the same component lineshapes for the non-derivative (m = 0, Ref.
[15]) and derivative (m ≥ 1, present work) envelopes. Therefore, the spectral pairs
extracted by the dFPT from the envelope

∣∣G(m) (ν)
∣∣ computed non-parametrically in

Ref. [28] should coincide with the reconstructions that solve the quantification prob-
lem. Such an equivalence is facilitated by the analysis from subsection 2.7.3. Therein
(and this is gist of thematter), the parametric dFPT is not used to generate the derivative
spectra for practical purposes. Rather, such a parametric formalism is employed only
to establish the exact theoretical relationships among the sought parameters {νk, dk}
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of the non-derivative absorption (m = 0) and the magnitude of the mth derivative of
the kth component spectrum. With the availability of these relations, we can return
to the envelope

∣∣G(m) (ν)
∣∣ which is non-parametrically computed by the dFPT. This

time, however, the relationships from subsection 2.7.3 are to be “inverted”. Namely, by
considering the resonancepositions,widths andheights as the knownquantities retriev-
able from the well-resolvedmth derivative envelope

∣∣G(m) (ν)
∣∣, we will determine the

corresponding peak parameters {νk, dk} of the non-derivative (m = 0) absorption line-
shape. The reason for which the peak positions, widths and heights of the components
from the mentioned non-parametrically computed derivative envelope can be consid-
ered as known, will be explicitly stated after giving the “inverse” relations among the
parameters of the two kinds of spectra (derivative and non-derivative).

Importantly, the given high-order derivative envelope
∣∣G(m) (ν)

∣∣ from (64) practi-

cally annihilates all the interference effects among the components G(m)
k (ν). Stated

equivalently, these components become localized to such an extent that each of them
behaves as if it were the only resonance in the entire Nyquist interval. With this feature
at play, the analysis from subsection 2.7.3 for

∣∣G(m)
k (ν)

∣∣ coherently relates toG(m) (ν)

in (64).
The outlined procedure runs as follows. First, formula (62) tells us that the sought

{FWHM}k of the absorption Ak (ν) from (15) can be obtained if {FWHM}k,m for
the magnitude spectrum is available for a fixed derivative order m. Therefore, from
a bell-shaped Lorentzian lineshape gk,m (ν) for the magnitude of the mth derivative
spectrum, the three parameters {ζk, λk, |dk |} of the absorption Ak (ν) in (15) can be
extracted from the analytical expressions (35), (53) and (62), or explicitly, in their
mentioned “inverse” forms:

{FWHM}k =
[
22/(m+1) − 1

]−1/2 {FWHM}k,m , (66)

|dk | = 2πλkhk, (67)

λk = 1

2
{FWHM}k , (68)

hk = λmk

m! hk,m . (69)

Thus, λk as Im(νk) and |dk | are obtainable as soon as {FWHM}k,m and hk,m of the
derivative spectrum are computed by the non-parametric dFPT on a very fine grid of
the sweep frequencies ν (the finer, the better; this is possible since, as stated earlier, no
preassigned Fourier grid frequencies are preconditioned in the FPT nor dFPT). The
results for the spectra are used to plot the magnitude of the mth derivative lineshape
alongside which the same algorithm in the dFPT also provides the numerical values
of hk,m , ζk and {FWHM}k,m . The peak position ζk is the same in the absorption (non-
derivative, m = 0) and the magnitude of the mth derivative spectrum. This position
is available since the computed peak height hk,m is located at ν = ζk . Also, this latter
quantity ζk is, according to (61), the chemical shift of the midpoint of the segment
{FWHM}k,m computed by the dFPT. Observe, that actually the key is to find the

intersection points ν
{k,m}
± that, in turn, provide both {FWHM}k,m and ζk , as per (59)–
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(61). This completes the reconstruction of the parameters {ζk, λk, |dk |} by the dFPT
as a lineshape analyzer. Similarly, the phase ϕk of dk in (6) can also be reconstructed
from the computed complex derivative spectrum G(m)

k (ν). The pertinent analytical
expression from which ϕk can be retrieved is not given in subsection 2.7 since the
present Results section deals only with real dk , i.e. dk = |dk | (ϕk = 0, 1 ≤ k ≤ K ).

4 Results

Here, we will present two sets of results in two subsections. Subsections 4.1 and 4.2
are on the para-diagonal and diagonal rational polynomials, respectively. These poly-
nomial quotients are of the Padé forms that belong to the Lorentzian-type frequency
distributions. Both subsections are primarily focused on the derivative envelopes. The
derivative transforms (d/dν)m of high order m are of the main interest and this is
considered in subsection 4.2. The non-derivative (m = 0) envelopes to which the
differentiation operator (d/dν)m with m > 0 is applied will also be given. This is
done with the purpose of monitoring the stabilization of the derivative spectra with
increasing m so as to establish their resolution capabilities relative to the reference
absorptive envelopes for m = 0. In subsection 4.1, the paradiagonal Padé approxi-
mants in their non-derivative (m = 0) and derivative (m = 1 and m = 2) versions are
used to directly and quantitatively visualize the relationships among their input peak
parameters (positions, widths, heights). Therein, it will also be shown how these latter
peak parameters can be recovered from the computed spectrum using the analytical
expressions listed in subsection 4.1. In subsection 4.2, the non-parametric Padé-based
reconstructions as lineshape estimations, are employed to generate non-derivative and
derivative envelope spectra.

4.1 Direct and quantitative visualization of the peak positions, widths and
heights in derivative versus non-derivative envelopes

4.1.1 Analytical expressions

We herein analyze the non-derivative and derivative Lorentzians in different modes
of spectral representations. For a visual quantification by way of reading off the peak
parameters (positions, widths, heights) directly from the plotted graphs, we shall take
a single absorptive RA (ν) and dispersive RD (ν) Lorentzian:

RA (ν) = d0
Γ 2
0

(ν − ν0)
2 + Γ 2

0

, (70)

RD (ν) = d0Γ0
ν − ν0

(ν − ν0)
2 + Γ 2

0

. (71)

Absorption RA (ν) in (70) is of the type YA (ν) from (3) with the same resonance
frequency ν0, but with a different normalization. Further, the FWHM of the non-
derivative absorption peak in (70) is equal to 2Γ0, i.e.
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FWHM = 2Γ0 (Full width at half maximum of absorption RA (ν)) . (72)

For the analysis in this subsection, the 1st, 2nd and 3rd derivatives of RA (ν) from
(70) will be considered with the same resonance frequency ν0 and the real amplitude
d0. They read as:

d

dν
RA (ν) ≡ R(1)

A (ν) = −2d0Γ
2
0

ν − ν0[
(ν − ν0)

2 + Γ 2
0

]2 , (73)

d2

dν2
RA (ν) ≡ R(2)

A (ν) = 2d0Γ
2
0
3ν2 − 6ν0ν + (

3ν20 − Γ 2
0

)
[
(ν − ν0)

2 + Γ 2
0

]3 , (74)

d3

dν3
RA (ν) ≡ R(3)

A (ν) = −24d0Γ
2
0

(ν − ν0)
[
ν2 − 2ν0ν + (

ν20 − Γ 2
0

)]
[
(ν − ν0)

2 + Γ 2
0

]4 . (75)

The spectral zeros of these Padé approximants are the real parts of the numerator
polynomials:

ν = ν0 (One zero of R(1)
A (ν)), (76)

ν± = ν0 ± Γ0√
3

(Two zeros of R(2)
A (ν)), (77)

ν = ν0, ν
± = ν0 ± Γ0 (Three zeros of R(3)

A (ν)). (78)

The two extremal values of R(1)
A (ν) are located at the two zeros ν± of R(2)

A (ν) as:

R(1)
A (ν±) = ∓3

√
3

8

d0
Γ0

. (79)

This provides the height-to-depth distance in R(1)
A :

R(1)
A (ν−) − R(1)

A (ν+) = 6
√
3

8

d0
Γ0

(Peak-to-dip vertical distance in R(1)
A (ν)), (80)

where 6
√
3/8 ≈ 1.2990. As such, the ratio d0/Γ0 becomes available from reading

off the difference R(1)
A (ν−) − R(1)

A (ν+) in the plot of R(1)
A (ν) versus ν. The dis-

tance between the positions ν+ and ν− of the maximum R(1)
A (ν+) and the minimum

R(1)
A (ν−), respectively, is:

�ν{1} ≡ ν+ − ν− = 2Γ0√
3

(Peak-to-dip horizontal distance in R(1)
A (ν)), (81)

∴ �ν{1} = FWHM√
3

, (82)
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where FWHM is the full width at half maximum of the non-derivative absorption
RA (ν) from (70). Thus, the value �ν{1} which is read off from the plot of R(1)

A (ν)

versus chemical shift ν permits extraction of the sought breadth FWHM of absorption
RA (ν) , via FWHM = √

3�ν(1).
Further, the three extremal values of R(2)

A (ν) are at the positions of the three zeros

ν0 and ν± of R(3)
A (ν) via:

R(2)
A (ν0) = −2d0

Γ 2
0

(Minimum of R(2)
A (ν)), (83)

R(2)
A

(
ν±) = 1

2Γ 2
0

(Maximae of R(2)
A (ν)). (84)

Therefore, (83) allows retrieval of the quotient d0/Γ 2
0 from the read off value of

R(2)
A (ν0) on the curve for R(2)

A (ν) as a function of ν. The difference between the

locations ν+ and ν− of the two peaks R(2)
A

(
ν+)

and R(2)
A

(
ν−)

, respectively, is:

�ν{2} ≡ ν+ − ν− = 2Γ0,
(
Peak-to-peak horizontal distance in R(2)

A (ν)
)

, (85)

or, by reference to (72):

�ν{2} = FWHM. (86)

Hence, the value �ν{2} which is read off from the graph of R(2)
A (ν) versus ν yields

directly the FWHM of absorption RA (ν).
All the expressions (70)–(86) are for the general (numerically unspecified) funda-

mental real-valued parameters ν0, Γ0 and d0. For an easier follow-up in the pertinent
graphical illustration, we set:

ν0 = 1, Γ0 = 1, d0 = 1 (Exact input data). (87)

4.1.2 Graphical illustration

Figure 1 shows the non-derivative (m = 0) absorption and dispersion modes on panel
(a). Panel (b) compares the lineshapes of the absorption (m = 0) and its 1st derivative
(m = 1). Likewise, panel (c) compares the profile shapes of the absorption for (m = 0)
and its 2nd derivative (m = 2). The absorption shown in all three panels (a)-(c) is the
reference spectrum. Here, the word “reference” is used to mean that the non-derivative
(m = 0) absorption is the standard spectrum whose peak parameters are also sought
from the dispersion (m = 0) and the derivatives (m > 1) of the absorption. In panel
(a), the absorption peak parameters can be both transparently visualized and directly
read off to verify the exact agreement with the input data. Therein, we can specifically
read off the peak position as ν0 = 0, the FWHM as 2Γ0 = 2 (which yields Γ0 = 1)
and the peak height via RA (ν0) = RA (0) = 1. Thus, the extracted value RA (0)
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Quantitative Visualization of Spectral Parameters from Absorption, Dispersion, First & Second Derivatives

Fig. 1 Quantitative visualization of the peak parameters from the non-derivative and derivative envelopes.
(a) is for the non-derivative spectra (m = 0), whereas (b, c) additionally give the 1st (m = 1) and
2nd (m = 2) derivative spectra, respectively. The non-derivative absorption and dispersion are computed
from (70) and (71), whereas the 1st and 2nd derivative spectra are obtained from (73) and (74), respectively,
with the input values: ν0 = 0, Γ0 = 1 and d0 = 1. (Color online)
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gives d0 = 1, since, by definition, RA (ν0) = d0/Γ0. This completes the exact visual
reconstructions of all the three peak parameters ν0 = 0, Γ0 = 1 and d0 = 1 for
the non-derivative absorptive spectrum in (70). Crucially, however, such a retrieval
need not be only visual. It can also be computational and, in fact, that is what needs
to be done in practice with derivative spectra. To this end, RA (ν) is computed on a
dense grid of the sweep frequencies ν, so that max {RA (ν)} is the exact peak height
which is, by definition, located at ν0. Thus, the peak position and its height are both
computed. The corresponding FWHM can also be computed by the same program.
All that is needed is to simply extract the two intersecting points of RA (ν) with the
line max {RA (ν)} /2 parallel to the frequency abscissa at the half maximum. The
positions of these two intersecting frequencies are located to the right and to the left
of the resonance position ν0, respectively.

The same principle also applies to the dispersion mode (m = 0) seen in panel (a) of
Fig. 1. The only distinction is in the interpretation, because the lineshape of dispersions
and absorptions are different, as is clear from panel (a). Namely, the non-derivative
dispersion (m = 0) has two spectral structures, a maximum and a minimum. The
difference between the frequency locations of these two structures in the dispersion
extremae is the same FWHM which is present in the absorption. Further, the peak
height of the absorption can also be read off from the dispersion as the difference
max{RD(νmax) − min{RD(νmin)} = d0/Γ0. Here, νmin and νmax are the frequencies
at which RD (ν) exhibits its minimum and maximum, respectively. Moreover, the
absorptive resonance frequency ν0 is the halved sum of νmax and νmin in the dispersion.
Further, the extracted Γ0 and d0/Γ0 give d0. Hence, all the absorptive peak parameters
(ν0, Γ0, d0) are also extractable from the dispersion lineshape. This is natural since
the same information is present in both the absorption and dispersion. Generally,
absorptions and dispersions are two entirely equivalent representations of the complex
mode of a given spectrum. If, e.g. absorption is available, dispersion can uniquely be
obtained and vice versa. This is the content of the Kroning-Kramers relationships that
are, from the signal processing standpoint equal to the Hilbert transform [1].

The outlined procedure of reconstructing the peak parameters by shape estimation
alone is not limited to the non-derivative (m = 0) spectra. This is respectively illus-
trated in panels (b) and (c) of Fig. 1 for the 1st (m = 1) and 2nd (m = 2) derivatives
of the absorption spectrum RA (ν) from (70). The lineshape of the 1st derivative spec-
trum (73) on panel (b) is qualitatively reminiscent of the dispersion mode on panel
(a). However, the polarities of the lineshapes for m = 1 in panel (b) and for m = 0
(dispersion) in panel (a) are different (i.e. the minimum becomes amaximum, and vice
versa). Also, as per (80) and (81), the maximum-to-minimum (peak-to-dip) distance
in R(1)

A (ν) panel (b) is different from that in RD (ν) on panel (a) of Fig. 1. Neverthe-
less, this is not an obstacle to the extraction of the correct quantities ν0, Γ0 and d0 of
absorption (m = 0) from the 1st derivative spectrum R(1)

A (ν), as long as the proper
relationships exist connecting the parameters of the pertinent lineshapes in panels (a)
and (b). Precisely such relations are presented in subsection 4.1.1. Overall, the real
part of the 1st derivative envelope permits exact identification of the non-derivative
(m = 0) absorptive peak parameters ν0, Γ0 and d0. The same holds true for the imag-
inary part of the 1st derivative envelope (not shown to avoid clutter).
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Panel (c) of Fig. 1 compares the real part of the 2nd (m = 2) derivative spectrum
with the absorptive (m = 0) peak. It is observed that the curve for m = 2 exhibits
a minimum and two maximae as the side lobes. The distance between the locations
of the two maximae for m = 2 is equal to the FWHM of the absorptive (m = 0)
peak, i.e. it is 2Γ0. The midpoint of this distance for m = 2 gives the peak location
ν0 of the absorption peak. Moreover, the dip in the 2nd derivative envelope from
panel (c) allows determination of the amplitude d0 of the absorption (m = 0) peak.
Namely, the analytical expression for (d2/dν2)RA (ν) gives min

{
(d2/dν2)RA (ν)

} =
−2d0/Γ 2

0 , as per (83). On the other hand, the dip is read off from panel (c) of Fig. 1
as min

{
(d2/dν2)RA (ν)

} = −2. Thus, −2d0/Γ 2
0 = −2 which gives d0/Γ 2′0 = 1 and,

hence, d0 = 1 since according to (85) and (86), Γ0 is directly read off as FWHM/2,
which yields Γ0 = 1. Thus, the lineshape of Re((d/dν)2RA (ν)) for m = 2 allows the
exact extraction of the three input peak parameters of RA (ν) for m = 0 as ν0 = 0,
Γ0 = 1 and d0 = 1.

All these geometrical presentations of the resonance signatures are given here with
the purpose of illustrating what the computer algorithm for non-parametric processing
actually produces and provides as the linelist of spectral parameters. Importantly, this
computation is based only upon the given non-derivative (m = 0) and derivative
(m ≥ 1) envelopes. In other words, the illustrations in Fig. 1 and the accompanying
discussion demonstrate how, in principle, the non-derivative (m = 0) numerically
exact absorptive peak parameters can be reconstructed from the real parts of the 1st
(m = 1) and the 2nd (m = 2) derivatives of the absorptive Lorentzian in (70).
Overall, to reemphasize, the entire procedure is lineshape processing which yields
the exactly reconstructed parameters. Namely, regarding subsection 4.1.1, once the
input parameters ν0, Γ0 and d0 are specified, the corresponding spectra (70) and (71),
as well as the 1st and the 2nd derivatives of RA (ν) are sampled. Subsequently, the
ensuing lineshapes are used in the role of the input data as if the peak parameters
ν0, Γ0 and d0 were never known, and, thus, are the subject of reconstructions. That is
what is illustrated in this subsection by the quantitative visualization of the spectral
resonance fingerprints associatedwith (70) and (71) form = 0, aswell aswith (73) and
(74) for the mth derivatives (m = 1,m = 2) of RA (ν) , respectively. The accuracy of
the retrieved spectral parameters depends on the fine grid of the sweep frequencies for
the reason that no quantification problem is solved (i.e. no eigen-problem, nor secular
equations are tackled). In otherwords, to precisely compute the needed extremal values
of e.g. (d/dν)m RA (ν) with m ≥ 1 from the corresponding input spectrum RA (ν)

for m = 0, the sampling of the running frequency ν must be sufficiently dense. In
practice, within e.g. MRS, it is not the spectra RA (ν) or RD (ν) that are acquired by
encoding. Rather, the time signals are measured and they are subsequently processed
to reconstruct the complex spectral envelopes whose real and imaginary parts RA (ν)

and RD (ν) are (70) and (71), respectively.
If signal processing is carried out by the derivative fast Fourier transform (dFFT),

the coarse Fourier grid for sampling via νF
k (0 ≤ k ≤ N − 1) for the sweep frequency

ν is not appropriate for the outlined procedure. By contrast, when signal process-
ing is performed with the dFPT, the reconstructed spectra are given by the analytical
expressions that can be evaluated at any desired density of the frequency grid. Such a
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circumstance offers the possibility to compute (d/dν)m R (ν) form ≥ 0 with maximal
precision. This, in turn, guarantees the accurate extraction of the spectral parameters
for the sought non-derivative (m = 0) absorptive peaks using the corresponding Padé-
computed derivative total shape spectra (d/dν)m R (ν) for m > 0. Moreover, there is
another, most important difference between the dFFT and dFPT. This concerns noise.
It has been shown in Ref. [28] that the dFPT suppresses noise, whereas the dFFT
amplifies noise. This latter amplification could be somewhat mitigated by apodiza-
tion, e.g. through multiplication of the FID by the product of an exponential and the
Heaviside step function. This is, however, not recommended because such a procedure
would modify the input FID. By contrast, the dFPT uses the raw, unedited FID data,
as the proper starting point to signal processing.

4.2 Shape processing of time signals by the non-parametric derivative fast Padé
transform, dFPT

Here, we extend the procedure from subsection 4.1 to the problem of processing
the given synthesized noiseless time signals. The processing method used will be the
dFPT. The fundamental parameters {νk, dk} from (4) in the input time signal are chosen
to closely represent those reported in Ref. [29] using in vitro MRS to encode FIDs
from human breast cancer tissue, excised at surgery. In Ref. [29], a high magnetic field
strength B0 = 14.1 tesla (T) is used and the associatedLarmor precession frequency νL
is νL = 600megahertz (MHz). This sets the relations for the sweep ν and fundamental
νk frequencies in dimensionless units of parts per million (ppm) via:

ν (ppm) = νH2O (ppm) − ν (Hz)

νL (Hz)
, (88)

Re (νk) (ppm) = νH2O (ppm) − Re (νk) (Hz)

νL (Hz)
, (89)

Im (νk) (ppm) = Im (νk) (Hz)

νL (Hz)
, (90)

where νH2O is the resonance frequency of water (taken here as νH2O = 4.68 ppm).
The fundamental resonance parameters {νk, dk} of 9 absorptive peaks (m = 0) in
concordance with Ref. [29], are given by:

Mk = {Lac,Ala,Cho,PC,PE,GPC, β − Glc,Tau,m − Ins} ,

Re (νk) = {1.332, 1.471, 3.212, 3.220, 3.221, 3.232, 3.251, 3.273, 3.281} ppm,

Im (νk) = 0.0008 ppm (1 ≤ k ≤ K ) ; Im (νk) > 0,

hk = {691.150, 62.832, 7.854, 23.562, 176.715, 17.671, 56.941,
219.911, 70.686} au,

|dk | = {0.325, 0.032, 0.004, 0.012, 0.090, 0.009, 0.029, 0.012, 0.036} au,

ϕk = 0 rad (1 ≤ k ≤ K ) , (91)

where Mk is the kth metabolite, K = 9, dk = |dk | eiϕk and ϕk is the amplitude phase,
presently taken as ϕk = 0 rad (1 ≤ k ≤ 9) so that dk is real (dk = |dk |) and hk is
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the kth non-derivative (m = 0) peak height. Further, au denote arbitrary units. The
bandwidth, BW, in Ref. [29] was BW = 6000 Hz, so that the sampling rate τ for
the encoded complex signal is τ = 1/BW = (1/6000) s. The total signal length in
Ref. [29] was chosen to be extremely long (65536 sampled data points). This was
preconditioned by the FFT which was used in Ref. [29] in the attempt to split apart the
two closest resonances, phosphocholine (PC) at 3.220 ppm and phosphoethanolamine
(PE) at 3.221 ppm separated by a very small chemical shift (0.001 ppm). This exces-
siveness of the long encoded FIDs is unnecessary in Padé-based processing for which
it suffices to use much shorter time signals. As such, we select the total length N of
the synthesized time signal to be N = 2048 which is by a factor of 32 shorter than
the 65536 data vector from Ref. [29]. The model order K is set to be one half of N ,
i.e. K = 1024. It is verified that all the Padé-reconstructed data (spectral envelopes
and the extracted resonance parameters) have fully converged for N = 2048 and
K = N/2. The same results (coincident for the non-parametric and parametric FPT
and dFPT) are obtained for the signal length 4096 and the model order 2048. In this
section, model order K refers to the common degrees of the polynomials in the diago-
nal fast Padé transform,P−

K (z−1)/Q−
K (z−1). The computations will be illustrated for

the Padé variant P−
K (z−1)/Q−

K (z−1), i.e. the FPT(−) and for its derivative version
dFPT(−), through (d/dν)m P−

K (z−1)/Q−
K (z−1), where the differentiation order m is

systematically increased (m = 1, 2, . . . , 50). The independent variable in these Padé
response functions is the harmonic variable z−1 given by z−1 = exp (−2π iντ). Com-
putations can be carried out with the same conclusions using any member of the Padé
table P−

L (z−1)/Q−
K (z−1) or P−

L (ν) /Q−
K (ν) , provided that convergence has been

secured with respect to increasing polynomial degrees L and K . This is the case in
both subsections 4.1 and 4.2, where the para-diagonal (L = K − 1) and diagonal
(L = K ) are used, respectively.

The results of the reconstruction by the FPT(−) and dFPT(−) form = 0 andm ≥ 1,
respectively, are presented in Figs. 2–9. The overall goal is tomake in evidence that the
basic features provided by subsection 4.1 for low derivative orders (m = 1 andm = 2)
are also present for any other value of the positive integerm. The reason for considering
high derivative orders m all the way up to m = 50 in these illustrations is to establish
confidence in reconstruction stability and in the unequivocal separation of the tightly
overlapped PC and PE resonances. Of particular importance for tumor diagnostics
is to unambiguously identify the PC peak and accurately extract its parameters from
which the assigned metabolite concentrations can be determined. This is important
in view of the fact that PC is a recognized cancer biomarker [30–32]. Information
about the abundance of this metabolite in the scanned malignant tissue relative to the
corresponding exceedinglyminimal standard level in the healthy part of the sameorgan
can be invaluable for early tumor diagnosis. This, in turn, could facilitate treatment
management and enhance the chance for tumor control and potential cure of the patient.

The presentation of the illustrations is organized in a way which first shows only
the pattern of the real parts of spectral derivative envelopes for varying differentiation
order m (Figs. 2 and 3). This is followed by comparisons of the lineshapes for the
real and imaginary parts of the derivative envelopes (Figs. 4–6). Finally, the modes
for the real parts and the absolute values (magnitudes) of the mth derivative complex
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Fig. 2 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from
(4) and the spectral parameters (80) according to the FIDs encoded by in vitro MRS from excised human
breast cancer tissue, as per Ref. [29]. (a) is for the non-derivative (m = 0) absorption, whereas (b–f) are
for the real part of the mth derivative complex spectrum, where m varies from 4 to 20. Filled circles are the
input peak heights hk . (Color online)
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Fig. 3 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from
(4) and the spectral parameters (80) according to the FIDs encoded by in vitro MRS from excised human
breast cancer tissue, as per Ref. [29]. (a) is for the non-derivative (m = 0) absorption, whereas (b–f) are
for the real part of the mth derivative complex spectrum, where m varies from 24 to 40. Filled circles are
the input peak heights hk . (Color online)
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Fig. 4 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from
(4) and the spectral parameters (80) according to the FIDs encoded by in vitro MRS from excised human
breast cancer tissue, as per Ref. [29]. The left and right columns are respectively for the real (m = 0, 8, 16)
and imaginary (m = 0, 7, 15) parts of complex non-derivative and derivative envelopes. Filled circles are
the input peak heights hk . (Color online)
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Fig. 5 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from
(4) and the spectral parameters (80) according to the FIDs encoded by in vitro MRS from excised human
breast cancer tissue, as per Ref. [29]. The left and right columns are respectively for the real (m = 0, 24, 32)
and imaginary (m = 0, 23, 31) parts of complex non-derivative and derivative envelopes. Filled circles are
the input peak heights hk . (Color online)
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Fig. 6 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from
(4) and the spectral parameters (80) according to the FIDs encoded by in vitro MRS from excised human
breast cancer tissue, as per Ref. [29]. The left and right columns are respectively for the real (m = 0, 40, 48)
and imaginary (m = 0, 39, 47) parts of complex non-derivative and derivative envelopes. Filled circles are
the input peak heights hk . (Color online)
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Fig. 7 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from
(4) and the spectral parameters (80) according to the FIDs encoded by in vitro MRS from excised human
breast cancer tissue, as per Ref. [29]. The left and right columns are respectively for the real parts and
magnitudes of complex non-derivative and derivative envelopes (m = 0, 8, 16). Filled circles are the input
peak heights hk . (Color online)
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Fig. 8 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from
(4) and the spectral parameters (80) according to the FIDs encoded by in vitro MRS from excised human
breast cancer tissue, as per Ref. [29]. The left and right columns are respectively for the real parts and
magnitudes of complex non-derivative and derivative envelopes (m = 0, 24, 32). Filled circles are the input
peak heights hk . (Color online)
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Fig. 9 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from
(4) and the spectral parameters (80) according to the FIDs encoded by in vitro MRS from excised human
breast cancer tissue, as per Ref. [29]. The left and right columns are respectively for the real parts and
magnitudes of complex non-derivative and derivative envelopes (m = 0, 40, 48). Filled circles are the input
peak heights hk . (Color online)
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envelopes are juxtaposed (Figs. 7–9). These latter illustrations connect the present
work with Ref. [28]. In Figs. 2–9, the reference non-derivative (m = 0) envelopes are
also plotted. Given, as well, are the input data for the peak heights, as these represent
the immediate check of the veracity of the corresponding Padé-reconstructed data.

Figures 2 and 3 show the performance of the derivative spectra (m > 0) relative
to their non-derivative (m = 0) counterpart. Therein, m is varied from 4 to 40 with
the equidistant step of 4, i.e. m = 0,�m, 4 + �m, . . . , 40 where �m = 4. Thus,
Fig. 2 deals with m = 0 (4) 20, whereas Fig. 3 is concerned with m = 0 and m =
24 (4) 40. Here, and throughout, the variation of the derivative order m is symbolized
as m = mmin (�m)mmax which amounts to writing m ∈ [mmin,mmax], where �m
is the increment for augmenting the value of m from its minimum mmin to maximum
mmax.

According to Section 3, the derivative spectral envelopes in any of the discussed
modes (complex, real, imaginary, magnitude) significantly change their extremal val-
ues with the increase of the differentiation order m. Therefore, to directly compare,
e.g. the predicted extremal value from the derivative spectra (especially in the case
of higher m), normalization is required. This is achieved by normalizing the extremal
values for each m > 0 to those for m = 0 in the entire SRI under consideration,
ν ∈ [1.3 − 2.9] ppm.

The present illustration is focused on the narrow frequency range ν ∈ [3.205, 3.290]
ppm inwhich, e.g. max{Re(P−

K /Q−
K )} is at the location 1.332 ppm,which corresponds

to lactate, Lac, as the tallest peak in the non-derivative (m = 0) absorption and mag-
nitude. As such, the normalizations for Figs. 2–9 are:

max{Re (d/dν)m P−
K /Q−

K } = max
{
ReP−

K /Q−
K

}
, m > 0, (92)

max{Im (d/dν)m P−
K /Q−

K } = max
{
ImP−

K /Q−
K

}
, m > 0, (93)

max
{∣∣(d/dν)m P−

K /Q−
K

∣∣} = max
{∣∣P−

K /Q−
K

∣∣} , m > 0. (94)

We emphasize that since this normalization is done only for the tallest peak in the
spectrum, the correct reconstructions would be only those which predict all the input
data for all the other peak heights, as well as the peak positions and peak breadths.

It is seen that the normalized maximal values of the derivative envelopes in their
real (Figs. 2–9), imaginary (Figs. 4–6) and magnitude modes (Figs. 7–9) exactly
predict the input peak heights, marked as small filled circles. Recall that the non-
derivative (m = 0) dispersion (the imaginary part of the complex spectrum) form
panel (a) of Fig. 1 was amenable to extraction of the same fundamental parameters
typically attributed to the corresponding absorption as the real part of the same complex
spectrum for m = 0. This feature should by no means be restricted to the case with
m = 0 alone. The right columns in Figs. 4–6 for the imaginary parts of the high-
order derivative envelopes also predict all the correct peak heights hk of the non-
derivative (m = 0) absorption. The remaining input parameters (Reνk, Imνk, |dk |)
are extractable as well from these imaginary derivative spectra by reference to the
pertinent connecting expressions derived similarly to Sections 2 and 3.

Figures 7–9 compare the derivative spectra in the modes of the real parts and
magnitudes of the corresponding derivative complex envelopes. It is noted here that
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the predicted normalized peak heights of both mentioned modalities are the same and
that they all coincidewith the associated input data for hk . The other input fundamental
parameters are retrieved from the lineshapes in Figs. 7–9 along the procedure similar
to that explained for Figs. 2–6.

As seen in the illustrations, the real and imaginary derivative spectra exhibit a
number of spectral structures. For example, the real part of themth derivative spectrum
possessesm zeros andm+1maximae (positive peaks) orminimae (negative peaks, i.e.
dips).Moreover, for the real and imaginary parts of themth derivative spectrumwithm
even and odd, respectively, the strongest maximum is always located at the resonance
frequency ζk and the sidelobes are placed symmetrically around ζk . Specifically, in
Figs. 2–9, only a handful of these sidelobes appear, whereas most of them are invisible
due to their small intensities. On the other hand, for any given m, the magnitude
spectrum has no sidelobes, since their underlying real and imaginary parts cancel out.
In other words, the magnitude mode of the mth derivative spectrum, being strictly
positive-definite, has a single peak per component at each resonance chemical shift.
From the supplied analytical expressions, the fundamental peak parameters of the
non-derivative (m = 0) absorption mode can be deduced directly from those for the
magnitudes of the mth derivative spectra with m > 0.

5 Discussion

5.1 General aspects of derivative spectroscopy

The derivative fast Padé transform, dFPT, has recently been introduced [28] as a
super-high-resolution signal processor for exact quantification with reliance upon
reconstruction of total shape spectra (envelopes) alone. No fitting of envelopes is
employed. Instead, the non-parametrically computed envelopes in the customary non-
derivative fast Padé transform, FPT, are subjected to the differentiation operators
to yield the dFPT. The non-parametric envelope in the FPT is the quotient of two
frequency-dependent polynomials PL/QK whose expansion coefficients are uniquely
determined only in terms of the input original (i.e. unedited) time signal points.
Application of the differentiation operator (d/dν)m to the envelope PL/QK yields
the derivative envelope (d/dν)m PL/QK in the dFPT. The derivative orderm is a non-
negative integer and ν is the sweep linear frequency.Mathematically, (d/dν)m PL/QK

is an analytical expression for any chosen m because PL/QK is itself also a closed
formula. Specifically, the derivative envelope (d/dν)m PL/QK in the FPT is the Bell
polynomial. This latter derivative response function, due to the seed spectrum PL/QK ,
is a linear combination of rational polynomials that, hence, also belong to the cate-
gory of the Padé approximants. Importantly, in this latter superposition, each rational
polynomial has Ql

K (l = 1, 2, . . . ,m) in their denominators. This implies that the
derivative envelope (d/dν)m PL/QK in the dFPTwill possess the same polar structure
as that in the original seed spectrum PL/QK from the FPT. Such a circumstance per-
mits the establishment of the relationships among the resonance quantifiers extractable
from the non-parametric derivative (m > 0, dFPT) and the parametric non-derivative
(m = 0, FPT) envelopes. The gist of the matter is that the higher-order derivative
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envelopes generated non-parametrically by lineshape processing in the dFPT can
unequivocally reconstruct all the components of the input time signal, including those
leading to the most tightly overlapped resonances in the reconstructed spectrum. This
occurrence makes the fundamental parameters (complex resonance frequencies and
amplitudes) of the time signal indeed extractable from the derivative envelopes in
the dFPT. Such spectral parameters from the dFPT are found to coincide with the
corresponding values obtained by explicitly solving the quantification problem in the
parametric non-derivative FPT (m = 0). This is of utmost importance, in view of the
fact that especially the tightly overlapped resonances hidden in paired or aggregated
spectral structures cannot even be visualized as separate peaks, let alone quantified by
any non-parametric, non-derivative signal processor, including the FPT.

The mechanism by which the non-parametric derivative envelope can uncover its
masked component spectra is in the suppression or elimination of the interference
effects among the constituent resonances. The derivative transform (d/dν)m in the
dFPT makes the component peaks thinner and taller, relative to the non-derivative
seed envelope PL/QK . This is simultaneously coupled with the flattening of the peak
baselines in the derivative envelopes (d/dν)m PL/QK . Thinner peaks amount to the
resolution enhancement of the derivative versus non-derivative envelopes. Flattened
peak baselines imply noise suppression. Therefore, signal-to-noise ratios (SNR) are
improved when passing from the non-derivative to derivative envelopes.

All the expounded facets of the dFPT are jointly confirmed in Ref. [28] and in
the present study. In the current work, the explicit analytical expressions are given,
connecting the resonance parameters from the non-parametric dFPT and the exact
components of the input time signal. These formulae relate the component lineshapes
of derivative spectra to the non-derivative absorption mode of the individual reso-
nances. This is prioritized because the absorptive component spectra have the most
straightforward interpretation, in terms of the peak positions, peak widths and peak
heights. These latter parameters also provide the peak areas. The special significant of
the peak area (particularly for magnetic resonance spectroscopy), MRS, is in its direct
proportionality to the concentrations of metabolites detected in the scanned tissue.
The derivative aspects of signal processing lead to the establishment of the derivative
magnetic resonance spectroscopy, dMRS. When dMRS is accompanied by the dFPT,
it is anticipated that the ensuing enhanced resolution and increased SNR will be of
critical importance for dMRS. It is precisely the resolution and SNR improvements
that are most needed in the use of magnetic resonance spectroscopy within clinical
diagnostics.

5.2 Derivative magnetic spectroscopy as a practical strategy: Its potential to aid
in cancer diagnostics

Magnetic resonance spectroscopy, MRS, and spectroscopic imaging, MRSI, have
provided noteworthy improvements in cancer diagnostics compared to anatomical
imaging via MRI, as reviewed e.g. in Refs. [2,26,33–36]. Notwithstanding these
important achievements, the diagnostic accuracy of MRS and MRSI is still gen-
erally insufficient for the stringent requirements of personalized cancer medicine
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[10,12,37,38]. In some applications, notably for timely and accurate detection of
ovarian cancer, MRS and MRSI have heretofore failed to provide sufficient added
value to be applied in clinical practice [16,39]. The main reason for this inadequacy
has been reliance upon ambiguous methods for analyzing encoded MRS data, based
upon Fourier processing and eventual subsequent fitting. This deficiency has been
overcome by the parametric, quantification-equipped fast Padé transform, FPT, which
has been extensively validated for processing MRS time signals encoded in vivo or
associated with cancerous tissues, as well as with benign pathology that can be dif-
ficult to distinguish from malignancy [2,8–12,14–16,40]. As a complement to the
parametric FPT, the non-parametric dFPT provides a strategy that would be of imme-
diate practical importance in the clinical setting. Namely, the complete clinical MRS
information would be directly visualized and quantified using the dFPT. In particular,
overlapping peaks would be fully resolved by the dFPT and the key peak parameters:
position, full-width at half maximum, and peak height could be directly read off from
the plotted lineshapes. The concentrations of all the diagnostically relevantmetabolites
would then become immediately accessible to the clinician.

This derivative spectroscopy would greatly facilitate implementation of MRSI,
which is most often needed within cancer diagnostics, to provide volumetric coverage.
ThroughMRSI the chemical specificity ofMRS is merged with the spatial localization
techniques of MRI to provide multiple MRS signals over a volume of interest of tissue
[41,42]. The major challenge entailed in MRSI is that thousands of noisy spectra
must be processed. It is fully expected that derivatives of total shape spectra via the
dFPTwould bemost helpful for puttingmolecular imaging throughMRSI into clinical
practice.

It should also be noted that attempts have beenmade to use higher field scannerswith
the aim of improving SNR in MRS and MRSI for cancer diagnostics. These attempts
were motivated by the insufficient accuracy of Fourier-based in vivo MRS and MRSI
with clinical (1.5 or 3T) MR scanners for identifying cancers and distinguishing these
from benign lesions [43–45]. However, at higher field strengths, measured linewidths
are generally wider due to increased susceptibility effects [46]. Overall, the use of
higher field scanners has frequently failed to provide the anticipated improved cancer
detection [26,43–45]. Moreover, the enormous costs [47] would preclude such an
approach for widespread applications, especially in screening/surveillance. In sharp
contrast, via dFPT-based dMRS and dMRSI, improved SNR is achieved together with
narrowing of the linewidths. This efficient approach is anticipated to be applicable on
standard clinical scanners (1.5 T), and would thus offer the further benefit of cost-
effectiveness.

In the present study and in Ref. [28] on dMRS, the dFPTwas applied to time signals
akin to those encoded from breast cancer, according to Ref. [29]. The clinical-public
health importance was a major motivation for selecting this problem, especially in
light of the positive impact of timely breast cancer detection upon survival [48–50].
The breast cancer biomarker phosphocholine, PC, which very closely overlaps with
phosphoethanolamine, PE, was identified and exactly quantified by non-parametric
analysis through the dFPT.

Notably, PC is also a biomarker of other cancers [30–32], possibly due to loss
of tumor suppressor p53 function [51]. Dense spectra with numerous other overlap-
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ping resonances of diagnostic importance are also seen in brain tumors, prostate,
lung, ovarian and other cancers [10,14,16,19,52]. Synergistic development has thus
far been witnessed, whereby each step forward with Padé-optimized MRS in cancer
diagnostics, informs and advances other areas [19]. With non-parametric quantifica-
tion using derivative spectra in the dFPT, we anticipate that the implementation of
in vivo encoded dMRS and dMRSI for early cancer diagnostics as well as for other
aspects of personalized cancer care will soon be forthcoming.

6 Conclusions and perspectives

The present study expands further our earlier investigation of derivative signal pro-
cessing applicable to all spectroscopic methods in vastly different fields. It is the
versatile resonance effect, as a physical phenomenon, which brings many seemingly
unrelated problem areas under a common umbrella. Resonance is chiefly manifested
in a sudden pattern change through an abrupt switch of the spectral lineshape profile
from its rising to a falling behavior. In an absorption spectrum, this appears as a peak
whose top (maximum) is centered precisely at the resonance frequency. The measure
of the spread of the lineshape in the absorption mode is the profile breadth called the
full width at half maximum. Thus, to quantify an absorptive resonance, it suffices to
reconstruct the peak position, width and height.

For a pure absorption, the resonance phases is equal to zero and, thus, a typical pro-
file encountered across inter-disciplinary fields, is a bell-shaped symmetric Lorentzian
spectral lineshape. The area underneath such a peak is proportional to the number of
species responsible for generating the resonance effect. Such a proportionality is direct
in magnetic resonance spectroscopy, MRS, which, due to this occurrence, informs
directly about the concentration of metabolites from the scanned tissue of the patient
in clinical diagnostics. This is very important compared to some other spectroscopies
necessitating more quantities (e.g. molar extinction coefficients) to assess the abun-
dance of the active species that produced the detectable resonance signal. Overall, for
unambiguous interpretation of spectra in different modes, it is always necessary to
relate these profiles to purely absorptive lineshapes.

In reality, however, dealing with experimental measurements such as encoded time
signals, the computed spectra are mixtures of absorptive and dispersive lineshapes.
This occurs because the phases of the constituent resonances are non-zero, and, more-
over, they may widely differ from each other across the entire range [−π,+π ].
Absorption and dispersion are out of phase, in the sense that their forms, just like the
sine and cosine trigonometric functions, are mismatched due to an angle shift of π/2.
The absorption-dispersion interference distorts the spectral profile relative to the sym-
metric bell-shape Lorentzians. This obstacle constitutes the so-called ”phase-shift”
problem which impacts detrimentally onto the quantification as well as interpreta-
tion of spectra and/or the underlying time signals. A number of sources can yield the
phase shift impediment to adequate spectral evaluation and estimation. For example,
in localized MRS, vibrations of the gradient coils at acoustic frequencies can pro-
duce a time-varying magnetic field added to the static magnetic field. The resulting
frequency modulation affects the resonance phases in the encoded time signal. More-
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over, the encoded signal phase is altered by a time delay between switching the radio
frequency excitation pulse and the beginning of the data acquisition. In addition to
these and other disturbances, the omnipresent stochastic noise in measurements can
modify all the fundamental resonant phases.

The just emphasized fact that the interference effect among resonances can bemedi-
ated by non-zero phases provides a guide to tackle the enumerated problems whose
solutions could, in turn, simultaneously improve resolution and signal-to-noise ratio,
SNR. This indicates that interference of resonances could be reduced by weakening
the role of phases. Such a weakening would diminish the chance of artefacts caused
by phase shifts among resonances. Moreover, reduction of interference of resonances
would improve resolution. The reason is that weaker interactions of resonances would
allow their clearer separation. Most importantly, this would increase the possibil-
ity of disentangling overlapped resonances hidden in compound spectral structures.
The latter possiblity is the main task of all spectroscopies, including MRS, whose
encoded time signals yield spectra abundant with unresolved resonances. Due to non-
uniqueness, nomeaningful metabolite assignment can be attributed by non-parametric
processing to any unsplit resonance buried in aggregated lineshape profiles.

In order to be implemented, the outlined descriptive guide needs an appropriate
logistics, and the question arises as to which of the mathematical operations would be
pertinent. The sought operation should be sensitive to detecting subtle changes, invis-
ible in an overall envelope comprised of a number of different components. A visual
manifestation of such changes in a seemingly smooth curve is the slope alteration. A
slope change in a curve corresponds to the physical notion of the rate of occurrence
of an elementary event in a composite phenomenon. The first-order rates are mathe-
matically described by the first derivative operation of a given function with respect
to its independent variable. In MRS, such composite functions are total shape spectra
or envelopes (comprised of a number of components associated with metabolites),
and the independent variable is the linear sweep frequency ν. Derivative transform
(d/dν)m for non-negative integers m applied to a given spectrum leads to derivative
spectroscopies, such as the derivative MRS, i.e. dMRS.

It is shown that dMRS becomes an especially powerful diagnostic modality if
teamed with the derivative fast Padé transform, dFPT. In the dFPT, the spectral enve-
lope is in the form (d/dν)m PL (ν) /QK (ν). Here, the seed (non-derivative, m = 0)
spectrum is the quotient PL (ν) /QK (ν) of the numerator PL and the denominator
QK polynomials. It is demonstrated that all the mentioned problems are simultane-
ously solved by the dFPT. Such an achievement widens the range of applications of
the non-parametric dFPT relative to the non-parametric FPT. In particular, the dFPT
reduces resonance interference effects by weakening the phase influences. This dimin-
ishes the chance for lineshape distortions caused by phase shifts among the constituent
resonances of an envelope. Moreover, with increasing derivative order m, the peaks
become thinner, and their baseline systematically flattens. As a result, both resolution
and signal-to-noise ratio, SNR, are improved.

In the dFPT, both the seed PL/QK and derivative (d/dν)m PL/QK spectra are
generated non-parametrically, i.e. without solving the quantification problem. Yet,
all the fundamental parameters (frequencies and amplitudes) are reconstructed by the
dFPT. This is done by using the presently listed expressions that connect the resonance
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parameters of any mth derivative lineshape (m > 0) and the non-derivative (m = 0)
absorption profile.

Overall, by the exclusive reliance upon lineshape estimation, the dFPT reconstructs
the correct peak positions, widths and heights of all the physical resonances, including
those that are tightly overlapped and remain unresolved in all the non-parametric or
shape estimators, including the FPT. It is anticipated that the dFPT will find useful
applications in all spectroscopies. This is presently evidenced for the case of derivative
magnetic resonance spectroscopy, dMRS, whose overall performance is expected to
be significantly improved when signal processing is carried out by the derivative fast
Padé transform, dFPT.
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23. S. Williams, Dž. Belkić, K. Belkić, Potential and obstacles of MRS in the clinical setting, inMagnetic
Resonance Imaging and Spectroscopy, Volume 3, Comprehensive Biomedical Physics, ed. by Dž.
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