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Abstract This study deals exclusively with total shape spectra (envelopes). Yet, the
goal is to exactly reconstruct all the components of the given envelope by relying
only upon non-parametric signal processors (shape estimators). To this end, the so-
called derivative envelope spectra are investigated. A derivative spectrum is the result
of the application of the differentiation transform (d/dν)m to the given conventional
spectrum. Here, non-negative integer m is the order of differentiation and ν is the
real linear sweep frequency. For the customary envelope (the zeroth-order derivative,
m = 0), we use the non-parametric fast Padé transform to generate the derivative
fast Padé transform (dFPT). Explicit computations are carried out by successively
increasing the differentiation order m from low through intermediate to high values of
derivatives of complex envelopes. The dFPT can disentangle the spectrally crowded
regions by splitting apart any multiplet of closely packed peaks. Hidden resonances,
even those that are very weak, can be not only visualized, but also exactly quantified
by the dFPT, despite performing shape estimations alone. Most importantly, while the
envelopes in the derivative fast Fourier transform exhibit huge noise amplificationwith
increasing m, the same-order of the differentiation transform in the dFPT acts as an
effective noise suppressor. The results of the dFPT are illustrated for the envelopeswith
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overlapping peaks stemming from synthesized noise-free and noise-contaminated time
signals associated with encoding by in vitro proton magnetic resonance spectroscopy
(MRS) of breast cancer tissue. This new methodology is anticipated to significantly
enhance resolution as well as signal-to-noise ratio and the overall performance of
single-voxel MRS in clinical diagnostics. It is also expected to be of special benefit
for volumetric coverage of the scanned tissue by magnetic resonance spectroscopic
imaging.

Keywords Magnetic resonance spectroscopy · Breast cancer diagnostics ·
Mathematical optimization · Fast Padé transform · Derivative spectra

Abbreviations

Ala Alanine
AR Auto-regression
ARMA Auto-regressive moving average
au Arbitrary units
β-Glc β-glucose
BW Bandwidth
Cho Choline
dDFT Derivative discrete Fourier transform
DFT Discrete Fourier transform
dFFT Derivative fast Fourier transform
dFPT Derivative fast Padé transform
dMRS Derivative magnetic resonance spectroscopy
dMRSI Derivative magnetic resonance spectroscopic imaging
FFT Fast Fourier transform
FID Free induction decay
FPT Fast Padé transform
FWHM Full-widths at half-maximum
GPC Glycerophosphocholine
Hz Hertz
Lac Lactate
MA Moving average
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
m-Ins Myoinositol
NMR Nuclear magnetic resonance
PA Padé approximant
PC Phosphocholine
PE Phosphoethanolamine
ppm Parts per million
RMS Root mean square
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s Second
SNR Signal-to-noise ratio
SRI Spectral region of interest
T Tesla
Tau Taurine
TSP 3-(Trimethylsilyl-)3,3,2,2-tetradeutero-propionic acid
ww Wet weight

1 Introduction

In the present study, we are furthering our earlier investigations on non-parametric
estimations of lineshapes from total shape spectra or envelopes. With this goal, the
high-resolution signal processing method, the fast Padé transform (FPT), is used. In
e.g. the diagonal form of the FPT, the frequency envelope spectrum in the complex
mode is given by the quotient of two polynomials PK /QK of the common degree K .
The numerator PK gives the spectral zeros and suppresses noise by a moving average
(MA) process. The denominator QK yields the spectral poles, and the expansion coef-
ficients of this polynomial coincide with those of an auto-regressive (AR) process. The
combination of AR andMA processes yields the method known as the auto-regressive
moving average (ARMA) [1]. The zeros and poles of the complex envelope PK /QK

are determined exclusively by PK and QK , respectively. This occurs because the spec-
trum PK /QK is ameromorphic function. Ameromorphic function is a functionwhose
only singularities are poles.

By its default rational polynomial representation, PK /QK , the diagonal FPT is of
a polar structure, which naturally yields the peaks as the main signature of spectral
envelopes. By comparison, the fast Fourier transform (FFT), as a low-resolution pro-
cessor, is a single polynomial, which has no polar structure. Critically, the FFT cannot
suppress noise.

Generally, if two or more resonances overlap too closely, they would invariably
appear as a single peak in an envelope. Even more misleading, such a compound
resonance could be an absorptive, symmetrical Lorentzian with no hint whatsoever
pointing to its constituent components. This is a very common occurrence for total
shape spectra reconstructed by all signal processers. For example, the FFT as a non-
parametric processor cannot visualize hidden resonances in composite peaks. The
same applies to other non-parametric processors with shape estimation alone (i.e.
without resorting to quantification, which is in the mathematical literature known as
spectral analysis).

The exception is the non-parametric FPT, for which the situation is sharply differ-
ent. In the FPT, both theAR andMApartitions can be exploited to split apart the tightly
overlaid peaks and, thus, visualize the hidden component resonances, in compound
spectral structures of envelopes. This observation was the motivation of our earlier
studies [2,3] to introduce the so-called “partitioned envelope spectra” in the FPT.
Therein, it was shown that the unique combination of the pertinent portions of the AR
andMAprocesses produced the partitioned envelope spectra that clearly visualized the
most tightly overlapped resonances. This is a very important accomplishment demon-
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strating that quickly, prior to any quantification, the partitioned envelopes from the
FPT can peer into the hidden structure of total shape spectra. Such a hint could advan-
tageously guide the subsequent local spectral analysis by focusing on the crowded
regions of high spectral density. Although remarkable in itself, this achievement was,
nevertheless, still in the realm of qualitative estimations. This occurred because the
visualized overlapped components did not exhibit e.g. the correct peak heights, nor
their correct peak height ratios. Note that the partitioned envelopes in the FFT exhibit
no separation of peaks that in the non-partitioned Fourier spectra appear as overlapped
resonances.

In the current work, we proceed one critical step further by inquiring as to whether
it would be possible to both visualize and correctly quantify the components of com-
pound resonances by the non-parametric FPT through solely shape estimation of
spectral envelopes. The answer to this query is presently investigated by introducing
the derivative fast Padé transform (dFPT). The dFPT gives the derivative envelopes by
applying the differential operator (d/dν)m to the seed total shape spectrum PK /QK ,

generated non-parametrically in the customary FPT (zeroth-order derivative, m = 0).
Here, ν is the sweep real-valued linear frequency. The dFPT, exclusively by way of
shape estimations of envelopes, and without any partitioning, is examined with regard
to visualization and quantification of the hidden components of perfectly symmetri-
cal absorptive Lorentzians. This is studied for time signals and the ensuing envelope
spectra typically encountered in magnetic resonance spectroscopy (MRS).

The chosen examples refer to noise-free and noise-corrupted time signals associated
with in vitro proton MRS data encoded from breast cancer tissue. This illustration is
selected because of its utmost clinical relevance. Therein, the prime goal of early
tumor diagnostics (that, in turn, significantly enhances the chances of successful
treatment and potential cure) is to reliably identify a recognized cancer biomarker,
phosphocholine (PC), which is completely masked by a closely adjacent metabolite,
phosphoethanolamine (PE). Namely, the PC peak is wholly dominated by the PE
resonance, and their chemical shift separation is only 0.001 parts per million (ppm).

Noise-contaminated MRS data are especially demanding for separately visualizing
and simultaneously quantifying overlapped resonances. This task is expected to be
flagrantly failed by the derivative fast Fourier transform (dFFT), where the detrimental
influence of noise would be amplified by the differentiation operator (d/dν)m . In sharp
contrast, the same differentiation transform (d/dν)m is foreseen as an efficient noise
suppressor in the derivative fast Padé transform, dFPT.

Single voxels used in MRS may not be sufficiently representative of the status of
the scanned tissue. That is why, whenever there is a doubt, multi-voxels are employed
in scanning, yielding volumetric coverage of the examined tissue. This magnetic res-
onance (MR) modality is called magnetic resonance spectroscopic imaging (MRSI).
It advantageously unifies both magnetic resonance imaging (MRI) and MRS to yield
anatomic (morphologic) and functional (metabolic) information, as reviewed in e.g.
Ref. [4]. There are, however, three “price tags” for such a combined diagnostic modal-
ity. Firstly, signal-to-noise ratio (SNR) is deteriorated in MRSI relative to MRS.
Secondly, MRSI is more time consuming than MRS. It requires keeping the patient
longer in the scanner during data acquisition from multiple voxels. Thirdly, analysis
of the encoded data is computationally far more demanding in MRSI than in MRS
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because the former is tasked with reconstructing and interpreting thousands of spectra
to extract (by quantification) the diagnostically relevant information.

It is this threefold obstacle which has hampered further exploration of MRSI in the
clinical setting. Because of the obvious advantage of volumetric tissue coverage in
MRSI with respect to MRS, and due to the appearance of the same type of encoded
time signals in both modalities, it is important to ascertain whether there is a way to
simultaneously surmount all three mentioned difficulties.

The parametric FPT has heretofore come to the rescue with its superior high-
resolution byway of solving the quantification problem.Moreover, the non-parametric
FPT for partitioned spectral envelopes can disentangle overlapped resonances in the
multiple voxels of the tissue scanned byMRSI. This partitioned-spectra-guidedMRSI
can substantially reduce the large dimensionality of the initial problem and set the stage
for an efficient local quantification in narrower frequency ranges. Thus, to complete the
extraction of spectral information, the partitioned non-parametric FPT still relies upon
quantification by the subsequent parametric FPT to obtain the actual concentrations.
The reason is because the partitioned non-parametric FPT itself gives only qualitative
information, as it performs estimations of lineshapes of spectral envelopes alone.

In the present paper,weproceedbeyond the traditionally conceived shape estimators
by asking the question: is there a way of making these non-parametric processors
intrinsically quantitative (by accurate reconstruction of the position, width, height
and phase of each component peak of all the physical resonances without any fitting)?
Specifically,we seek to find outwhat else could be in the store of the FPT that could rely
only upon non-parametric shape estimation and yet would yield exact quantification.
The answer is sought in the derivative fast Padé transform, dFPT. It is this processor
which is potentially of utmost usefulness for both MRS and MRSI. Further, it is
foreseen that the dFPT could increase the spectral resolution elsewhere, since the
presently studied time signals are ubiquitous across interdisciplinary research fields.

2 Theory

2.1 Time signals in quantum physics

The research field of signal processing abounds with different categories of methods.
The two main categories are “shape” and “parameter estimators”. Traditionally, shape
estimation is qualitative, as it is restricted to reconstruction of spectral lineshapes.
Parameter estimation is quantitative, since it yields the peak positions, widths, heights
and phases of resonances. Such parameters are important because they supply e.g.
the critically important information about the abundance or concentrations of vari-
ous components in a mixture of substances from the investigated matter. This topic
goes under the general umbrella of versatile investigations of the structure of matter.
The theoretically analyzed data, the input time signals, that offer the opportunity to
peer into the structure of various forms of matter, are measured by a myriad of spec-
troscopies (infrared, ultraviolet, nuclear magnetic resonance, …) and spectrometries
(ion-cyclotron resonance mass spectrometry, …).
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Time signalsmeasured (recorded, acquired, encoded) by thesemodalities stem from
vastly different transitions of nuclei, atoms or molecules from one to another energy
level of a system in the matter under study. Such transitions result from various types
of interactions of external perturbations or agents with the considered system. Exter-
nal perturbations are either waves (electromagnetic fields,…) or particles (electrons,
ions,…) and the targeted systems are atomic nuclei, atoms, molecules, etc. In mag-
netic resonance spectroscopy,MRS, used e.g. in cancer diagnostics, the non-invasively
studied matter is tissue (or more precisely the tissue’s molecules called metabolites),
and the external perturbations are electromagnetic fields (static as well as gradient
magnetic fields and radiofrequency pulses).

The transitions of the system, on sub-nuclear, nuclear, atomic ormolecular levels are
quantized in energies, spins and other observables. These all obey the rules of quantum
physics which dictates which transitions are allowed and which are forbidden. Quan-
tum physics predicts the amplitudes of the probabilities for these transitions to occur.
It also predicts the waveforms of the time signals c (t) emitted as a response of the
system’s states to external perturbations. Likewise, quantum physics gives the spec-
trum G (ω) , the lineshapes and the peak (or resonance) parameters (position, width,
height, phase). Universally, these time signals are described by quantum mechanical
auto-correlation functions through the time evolution operator (the generator of the
system’s dynamics) which gives:

c (t) =
K∑

k=1

dke
−iωk t ; c (t) = 0 for t < 0, Im (ωk) < 0, (1)

where t is the continuous time variable and K is the finite or infinite number of com-
ponents (K = 1, 2, . . . .). The complex-valued pair {ωk, dk} (1 ≤ k ≤ K ) represents
the system’s eigen-parameters, consisting of the eigen-frequencies {ωk} and eigen-
amplitudes {dk}. The digitalized version of (1) is obtained by discretizing t according
to t = nτ (n = 0, 1, 2, . . . , N − 1) , with τ being the sampling rate, so that:

cn =
K∑

k=1

dke
−iωk nτ ; (0 ≤ n ≤ N − 1) , (2)

where N is the total signal length. The total duration of the time signal (or total
acquisition time) T is given by T = Nτ.

2.2 Frequency spectra in quantum physics

The quantum-physics spectrum G (ω) associated with the auto-correlation function
c (t) with T = ∞ is defined at the angular frequency ω by the Green function:

G (ω) =
∞∫

0

dteiωt c (t) . (3)
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For c (t) given by (1), the integral in (3) yields:

G (ω) = i
K∑

k=1

dk

ω − ωk
. (4)

This spectrum is a sum of K components, each of which is a complex-valued
Lorentzian (response function) of the form of a rational polynomial:

Gk (ω) = idk

ω − ωk
. (5)

The sum over k in (4) can be explicitly carried out with the following result:

G (ω) = PK−1 (ω)

QK (ω)
. (6)

Quantities PK−1 (ω) and QK (ω) are polynomials of degree K −1 and K , respectively,
whose expansion coefficients are formally identifiable from (4) in terms of ωk and dk .

2.3 Rational polynomials in signal processing

From the mathematical viewpoint, the quantum-mechanically predicted spectrum
G (ω) in (6), as a rational polynomial (a ratio of two polynomials), is recognized
as the para-diagonal Padé approximant (PA). In signal processing, the PA is known as
the fast Padé transform, FPT [1,5]. This leaves little doubt as to which of the existing
signal processors ismost suitable for spectral analysis. Conversely, the spectrumG (ω)

in (4), derived by integration (3) of the time signal c (t) from (1), can alternatively be
generated through decomposition of the Padé polynomial quotient PK−1 (ω) /QK (ω)

from (6) into itsHeaviside partial fractions.Note that both the kth componentGk (ω) in
(5) and the total shape spectrum G (ω) in (6) are the para-diagonal Padé approximants.
In practice, PK−1 (ω) and QK (ω) in (6) are, of course, not deduced from (4). Rather,
it is the other way around. First, PK−1 (ω) and QK (ω) are determined. Then, the
partial fractions are made for PK−1 (ω) /QK (ω) to give the Heaviside representation
(4).

The FPT provides both shape and parameter estimations. For a given power series,
with signal points {cn} (n = 0, 1, 2, . . .) as the expansion coefficients, Padé-based esti-
mation of spectral lineshapes is carried out by computing, e.g. the general quotients
PL (ω) /QK (ω) of two polynomials PL(ω) and QK (ω). Such ratios are given in terms
of the signal points alone, {cn} (0 ≤ n ≤ N − 1) . The customary non-parametric pro-
cessing (shape estimation) in the FPT is completed as soon as the complex envelope
spectrum PL (ω) /QK (ω) is reconstructed. On the other hand, the parameter estima-
tion by the FPT is performed by explicitly solving the problem of spectral analysis
(the quantification problem). This is an inverse problem which, for the known set
of signal points {cn} (0 ≤ n ≤ N − 1) , is tasked to reconstruct the K fundamen-
tal frequencies {ωk} and fundamental amplitudes {dk} that need to cohere with the
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quantum-mechanical prediction (2). In that process, the model order K (the num-
ber of physical resonances) is also treated as yet another reconstruction parameter.
Algorithmically, the parametric FPT first finds {ωk} as the eigen-roots of the char-
acteristic denominator polynomial QK (ω) by solving the so-called secular equation,
QK (ω) = 0. Subsequently, the amplitudes {dk} are determined analytically as the
Cauchy residues of e.g. the non-degenerate spectrum PL (ω) /QK (ω)with non-equal
eigen-frequencies:

PL (ω)

QK (ω)
=

K∑

k=1

dk

ω − ωk
, dk =

[
PL (ω)

(d/dω) QK (ω)

]

ω=ωk

. (7)

Here, one eigen-amplitude dk corresponds to a single eigen-frequency ωk . In the
degenerate version of the spectrum PL (ω) /QK (ω), some of the eigen-frequencies
coincide. This causes more than one eigen-amplitude to correspond to a single eigen-
frequency. If themultiplicity of the kth eigen-frequenciesωk ismk , the Cauchy residue
of PL (ω) /QK (ω) yields the degenerate eigen-amplitude dk,mk as:

dk,mk =
[

PL (ω)

(d/dω)mk QK (ωk)

]

ω=ωk

. (8)

In this case, the Heaviside partial fraction decomposition of the degenerate spectrum
PL (ω) /QK (ω) is:

PL (ω)

QK (ω)
=

J∑

k=1

M̃k∑

mk=1

dk,mk

(ω − ωk)
mk

, (9)

where M̃k = max {mk} , M̃1 + M̃2 + ... + M̃J = K , and J is the total number of
coincident eigen-frequencies ωk . This generalization of (7) means that the kth eigen-
frequency ωk is repeated mk times (mk > 1) in the spectrum PL (ω) /QK (ω) from
(9). The lineshapes of non-degenerate and degenerate spectra are different in that the
former (7) and the latter (9) are Lorentzian and non-Lorentzian functions, respectively.

2.4 Explicit reformulation of signal processing in terms of quantum-mechanical
spectral analysis

The two pillars of the Schrödinger picture of quantum physics are the non-stationary
(time-dependent) and stationary (time independent) Schrödinger equations, respec-
tively:

i
∂

∂t
�(t) = ��(t), (10)

�	k = ωk	k, 1 ≤ k ≤ K , h̄ = h

2π
≡ 1, (11)
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where h is Planck’s constant. In the so-called natural units, we have h̄ = 1, in which
case, frequency and energy are synonymous. Quantity � is the system’s operator
(dynamics generator), which in physics is a hermitean Hamiltonian (�† = �) for
stationary states with real eigen-energies or eigen-frequencies. Hamiltonian operators
consist of the kinetic energy operators and the operators of the interaction potentials
among the constituents of the system. For dissipative systems, � is non-hermitean
(�† �= �) and ωk is a complex eigen-value (ωk = Reωk + iImωk) of the eigen-
problem (11). The eigen-function 	k describes the kth state of the system. Stationary,
stable states of infinite lifetimehave line (or stick) spectrawith zero-valued peakwidths
(Imωk = 0). Decaying or radiative states for non-hermitean � have spread-out peaks
of non-zero widths (Imωk �= 0). These are metastable states that last for a certain finite
period and then die out at the times longer than the reciprocal of their widths, 1/Imωk .
The set of the eigen-solution {ωk, 	k} of the eigen-problem (11) is called a spectrum,
in the terminology of mathematics. That is why obtaining the spectral set {ωk, 	k} is
referred to as “solving the spectral analysis problem”, or “spectral analysis”, for short.
Energies are quantized (discretized) in quantum physics. This means that transition
from one to another stationary state is possible only if the external energy absorbed by
the system is not smaller than the difference between the two considered energy levels.
The main postulate of quantum physics is information completeness. It hypothesizes
that everything one could possibly know (measure, compute) on a general system is
contained in (11). Thus far, experimental measurements have abundantly and univer-
sally confirmed the validity of this hypothesis. This, in turn, justifies the foundation
of quantum physics on the basis of the discrete transition energies (frequencies) and
the underlying Schrödinger Eq. (11).

As to (10), the non-stationary state�(t) describes the time evolution of the system
from a beginning instant (say t = 0) with the initial configuration �0 (supposed to be
known) to any subsequent time t. For conservative systems, � is time-independent,
so that (10) can be solved, albeit formally, with the boundary condition �(0) = �0 :

�(t) = U (t)�0,U (t) = e−i�t , (12)

where U (t) is the time evolution operator. Solution (12) of (10) is the cornerstone of
the determinism of quantum physics. It tells us that for the known � and �0, the state
of the system is completely determined by �(t) . In other words, for the known initial
state �0 at t = 0, the state �(t) of the system at any subsequent time t > 0 will also
be known for the given �. To this end, all that is needed is to prepare the initial state
�0 of the system, as e.g. a well-localized wave-packet, and subsequently propagate it
in time by means of (10) or, more explicitly, through the time evolution operator U (t)
from (12). Solution (12) is formal because the action of the exponential operator in
U (t) must be defined and implemented.

Traditionally, physicists perform computations by solving either (10) or (11) sepa-
rately. However, it is advantageous to combine (10) and (11) in the same computation.
This is not only practical from the computational viewpoint, but it is also fundamen-
tal. It unifies the stationary and non-stationary representations into a single formalism
which, in turn, exhibits all the facets of the two separate frameworks. This is accom-
plished by exploiting the mentioned completeness relation, which reads as:
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K∑

k=1

πk = 1̂, πk = |	k)(	k | , (13)

where πk and 1̂ are the projection and unity operators, respectively. Equation (13) is
also known as the closure formula. Here, the soft brackets are used to indicate that for
non-hermitean operators, the scalar (or inner) products are symmetric, (χ |ξ) = (ξ |χ).
This differs from the Dirac nomenclature, 〈χ |ξ 〉 = 〈ξ∗|χ∗〉, where the star superscript
symbolizes complex conjugation. Thus, using the identity U (t) = 1̂ · U (t) in (12), it
follows:

U (t) =
K∑

k=1

πke
−iωk t , (14)

�(t) =
K∑

k=1

d1/2
k e−iωk t	k, (15)

d1/2
k = (	k |�0) . (16)

It is seen that the single Eq. (15) incorporates both the non-stationary (10) and station-
ary (11) representations. It explicitly uses the completeness or closure relation (13)
and, therefore, the entire information about the system is ingrained in (15). Moreover,
the form (15) gives the explicit prescription for dealing with an exponential form
of operator � in the evolution generator U (t) = exp (−i�t) from (12). The only
physically-based prior information for (15) is the pair of the two main determinants of
the system, {�0,�}. This fundamental feature is carried over to any physical quantity
derived from (15), such as the auto-correlation function defined by:

c (t) = (� (t) |�0) . (17)

The name auto-correlation function comes from the occurrence that the state � of the
system correlates to itself at two different instances, t and 0. Upon insertion of �(t)
from (15) into c (t) from (17), it follows:

c (t) =
K∑

k=1

dke
−iωk t ; Im(ωk) < 0, (18)

dk = (	k |�0)
2 , (19)

where the symmetry of the scalar product is used, (	k |�0) = (
�0|	k

)
. The result

(18) is identical to (1). This establishes the equivalence between time signals and auto-
correlation functions. The derivation of auto-correlation function (17) is performed
using quantum physics. Therefore, the outlined formalism brings together quantum
physics and the field of signal processing. Since quantum mechanics is a complete
physics theory, such a merging enriches the status of signal processing to the level of
quantum-mechanical signal processing [1].
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Why would this matter? It matters immensely because signal processing tradition-
ally introduces time signal (1) or (2) in an artificialmanner, as an “adhoc”mathematical
model through a linear combination of complex damped harmonics. This empirical
procedure is followed by imposing some arbitrarily chosen fitting constraints onto
the set {ωk, dk} treated as the freely adjusting parameters. No such constraint needs
to be associated with the input data for c (t) when the time signal is from the onset
based upon the quantum-mechanical auto-correlation function (18). This is the case
because the measured input time signal itself already contains the entire information,
which is fully captured by the completeness relation (13). The latter is wholly present,
as per the outlined derivation, in the quantum-mechanical auto-correlation function
(18). Overall, we see that rather than considering e.g. {dk} as an adjusting parameter
in various fitting procedures, quantum mechanics gives the physical meaning to this
quantity. As per the key relation dk = (	k |�0)

2 from (19), the parameter dk represents
the squared complex amplitude of the transition probability from the initial state �0
to the kth eigen-state 	k of the system. In quantum-mechanical signal processing, the
eigen-problem (11), or its equivalent U (τ ) 	k = e−iωkτ	k, where U (τ ) = e−i�τ , is
solved through diagonalization of� orU(τ ) on a given basis set of expansion functions
{ζr } (r = 1, 2, 3, . . .) . For example, ζr can be taken as �r , which is the discretized
version of the Schrödinger state from (12), �r = e−i�rτ�0. In this latter basis, the
general transition probability amplitude between any two states or configurations �r

and �s is proportional to the matrix element (�r |U (τ )| �s) = cr+s+1. Generally,
even though the dynamic operators� and U(τ ) are not given, the eigen-problems can,
nevertheless, be solved if the matrix elements of these operators are known. In the
Schrödinger basis {�r }, these matrix elements (�r |U (τ )| �s) are simply the auto-
correlation functions, or equivalently, the time signal points cr+s+1, that are the known
input data. This is precisely how quantum physics, in a “nutshell”, intertwines with
the field of signal processing. For in-depth exposition, see the textbook [1].

The frequency-domain counterpart of the time-domain auto-correlation function
(18) is the Green function G (ω) given by the rational polynomial (6). Thus, the
quantum-mechanical Green’s function G (ω) is the paradiagonal Padé approximant,
as the quotient of two polynomials PK−1 (ω) /QK (ω) .

The performed exposition explicitly shows several key characteristics:

(a) Quantum physics can be the backbone of signal processing,
(b) Quantum-mechanical cornerstone entities, the non-stationary and stationary

Schrödinger equations, can also be the algorithms for spectral analysis in sig-
nal processing,

(c) Quantum-mechanical time-dependent auto-correlation functions are linear combi-
nations of complex damped exponentials as the physically conceived time signals,

(d) Quantum-mechanical frequency spectra are the quotients of two polynomials that,
by definition, are the Padé approximants, and

(e) Quantum-mechanical spectral analysis yielding {ωk, dk} necessitates both the
eigen-frequencies ωk and the eigen-functions 	k to be found. However, the PA
avoids altogether reconstruction of 	k since the eigen-amplitudes are computed
from (7) or (8) with no recourse to the eigen-functions, as opposed to (19). This
is advantageous both computationally and for the reason of accuracy, because 	k
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are not variational, i.e. the eigen-functions contain first order errors, in contrast to
the eigen-frequencies, ωk .

Thus, across interdisciplinary fields, any time signal taken to be a sum of complex
attenuated harmonics, as in (2) will invariably yield the frequency spectrum in the
explicit form of the Padé approximant via (4) or (6). This means that all the estimators
using a time signal (2) to reconstruct the corresponding spectrum, in fact, try to com-
pute the Padé approximants (4) or (6)with algorithms of varying complexity. However,
the gist of the matter is in that for a time signal (2), the exact spectrum is the Padé
approximant in the two equivalent representations, the Heaviside partial fractions (4)
and its summed form—the polynomial quotient (6). So why not use the actual Padé
approximants to arrive at the exact result with the most accurate/efficient/robust com-
putational algorithm of linear algebra, consisting of solving a single system of linear
equations for the expansion coefficients of the denominator polynomial, QK (ω)? Let
us take the FFT as an example to illustrate this point. Using time signal (2) as a set of
the input numbers, the FFT evaluates the integral (3) approximately as a Riemann sum
at a finite set of the Fourier grid frequencies. This gives the discrete Fourier transform
(DFT) which is, in practice, computed by the Cooley–Tukey fast algorithm to yield
the FFT. However, the Riemann sum itself is the least accurate numerical quadrature
for the integral (3). On the other hand, the exact result for the same integral (3) is
the PA from (4) or (6). Thus, by not accounting for the structure (2) of cn , the FFT
replaces the inherent Padé exact result (6) by its least accurate approximation—the
Riemann sum. This is the origin of the low resolution of the Fourier analysis in signal
processing.

2.5 Derivative envelope spectra as differentiation transforms of conventional
envelopes

SpectrumG (ω) is a complex function of real independent variableω. For visualization
purposes, its absorption or magnitude modes are usually plotted. By definition, the
magnitude mode has no negative lobes, i.e. it is a spectrum with exclusively positive-
definite lineshapes for any phase ϕk of dk, where dk = |dk | exp (iϕk) . In general, and
especially for encoded time signals, phases {ϕk} of amplitudes {dk} are non-zero. This
yields asymmetrical lineshapes with alternating polarity (peaks, dips), such that the
real part Re (G (ω)) of spectrum G (ω) is invariably not positive-definite throughout
the entire Nyquist range of frequencies. In such cases, the so-called zero- and/or first-
order phase corrections (eiφ0 , eiφ1) are usually introduced tomultiply all the time signal
points {cn} in an attempt to produce nearly positive-definite absorptive lineshapes. This
cannot ever be fully satisfactory, since no two phase corrections can possibly make
positive-definite the entire real part of a complex envelope. The reason is that each of
the K phases {ϕk} (1 ≤ k ≤ K ) of dk determines the overall lineshape of an envelope
through their constructive and destructive interference.

Total shape spectra in either the absorption or magnitude modes are insufficiently
informative for dense spectra with overlapping resonances, especially when these
are strongly coupled together in their close proximity. One way to try to circumvent
this obstacle is to go beyond envelopes and reconstruct the underlying components
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through parametric processing, i.e. quantification. An alternative way is to use only
shape estimation tomake the differential transformG(m) (ω) of the non-parametrically
computed envelope G (ω):

G(m) (ω) =
(

d

dω

)m

G (ω) , (20)

wherem is a positive integer (m = 1, 2, 3, . . .) . The goal is to see whether for the seed
envelope spectrum G (ω) , generated by means of the non-parametric FPT, the result-
ing derivative spectra G(m) (ω) could be capable of yielding accurate peak parameters
(positions, widths, heights). This novel version of the FPT is termed the derivative fast
Padé transform, dFPT.

Specifically, despite relying upon purely non-parametric processing for shape esti-
mation (i.e. without ever resorting to the solution of the quantification problem), we
want to find out whether the dFPT could be capable not only of visually disentangling
tightly overlapping peaks, but also of exactly reconstructing their positions, widths
and heights. This task will be carried out by applying the dFPT to time signals typi-
cal of those encoded by MRS for breast cancer. This modality of MRS and MRSI is
called derivative magnetic resonance spectroscopy (dMRS) and derivative magnetic
resonance spectroscopic imaging (dMRSI), respectively.

2.5.1 Noise in the derivative Fourier spectral envelopes

For the time signal c (t) from (1) of a hypothetical infinite duration (T = ∞) , the mth
derivative F (m)(ν) of the one-sided Fourier integral from the rhs of (3) reads as:

F (m) (ν) ≡
(

d

dν

)m

F (ν) =
∞∫

0

dte2π iνt {
(2π i t)m c (t)

}
. (21)

From here, for any realistic time signal of finite duration (T < ∞) , upon truncation
of the upper integration limit from tmax = ∞ to tmax = T , the derivative discrete
Fourier transform (dDFT), amenable to signal processing, is given by:

F (m)
k ≡

(
d

dν

)m

Fk =
N−1∑

n=0

e2π ink/N cn,m; cn,m = (2π inτ)m cn, (22)

Fk =
N−1∑

n=0

e2π ink/N cn . (23)

Here, Fk from (22) is the customary (the zeroth-order derivative , m = 0) DFT. As
mentioned, in the DFT and dDFT, the Fourier grid frequencies are used. They are
given by ωF

k = 2πk/T or νFk = k/T (τ = T/N ) , where the angular or cyclic (ω)

and the linear (ν) frequencies are connected by the usual relation ω = 2πν. Thus,
in the Fourier analysis, any spectrum is a stick spectrum which exists only on the
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Fourier grid frequencies
{
ωF

k

}
(0 ≤ k ≤ N − 1). By contrast, in the Padé analysis,

every spectrum exists at any frequency ω or ν. The mth derivative dDFT is gener-
ated by first multiplying the input time signal cn by the power function (2π inτ)m

before taking the discrete Fourier transform. With augmentation of time t , however,
the power function tm in (21) amplifies noise in the product tmc (t). In other words, the
multiplier tm (m = 1, 2, . . .) of c (t) in (21) weights more heavily at longer compared
to shorter instants within the complete time duration T of c (t) . For measured time
signals, mainly noise is counted/recorded/encoded at longer instants, and, hence, the
weight function tm enhances noise with increasing order m of differentiation. Thus,
the increased order of differentiation m acts as a noise amplifier in the dDFT. Of
course, the same obstacle also exists in the dFFT which is obtained by applying the
Cooley–Tukey fast algorithm to the dDFT [1,6].

2.5.2 Noise in the Padé derivative spectral envelopes

The stated severe problem with the power function tm in the dFFT does not exist at all
in the dFPT. The reason is that the dFPT applies the operator (d/dν)m directly to the
results of integral (3), which is the spectrum PL (ω) /QK (ω), rather than to exp (iωt)
from the integrand of the same integral. This implies that the offending product tmcn (t)
is never set up in the dFPT. Instead, the unaltered input data set {cn} is used to generate
the seed spectrum PL (ω) /QK (ω) to which the mth derivative (d/dν)m is applied.
In this way, the original noise from {cn} is treated by the non-derivative envelope
PL/QK in the FPT, to which the differentiation transform is applied, yielding the
dFPT. Thus, the additional noise through tmcn (t) is never generated since the latter
product is absent from the dFPT, as stated. It should be mentioned that both PL/QK

and (d/dν)m PL/QK are given by their analytical expression, such that no numerical
differentiation (which is prone to errors) is ever used.

3 Implementation of the theory

Let us assume that we are given an exact Green’s function, which is a total shape
complex-valued spectrum (envelope):

G(z−1) =
∞∑

n=0

cnz−n, cn =
K∑

k=1

dke
iωk nτ , ωk = 2πνk, Im(ωk) > 0, (24)

where z−1 = e−iωτ . Note that in (24) we have a different convention for Im(ωk)

relative to (1) or (2). In (24), the quantity z−1 is the harmonic variable, and the discrete
time signal points {cn} are the expansion coefficients in thisMacLaurin power series of
G(z−1). The diagonal fast Padé transforms, FPT(±), are defined by the relationships:
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FPT(±) : P±
K (z±1)G(z−1) − Q±

K (z±1) = O±(z±2K±1), (25)

where symbols O±(z±2K±1) are the remainders given by their series (to be identified
later on), beginningwith the terms z±2K±1. In (25), quantities P±

K

(
z±1

)
and Q±

K

(
z±1

)

are polynomials of common degree K , defined as:

P±
K (z±1) =

K∑

r=r±
p±

r z±r , Q±
K (z±1) =

K∑

s=0

q±
s z±s, r+ = 1, r− = 0, (26)

where p±
r and q±

s are the expansion coefficients. The mathematical symbols for
the FPT(±) are G±

K

(
z±1

)
that are also called the Padé-Green functions. Neglect of

O± (
z±2K±1

)
in (25) amounts to approximating therein the exact input function

G
(
z−1

)
from (24) by G±

K

(
z±1

)
:

P±
K (z±1)G(z−1) − Q±

K (z±1) ≈ 0, (27a)

∴ G(z−1) ≈ G±
K (z±1), (27b)

∴ P±
K (z±1)G±

K (z±1) − Q±
K (z±1) = 0. (27c)

This procedure identifies the FPT(±) as the rational polynomials G±
K

(
z±1

)
deduced

through division of both sides of (27c) by Q±
K

(
z±1

) �= 0 :

FPT(±) : G±
K (z±1) = P±

K (z±1)

Q±
K (z±1)

. (28)

Note thatworkingwith the para-diagonal or diagonal forms of the FPT(±) is equivalent,
as it is with any other polynomial degrees L and K in P±

L /Q±
K . The practical reasons

for preferring to use P±
K−1/Q±

K or P±
K /Q±

K , i.e. L = K −1 (para-diagonal) or L = K
(diagonal) is that in these two cases the errors in the FPT(±) are the smallest and,
moreover, convergence exhibits the best features [1].

In an analogy to the exact infinite-rank Green function G
(
z−1

)
from (24), we can

also obtain the equivalent representations of the FPT(±) given by the power series
expansions of G±

K

(
z±1

) :

G±
K (z±1) =

∞∑

m=0

a±
m z±m . (29)

These are recognized as the MacLaurin series that are the developments of G±
K

(
z±1

)

around the points z±1 = 0, respectively. The general analytical forms of the coef-
ficients a±

m are defined by the mth derivatives
(
d/dz±1

)m
of G±

K

(
z±1

)
taken at the

expansion points z±1 = 0 of the series in (29):
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a±
m = 1

m!
{(

d

dz±1

)m

G±
K

(
z±1

)}

z±1=0
. (30)

Using (27b) and comparing (24) with (29) gives, by reference to the theorem on the
uniqueness of the power series expansion [1], the following relation:

a±
m = cm (0 ≤ m ≤ 2K ) . (31)

Thismeans that the fast Padé transforms FPT(±) of order K reconstruct exactly the first
2K + 1 time signal points {cm} (0 ≤ m ≤ 2K ) from the single input series G

(
z−1

)

from (24). Moreover, this comparison permits identification of the remainders O± in
(25) as:

O± (
z±2K±1

)
=

∞∑

m=2K+1

a±
m z±m . (32)

It is clear from here that indeed O± (
z±2K±1

)
are the power series beginning with the

terms z±2K±1, as stated earlier.
Overall, it follows that the fast Padé transforms FPT(±) possess the following three

important features:

(i) The expansion coefficients
{
a±

m

}
of G±

K

(
z±1

)
contain the identical information

provided by the expansion coefficients
{

p±
r , q±

r

}
in the Padé rational polynomials

P±
K

(
z±1

)
/Q±

K

(
z±1

)
from (26).

(ii) The errors of the FPT(±) invoked by the passage from (25) to (27a) are the
remainders O± (

z±2K±1
)
that are obtainable from the analytical formulae in

(32), once the expansion coefficients
{
a±

m

}
become available.

(iii) For the same truncation level of the input MacLaurin series in (24) and the
two output Padé-MacLaurin series in (29), the developments from (29) contain
twice more information, which testifies to the extrapolation capability (i.e. the
predictive power) of the FPT(±).

All three features (i)–(iii) of the FPT(±) are rooted in the expansion coefficients
{
a±

m

}

of G±
K

(
z±1

)
from (29). Therefore, it would be important to investigate the nature of

these coefficients to see whether they could possibly yield further information beyond
(i)–(iii). This goal ismotivated by the fact that the sets

{
a±

m

}
are, in fact, never explicitly

generated in applications of the FPT(±). By the definitions in (30), it follows that a±
m for

any fixed m can give the local information, i.e. the information at the expansion points
z±1 = 0 alone. However, the sets

{
a±

m

}
(m = 0, 1, 2, . . .), by way of series in (29) are

traced back to the Padé quotients P±
K

(
z±1

)
/Q±

K

(
z±1

)
that themselves yield the global

information, i.e. the information in the entire complex z±1 planes, respectively. Both
representations P±

K

(
z±1

)
/Q±

K

(
z±1

)
in (28) and the Padé-MacLaurin series in (29)

are analytical functions of z±1, meaning that they are continuous and differentiable
any number of times with respect to variables z±1. In fact, it is this analyticity, with the
accompanying differentiability, that provides the general expansion coefficients a±

m as
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the mth derivatives of P±
K

(
z±1

)
/Q±

K

(
z±1

)
taken at z±1 = 0. Thus, every coefficient

a+
m or a−

m , being itself a provider of local information, when collected in the assemblies{
a+

m

}
(m = 0, 1, 2, . . .), or

{
a−

m

}
(m = 0, 1, 2, . . .), can yield the global information

about the entire spectra (response functions) by way of G±
K

(
z±1

)
. In other words, it is

entirely equivalent to give either P±
K

(
z±1

)
/Q±

K

(
z±1

)
or, alternatively, the expansion

coefficients
{
a±

m

}
to be used in the series in (29). This equivalence is simply an exten-

sion of the well-known fact that an ordinary classical polynomial (Legendre, Laguerre,
Hermite, Gegenbauer,…), say VM (u) , can equivalently be introduced either through
its generating closed formula or via the recursion relation or by a set of the known
expansion coefficients {υm} to be used in the power series VM (u) = ∑M

m=0 υmum .

Note also that according to the generalized Weierstrass theorem [7], every function
can be expanded to within arbitrary accuracy in terms of rational polynomials, i.e. the
Padé approximants. This is an extension of the usualWeierstrass theorem according to
which a linear combination of ordinary polynomials can be used for precise represen-
tations of a given function. The advantage of the generalized Weierstrass theorem is
that the basis of rational polynomials applies to a wider class of functions that possess
singularities, such as poles, branch points and branch cuts [1].

The key question which arises from this parallel is: would it then be possible to
glean global information by evaluating the inner part (d/dz±1)m G±

K

(
z±1

)
of the curly

brackets in (30) at any z±1, instead of merely at z±1 = 0 (the latter points are used to
generate a±

m )? The answer to this question is in the affirmative. To explore this novel
avenue, we shall analyze the mth derivative spectra in the FPT(±) defined at any z±1

by:

G±(m)
K (z±1) =

(
d

dν

)m

G±
K (z±1). (33)

This introduces the derivative fast Padé transforms, dFPT(±), in the following explicit
forms:

dFPT(±) : G±(m)
K (z±1) =

(
d

dν

)m P±
K (z±1)

Q±
K (z±1)

. (34)

Operationally, the dFPT(±) are accomplished in two steps. The first step consists of
the standard FPT(±) that use the Green’s polynomial G N

(
z−1

)
defined by:

G N (z−1) ≡
N−1∑

n=0

cnz−n, (35)

where cn is taken from (24). This is a truncated form of the Green’s function G
(
z−1

)

from (24) to be used to extract the expansion coefficients {p±
r , q±

s } of the polynomials
{P±

K , Q±
K }, respectively. The second step in the dFPT(±) is to compute the mth deriva-

tive spectra G±(m)
K

(
z±1

)
using (33) for the sets 1 ≤ m ≤ M±, where M± are any
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positive integers. These computations, in both the 1st and the 2nd step , can be per-
formed either for a single model order K or for a set of values K = Kmin (�K ) Kmax,
i.e. K = Kmin, Kmin+�K , Kmin+2�K , . . . , Kmax, where�K is a fixed rate of suc-
cessively increasing Kmin. Recall that in the 1st step, employing the standard FPT(±),
both sets of Padé polynomials P±

K

(
z±1

)
and Q±

K

(
z±1

)
are extracted from the defi-

nition of the type (27a) where G
(
z−1

)
from (24) is replaced by its truncated version

G N
(
z±1

)
from (35) via:

P±
K (z±1)G N (z−1) = Q±

K (z±1). (36)

To this end, using (36), only a single system of linear equations
∑K

s=0 q+
s cm+s = 0 or∑K

s=0 q−
s cm+k−s = 0 is solved in the FPT(+) or FPT(−), respectively, to generate the

expansion coefficients {q±
s } (0 ≤ s ≤ K ) of the denominator polynomials Q±

K

(
z±1

)
.

The coefficients {p±
r } of the numerator polynomials P±

K

(
z±1

)
are obtained from

their analytical expressions in terms of {cn, q±
s } as p+

m = ∑K−m
r=0 cr q+

r+m and p−
m =∑m

r=0 cr q−
m−r , respectively [8].

Once the spectra P±
K

(
z±1

)
/Q±

K

(
z±1

)
in the FPT(±) become available in the

explained way, the response functions dFPT(±) are completed by generating the mth
derivatives of P±

K

(
z±1

)
/Q±

K

(
z±1

)
with respect to ν. The ensuing mth derivative

spectra G±(m)
K

(
z±1

)
from (34) in the dFPT(±) are computed from the general analyti-

cal formulae for (d/dν)m P±
L

(
z±1

)
/Q±

K

(
z±1

)
for an arbitrary positive integer m and

for any degrees L and K of polynomials P±
L

(
z±1

)
and Q±

K

(
z±1

)
. This analytical

formula is expressed through the Bell polynomials [9]. As stated, the diagonal forms
dFPT(±) from (34) are specified for the same degree of the numerator and denominator
polynomials, i.e. for L = K .This sets the stage for implementation of the dFPT(±),
the outcomes of which are found in the Results section.

Importantly, throughout this section, the focus is on the derivatives G±(m)
K

(
z±1

)

of the total shape spectra or envelopes P±
K

(
z±1

)
/Q±

K

(
z±1

)
. The seed spec-

tra P±
K

(
z±1

)
/Q±

K

(
z±1

)
are supposed to be generated by the non-parametric

FPT(±). Therefore, the ensuing derivative spectra (d/dν)m P±
K

(
z±1

)
/Q±

K

(
z±1

)
in

the dFPT(±) remain within the same realm of non-parametric estimations. In gen-
eral, as mentioned, non-parametric estimators are qualitative, since they are restricted
to predictions of sole lineshapes of resonances. The main interest in introducing the
dFPT(±) for m > 0 is to see whether a “quantum leap” would be possible by obtaining
the exact quantitative information (peak positions, widths, heights) for envelopes with
overlapping peaks through exclusively shape estimations. In the present illustrations
of the dFPT(±) the main focus is placed upon MRS. However, since time signals of
the type from (24) are ubiquitous across interdisciplinary fields, the dFPT(±) can also
be applied to the other kind of earlier mentioned spectroscopies. Likewise, this can be
done in a number of different investigative areas that search the inner structure of sub-
stances e.g. phenomena on powder diffraction [10], X-ray photo-electron spectroscopy
[11], etc.
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4 Results

4.1 The input data

As stated earlier, the present illustrations are concernedwith synthesized (or simulated)
complex-valued time signals, or equivalently, free induction decay (FID) curves. Both
noise-free and noise-corrupted FIDs are considered herein, in order to systematically
benchmark the derivative fast Padé transform, dFPT.

4.1.1 Noiseless time signals

Anoiseless FID, {cn}, of length N is of the formgiven in (24). Therein, the fundamental
parameters, the complex eigen-frequencies {νk} and complex amplitudes {dk} are
selected to correspond to the specific in vitro MRS time signals encoded from breast
cancer tissue obtained from patients undergoing surgical treatment, as reported in Ref.
[12]. They read as:

Mk = {Lac,Ala,Cho,PC,PE,GPC, β − Glc,Tau,m − Ins} ,

Re (νk) = {1.332, 1.471, 3.212, 3.220, 3.221, 3.232, 3.251, 3.273, 3.281} ppm,

Im (νk) = 0.0008 ppm (1 ≤ k ≤ K ) ; Im (νk) > 0,

|dk | = {0.325, 0.032, 0.004, 0.012, 0.090, 0.009, 0.029, 0.012, 0.036} au,
ϕk = 0 rad (1 ≤ k ≤ K ) , (37)

where Mk is the kth metabolite, K = 9, dk = |dk | eiϕk , ϕk is the amplitude phase,
presently taken as ϕk = 0 rad (1 ≤ k ≤ 9), and au denote arbitrary units.

4.1.2 Specifics of the encoded time signals on which the simulation is based

The FIDs from Ref. [12] were encoded at a high static magnetic field, about 14 tesla
(T), i.e. B0 = 14.1T which corresponds to the precession Larmor frequency (νL)

of 600MHz. The bandwidth (BW) was 6 kHz, which for a complex FID gives the
sampling time τ = 1/BW ≈ 0.1667ms. The total signal length N ′ was N ′ = 216 =
65536, which yields the total acquisition time T ′ as T ′ = 10.923 s. In Ref. [12], the
chemical shifts and concentrations of 9 metabolites were assigned to the metabolites
listed in the 1st row of (37). Metabolite concentrations Ck were expressed in terms of a
reference concentrationCref . For the reference substance, resonating at zero frequency,
ν = 0, a molecule (not present in the tissue) was taken to be 3-(trimethylsilyl-)
3,3,2,2-tetradeutero-propionic acid (TSP), with Cref= 0.05mM/g (millimole per gram)
of the wet weight (ww) of the scanned tissue. As such, the magnitude |dk | and Ck

are connected with the relation |dk | = Ck/ (25µM/g), where µM is micromole.
Conversely, for the given |dk |, the metabolite concentration are obtained from the
expression:

Ck = AkCref , (38)

123



J Math Chem (2018) 56:268–314 287

whereAk is the area of the kth absorptive Lorentzian. The area, a Lorentzian lineshape,
is given by:

Ak = |dk |
2

. (39)

The kth peak height hk is the ratio of |dk | and the fullwidth at halfmaximum {FWHM}k
(proportional to Imνk) of the same Lorentzian:

hk = |dk |
ξk

, ξk ≡ {FWHM}k . (40)

For the input spectral parameters from (37), the peak heights, full widths at half
maximae, areas and concentrations are listed as follows:

Mk = {Lac,Ala,Cho,PC,PE,GPC, β-Glc,Tau,m-Ins} ,

Re (νk) = {1.332, 1.471, 3.212, 3.220, 3.221, 3.232, 3.251, 3.273, 3.281} ppm,

hk = {691.150, 62.832, 7.854, 23.562, 176.715, 17.671, 56.941,
219.911, 70.686} au,

{FWHM}k = 0.001257 ppm (1 ≤ k ≤ 9) ,

Ck = {8.125, 0.8, 0.1, 0.3, 2.25, 0.285, 0.725, 2.8, 0.9}µM/g, (41)

where for an easier mapping, the top 2 rows of (37) are repeated.

4.1.3 Theoretical noise model for the encoded time signals

All encodedFIDs are noise-contaminated.Noise can stem frommany sources.Taken as
a collective noise, such perturbations of physical time signals can, to a large extent, be
viewed as random noise. Therefore, it is appropriate to model the encoded FIDs as the
noiseless complex time signals {cn} (0 ≤ n ≤ N − 1) additively modified as cn + rn .
Here, the random numbers {rn} (0 ≤ n ≤ N − 1) are taken as the complex Gaussian
zero-mean white noise (orthogonal in the real and imaginary parts) of fixed prescribed
standard deviations. We express a chosen standard deviation σ as the product of the
noise level λ and the root-mean-square (RMS) error of the noiseless FID, {cn} . The
RMS is the quadratic mean of the noiseless magnitude |cn| of cn , as given by:

σ = λ · RMS0, (42)

RMS0 =
(
1

N

N−1∑

n=0

|cn|2
)1/2

, (43)

where the subscript “0” in (42) and (43) indicates that this RMS is for the noiseless FID,
{cn} , with σ = 0. In the present noise model, the noise level λ in a noisy time signal
{cn + rn} is expressed by percentage of the RMS0 of the noiseless FID, {cn} , via (42)
and (43). Thus, stating that a noisy FID, {cn + rn}, has e.g. 10% noise contamination
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signifies that the noisy RMSσ (σ �= 0) is 10% of “the noiseless root-mean-square”,
RMS0,or equivalently:

RMSσ = 0.1RMS0. (44)

Note that it is appropriate to measure the noise level using the RMS error because
it reduces the bias of the estimated noise variance. Moreover, this noise quantifier
converts the signal oscillations to the variations of the power (or total energy) of the
signal across the entire bandwidth, BW. In such away, the RMS is seen to be ameasure
of the dynamics of the time signal.

4.1.4 Total length of the synthesized time signals

Given the abundantly established high-resolution capabilities of the non-parametric
and parametric FPT [1,5,13–22], it is not necessary to presently perform exhaustive
sampling of the input time signals. This applies to both synthesized and encoded FIDs.
Thus, we are justified in severely truncating the long FID length N ′ = 65536 from
encoding in Ref. [12], where the total acquisition time T ′ was T ′ = N ′τ = 10.923 s,
as stated. Thus, we sample the set {cn} with cn from (24) by using a total signal length
N which is 32 times shorter than N ′, i.e. N = N ′/32, so that N = 2048. By keeping
the same BW as in Ref. [12], τ (in s) = 1/6000,the total duration T of the simulated
time signal becomes a fraction of a second (s), relative to about eleven seconds for T ′
[12], i.e., T = Nτ = 2048/(6000Hz) ≈ 0.341s.

4.1.5 Dimensionless frequencies

Throughout MRS and indeed nuclear magnetic resonance (NMR) spectroscopy, fre-
quency is given in dimensionless units, parts per million, ppm. Resonance frequencies
are proportional to the static magnetic field strength B0. Thus, expressing resonances
in hertz (Hz) would render cumbersome and impractical comparisons of spectra com-
puted with FIDs encoded at different values of B0. On the other hand, when ppm
are used to measure frequencies, the locations of the peaks of all the metabolites
are always the same regardless of B0. The reason for which such a miniscule order
of magnitude (10−6) is chosen to measure frequencies through ppm is in the very
nature of MRS and NMR spectroscopy. Larmor precession frequencies of the bulk
magnetization vector �M of the scanned sample around �B0 are of the order of 106 Hz
(e.g. νL = 63.864MHz for clinical MR scanners with B0 = 1.5T). On the other
hand, e.g. resonance widths are usually of the order of Hz, i.e. a millionth fraction
of Larmor frequencies. The weakness of the overall physical effect from e.g. proton
MRS and the ensuing encoded time signal or FID comes from the occurrence that MR
relies upon a tiny difference (1 spin in 106) of the spin population of the only two
quantum-mechanically allowed orientations of �M (parallel and anti-parallel to �B0).

Any real sweep frequency ν given in Hz is transferred to the dimensionless fre-
quency unit in ppm by the relation:
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ν (ppm) = νH2O (ppm) − ν

νL
, (45)

where νL is the Larmor frequency inMHz, and νH2O (ppm) is the resonance frequency
of water, H2O. We set νH2O = 4.68 ppm in (45), as this is the customary value.
Note that νH2O (ppm) may be different for changing temperature of the surrounding
environment (νH2O = 4.68 ppm usually corresponds to room temperature). Both the
sweep frequency ν and the real fundamental or eigen-frequencies (resonant or nodal,
natural frequencies) that are chemical shifts, Re (νk), are expressed in ppm through
(45). On the other hand, the fundamental imaginary frequencies, Im(νk), given in Hz
are converted to ppm without any translational scaling factors:

Im (νk) (ppm) = Im (νk) (Hz)

νL
. (46)

4.2 Output data (reconstructed spectra)

As per the input parameters listed in (37), there are two distinct and well-separated
frequency bands assigned to different metabolite molecules. On the far right band,
there exist lactate (Lac) and alanine (Ala), at 1.332 and 1.471ppm, respectively.
The Lac resonance is the most abundant in the entire zoomed frequency win-
dow ν ∈ [1.332, 3.281] ppm, and its concentration is 8.125 µM/g of ww of
tissue, as seen in (41). In the 2nd band, which is a narrowly congested fre-
quency interval ν ∈ [3.212, 3.281] ppm, there are 7 metabolites: choline (Cho,
3.212ppm); phosphocholine, PC (3.220ppm); phosphoethanolamine, PE (3.221ppm);
glycerophosphocholine (GPC, 3.232ppm); beta-glucose (β-Glc, 3.251 ppm); taurine
(Tau, 3.273 ppm) and myo-Inositol (m-Ins, 3.281 ppm). In this band, the most abun-
dant metabolite is Tau with concentration 2.8µM/g of ww of tissue, as per (41). The
smallest chemical shift difference between any two adjacent metabolites in (37) or
(41) is 0.001 ppm, and this occurs between PC and PE. These latter two metabo-
lites sharply differ in their abundance. Their respective concentrations are: CPC =
0.3 µM/g and CPE = 2.25µM/g of ww of tissue. Since all the resonances have the
same widths, while the magnitude |dPE| = 0.090 au is larger than |dPC| = 0.012 au,
it follows that the PE peak is by a factor of 7.5 taller (hPE = 176.715 au) than that of
PC (hPC = 23.562 au). These introductory remarks should facilitate inspection and
quantitative visual comparisons of the PC and PE peak heights after their splitting
in the Padé-generated derivative total shape spectra. In the dFPT, our main focus is
precisely on the tightly overlapped PC and PE resonances. This is the case because PC
is wholly swamped by its dominant neighbor PE, and our principal task in the present
work is to see whether the derivative spectral envelopes in the dFPT can split PC and
PE apart, and correctly quantify them, by determining their locations on the chemical
shift axis, as well as their associated widths and peak heights.

We shall sub-divide the upcoming analysis of the reconstruction findings from the
output data into two different Sects. 4.2.1 and 4.2.2. The first part (Sect. 4.2.1) deals
with the noiseless and the other (Sect. 4.2.2) with the noisy input time signals from
which the spectral envelopes are computed. The FPT and dFPT are used for both
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noise-free and noise-corrupted FIDs, whereas the dFFT is employed only for the most
critical noisy part of the reconstructions. The noiseless reconstructions are important
in benchmarking the derivative fast Padé transform, dFPT, for the exact input data with
no perturbations. Such a procedure establishes the standard and unequivocal validation
of this novel variant of the FPT. This is critical, because proceeding straight to the
simulated noisy time signals or encoded FIDswould lead to ambiguities. In such cases,
one would not know with certainty whether any encountered inaccuracy stems from
the perturbed input FIDs or from some potential inadequacies of the applied signal
processor. Only after successfully passing the rigorous scrutiny of the fully-controlled
noiseless input FIDs, can an estimator be viewed as qualified to proceed further with
its applications to synthesized noisy FIDs and then, finally, to encoded time signals.

Reconstructions with simulated noise-contaminated input FIDs are key for the
validity of any signal processor. Here, the input data are still under control, since
the entry spectral parameters to be reconstructed are given and the added noise level
is also known. The challenge is to see how the same estimator performs under the
influence of random perturbations of the input FIDs. Would it still be possible with
the noise simulated FIDs, as well, to correctly retrieve all the input parameters. These
are questions of practical importance, because any measurement, including encoded
FIDs from MRS contains noise with varying extent. As stated earlier, the presently
simulated input time signals are generated in relation to the FIDs from Ref. [12],
encoded in vitro with a strong magnetic field, B0 = 14.1T. In this case, SNR is high,
i.e. noise is mild. This fact permits corruption of the simulated noiseless input time
signals {cn} with random Gaussian white noise of relatively lower standard deviation
σ . Still, σ must be reasonably sufficient to allow the effect of noise to take place, in
comparisons between the dFPT and dFFT. This is particularly important for the dFPT,
in order to see whether it can overcome the already mentioned basic defect of the
dFFT, which amplifies noise relative to its conventional non-derivative counterpart,
FFT.

In this Results section, the FPT and dFPT will be presented in their variants FPT(−)

and dFPT(−), respectively. The same conclusions have also been drawn using the
FPT(+) and dFPT(+). The number of illustrations will thus not be doubled.

In Sect. 4.2.1, as mentioned, we will use the synthesized noiseless FID, {cn}.
This FID will be sampled employing N = 2048 and τ (in s) = 1/6000 with
νL = 600MHz, to cohere with Ref. [12]. Sampling of each time signal point is done
by using cn from (24) with the fundamental parameters {νk, dk} (1 ≤ k ≤ 9) from (37)
with the convention Im (νk) > 0. In Ref. [12], resonance widths were not reported. In
(37), we have set all the linear imaginary fundamental frequencies to a common, fixed
value, Im (νk) = 0.0008 ppm (1 ≤ k ≤ 9). Thus, all the resonances have the same full
width at half maximum, {FWHM}k = 0.001257 ppm (1 ≤ k ≤ 9), as in (41).

In Sect. 4.2.2, the noiseless set {cn} will be perturbed by the mentioned random
Gaussianwhite noise {rn}, to yield the noisy time signal {cn +rn} of standard deviation
σ , which will be set to σ = 0.0289RMS0, where RMS0 is the RMS of {cn} . For
both noise-free and noise-corrupted FIDs, the polynomial degree K in P−

K /Q−
K and

(d/dν)m P−
K /Q−

K in the FPT(−) and dFPT(−), respectively, is set to K = N/2 = 1024.
With this K , all the envelopes have fully converged in the FPT(−) and dFPT(−) for each
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of the considered values of m (1 ≤ m ≤ 50) . This was checked by using N = 4096
with K = 1024, 1500, 2048.

4.2.1 Noiseless reconstructions

Recall that this sub-section is only on Padé-based signal processing in the FPT(−)

and dFPT(−). Using the noiseless FID with the metabolites from (37), the extracted
three spectral parameters (peak position, width, height) per resonance are graphically
illustrated. Therein, the principal focus is on the main spectral region of interest (SRI),
ν ∈ [3.205, 3.290]ppm, containing 7 metabolites listed in (37). It is predicted by
the Lorentzian lineshapes of derivative envelopes that with increasing order m of
differentiation, the peak widths shorten, whereas simultaneously and proportionally,
the peak heights augment. These features permit extraction of the peak parameters
(positions, widths, heights) from any mth order derivative envelope spectrum.

Particularly for real values of complex higher-order derivative spectra, to avoid
dealing with an increasing number of negative lobes (dips) per resonance for any
m > 0, we shall focus on the magnitude modes of envelopes. Note, that there is no
problem to extract the peak parameters from the magnitude mode. Here, it is only a
matter of identifying the correct scaling factor for the magnitude envelope in the case
of the mth order (m > 0) derivative spectrum to obtain the correct peak parameters of
the zeroth-order derivative absorption. For example, the peakwidth of the zeroth-order
(m = 0) magnitude mode

∣∣P−
K−1 (ω) /Q−

K (ω)
∣∣ is wider by a factor of

√
3 relative to

the peak width of the corresponding absorption, Re(P−
K−1 (ω) /Q−

K (ω)).
Figure 1 amply illustrates what has just been said about the relation between

the peak widths in Re(P−
K /Q−

K ) and
∣∣P−

K /Q−
K

∣∣. The mechanism which explains
the width broadening on panel (d) relative to panel (b) of Fig. 1 is the interfer-
ence between the absorptive Re(P−

K /Q−
K ) and dispersive Im(P−

K /Q−
K ) lineshapes

from panels (b) and (c), respectively, in the magnitude envelope,
∣∣P−

K /Q−
K

∣∣ =∣∣Re(P−
K /Q−

K ) + i · Im(P−
K /Q−

K )
∣∣ .For completeness, panel (a) shows the lactate, Lac,

and alanine, Ala, resonances, with the former being the tallest peak in the entire chem-
ical shift range under study, ν ∈ [1.30, 3.29] ppm.

The augmented peak heights with the increasing differentiation order m will not
be possible to match with the input data hk from (41). On the other hand, the peak
heights for ordinary (non-derivative) and derivative spectra are all in arbitrary units,
au. Therefore, introducing a normalization for each differentiation order m separately,
the increased peak heights on derivative spectra for m > 0 can still be plotted on
the same graphs with the envelopes for m = 0. This normalization requires that the
Padé-reconstructed spectral envelopes have converged with respect to model order K
for both m = 0 and m > 0, as presently achieved. In such a case, the mentioned
normalization consists of equating maximum values of the magnitude envelopes in
the FPT(−) and dFPT(−). This gives the normalization conditions:

max

∣∣∣∣∣

(
d

dν

)m P−
K

(
z−1

)

Q−
K

(
z−1

)
∣∣∣∣∣ = max

∣∣∣∣∣
P−

K

(
z−1

)

Q−
K

(
z−1

)
∣∣∣∣∣ (m = 1, 2, 3, . . .) , (47)

123



292 J Math Chem (2018) 56:268–314

Fig. 1 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from (24)
and the spectral parameters (37) according to the FIDs encoded by in vitro MRS from excised human breast
cancer tissue, as per Ref. [12]. Two separate narrow bands of chemical shifts (a): ν ∈ [1.3, 1.5] ppm,(b)–
(d): ν ∈ [3.205, 3.29]ppm. Absorption Re(P−

K /Q−
K ): (a) and (b), dispersion Im(P−

K /Q−
K ): (c), magnitude

|P−
K /Q−

K |: (d). Circles denote the input data for peak heights hk from (41). (Color online)
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for the chosen range of sweep frequency ν, entrenched in z−1 = exp (−2π iτν) .

For the problem under study, normalization (47) occurs at the location of lactate,
Lac, from Fig. 1a. Thus, the ratios

{
max

∣∣(d/dν)m P−
K /Q−

K

∣∣} /
{
max

∣∣P−
K /Q−

K

∣∣}

(m = 1, 2, 3, . . .) are all equal to unity for the Lac peak, which is, as noted, the tallest
in the local spectrum, ν ∈ [1.30, 3.29]ppm.

The effect of spectra differentiation becomes noticeable already on the magni-
tude mode of the 1st order derivative envelope,

∣∣(d/dν) P−
K /Q−

K

∣∣, shown in panel
(b) of Fig. 2. On this panel,

∣∣(d/dν) P−
K /Q−

K

∣∣ is seen as being able to narrow all
the peak widths relative to

∣∣P−
K /Q−

K

∣∣ on Fig. 1d. Such a width narrowing on Fig. 2b
makes themagnitude

∣∣(d/dν) P−
K /Q−

K

∣∣ very closely approach the absorption lineshape
Re(P−

K /Q−
K ) on panel (a). In other words, the mechanism of the width narrowing by

the derivative transform consists of reducing the interference effect. This is the oppo-
site interaction to that in passing from the absorption Re(P−

K /Q−
K ) and dispersion

Im(P−
K /Q−

K ) to the magnitude
∣∣P−

K /Q−
K

∣∣when going from panels (b) and (c) to panel
(d) in Fig. 1. The most important difference, albeit relatively small, between panels
(a) and (b) of Fig. 2 occurs at the critical chemical shifts 3.220–3.221ppm, where the
tightly overlapped PC and PE peaks reside. Here, on panel (b) for

∣∣(d/dν) P−
K /Q−

K

∣∣,
the PE peak is a bit shorter than its counterpart on panel (a). This happens because on
panel (b), a part of the preceding PE intensity is taken up by PCwhose near-emergence
appears as a very slight shoulder on the lower right side of PE. Importantly, on panel
(b), the input peak height hPE from (41) is seen to match the maximum of the magni-
tude envelope

∣∣(d/dν) P−
K /Q−

K

∣∣ at the input chemical shift 3.221 ppm of PE. This is an
improvement relative to panels (b) and (d) of Fig. 1. The noticeable interference effect
between the absorption (Fig. 1b) and dispersion (Fig. 1c) disturbed the proper peak
heights in the magnitude

∣∣P−
K /Q−

K

∣∣ (Fig. 1d) for several of the resonances. The correct
distribution of peak heights is restored on panel (b) of Fig. 2 for

∣∣(d/dν) P−
K /Q−

K

∣∣ for
all the metabolites, except for PC.

Also shown on Fig. 2 are the 2nd and 3rd order derivatives
∣∣(d/dν)2 P−

K /Q−
K

∣∣
and

∣∣(d/dν)3 P−
K /Q−

K

∣∣ on panels (c) and (d), respectively. What had been a barely
noticeable shoulder near PC on panel (b) for

∣∣(d/dν) P−
K /Q−

K

∣∣ has now become a
clearer PC structure in

∣∣(d/dν)2 P−
K /Q−

K

∣∣ on panel (c). This latter structure is even-
tually converted into a well delineated PC peak on panel (d). Still, the 3rd order
derivative

∣∣(d/dν)3 P−
K /Q−

K

∣∣ is not sufficiently high to predict the correct peak height
hPC from (41) for the PC resonance. Moreover, the PC structures on panels (c) and
(d) of Fig. 2 are not yet located at the exact input chemical shift, 3.220 ppm.

Next, Figs. 3–6 present the higher-order derivatives of spectral envelopes in the
magnitude modes. Similarly to Figs. 1 and 2, the reference or control spectrum, the
absorption envelopeRe(P−

K /Q−
K ), is always given in Figs. 3–6 to guide the eye through

the systematic and successive process of peak width narrowing with augmenting
derivative order m in

∣∣(d/dν)m P−
K /Q−

K

∣∣ . The concomitant peak height enlargement
with increasing derivative order m in

∣∣(d/dν)m P−
K /Q−

K

∣∣ is, however, not to be seen
in Figs. 3–6 because of the normalization (47).

Computations of noiseless derivative spectra were carried out for m = 1, 2, 3, . . . ,
50, i.e. with the step �m = 1, so that m = 1(1)50. Here, the number 1 in the
parentheses refers to the increment �m = 1. However, to avoid clutter, only the
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Fig. 2 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from
(24) and the spectral parameters (37) according to the FIDs encoded by in vitro MRS from excised human
breast cancer tissue, as per Ref. [12]. SRI: ν ∈ [3.205, 3.290]ppm. Absorption Re(P−

K /Q−
K ): (a), magni-

tudes |(d/dν) P−
K /Q−

K |: (b), |(d/dν)2 P−
K /Q−

K |: (c), |(d/dν)3 P−
K /Q−

K |: (d). Circles denote the input data
for peak heights hk from (41). (Color online)
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Fig. 3 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from (24)
and the spectral parameters (37) according to the FIDs encoded by in vitro MRS from excised human breast
cancer tissue, as per Ref. [12]. SRI: ν ∈ [3.205, 3.290]ppm. Absorption Re(P−

K /Q−
K ): (a), magnitudes

|(d/dν)6 P−
K /Q−

K |: (b), |(d/dν)10 P−
K /Q−

K |: (c), |(d/dν)14 P−
K /Q−

K |: (d). Circles denote the input data
for peak heights hk from (41). (Color online)
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Fig. 4 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from (24)
and the spectral parameters (37) according to the FIDs encoded by in vitro MRS from excised human breast
cancer tissue, as per Ref. [12]. SRI: ν ∈ [3.205, 3.290]ppm. Absorption Re(P−

K /Q−
K ): (a), magnitudes

|(d/dν)18 P−
K /Q−

K |: (b), |(d/dν)22 P−
K /Q−

K |: (c), |(d/dν)26 P−
K /Q−

K | : (d) . Circles denote the input data
for peak heights hk from (41). (Color online)
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Fig. 5 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from (24)
and the spectral parameters (37) according to the FIDs encoded by in vitro MRS from excised human breast
cancer tissue, as per Ref. [12]. SRI: ν ∈ [3.205, 3.290]ppm. Absorption Re(P−

K /Q−
K ): (a), magnitudes

|(d/dν)30 P−
K /Q−

K |: (b), |(d/dν)34 P−
K /Q−

K |: (c), |(d/dν)38 P−
K /Q−

K |: (d). Circles denote the input data
for peak heights hk from (41). (Color online)
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Fig. 6 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from (24)
and the spectral parameters (37) according to the FIDs encoded by in vitro MRS from excised human breast
cancer tissue, as per Ref. [12]. SRI: ν ∈ [3.205, 3.290]ppm. Absorption Re(P−

K /Q−
K ): (a), magnitudes

|(d/dν)42 P−
K /Q−

K |: (b), |(d/dν)46 P−
K /Q−

K |: (c), |(d/dν)50 P−
K /Q−

K |: (d). Circles denote the input data
for peak heights hk from (41). (Color online)

123



J Math Chem (2018) 56:268–314 299

results with a larger step for �m are presented in Figs. 3–6. Therein, we display the
derivative envelopes

∣∣(d/dν)m P−
K /Q−

K

∣∣ for m = 6(4)50, i.e. with �m = 4.
Already on Fig. 3, it is seen that the 10th and the 14th derivatives on panels (c)

and (d) have all the correct peak heights, including hPC and hPE for the PC and PE
resonances, respectively. Still, only m = 14 on panel (d) exhibits well separated PC
and PE peaks almost all the way down to the baseline, which is the abscissa itself
for these noiseless data. Even though the peak height for the PC resonance is correct
for m = 10 on panel (c), the splitting between PC and PE is far from the baseline.
The 6th derivative on panel (b) has not yet reached the correct peak height for the PC
resonance which, as a shoulder, is not separated from PE.

Figures 4–6, viewed together, display the full converging effect of the differentiation
transform in the normalized dFPT(−). We say converging with respect to m, because
the pattern of recovering the input peak heights hk (1 ≤ k ≤ 9) is uniformly main-
tained for each increasing value of the derivative order m in Fig. 4 (m = 18, 22, 26),
Fig. 5 (m = 30, 34, 38) and Fig. 6 (m = 42, 46, 50). The effect of differentiation has
reached the saturation level, manifested by the steady configuration (distribution) of all
the well separated metabolites. This includes the critical region 3.220–3.221 ppm con-
taining the PC and PE peaks. The two latter overlapping resonances are extremely well
delineated on Figs. 4–6, with both of their baselines descending nearly or completely
to the zero value of the ordinates (i.e. merged into the abscissae). The maintained sta-
bility of the PC peak in the normalized Padé-generated high-order derivative spectral
envelopes from Figs. 4–6, is important relative to some oscillations in this regard for
the lower-order derivative envelopes (2 ≤ m ≤ 10) in Figs. 2 and 3.

Overall, Figs. 1–6 permit us to draw the following general conclusion. The dif-
ferentiation operator (d/dν)m in the normalized magnitude mode of the derivative
spectral envelopes

∣∣(d/dν)m P−
K /Q−

K

∣∣ systematically improves the reconstructions
with increasing order m (m = 1, 2, . . .) . Improvement is both qualitative (straighten-
ing and perfecting the symmetry of the bell-shaped spectral lines) and quantitative
(precision in extracting the peak positions, widths and heights). In the normalized
spectra

∣∣(d/dν)m P−
K /Q−

K

∣∣ , the peak locations and peak heights are steadily main-
tained for increasing m. Stated in the language of signal processing, the differentiation
transforms in the dFPT(−), particularly those of higher orders m of derivatives, dra-
matically improve the resolution of the spectral envelopes relative to the zeroth-order
counterparts (m = 0) in the FPT(−).

For increased m, in the same normalized spectra of the magnitude mode∣∣(d/dν)m P−
K /Q−

K

∣∣ , the peak widths are systematically narrowed by the pertinent
identifiable scaling factors (available as the analytical expressions) that make possible
the exact reconstructions of the input peak widths, proportional to Im (νk). Therefore,
the derivative spectral envelopes,

∣∣(d/dν)m P−
K /Q−

K

∣∣ , especially for higher order m,
can, in principle, separate any closely overlapped peaks and, most importantly, exactly
quantify them. Crucially, as seen in Figs. 5 and 6, the tails of all the derivative res-
onance lineshapes are entirely embedded in the chemical shift axis. This shows that
the differential operator in

∣∣(d/dν)m P−
K /Q−

K

∣∣, no matter how high m is taken, intro-
duces no noise, random or any other kind for that matter (from e.g. round-off errors in
numerical computations with finite arithmetics). This is an indication that the dFPT(−)

could also perform well for noisy FIDs to be treated in Sect. 4.2.2.
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The extremely narrow symmetric Lorentzian peaks (from their tips to bottoms)
in the magnitudes of the mth derivative complex envelopes for sufficiently high dif-
ferentiation order m, solve yet another practical problem routinely encountered with
the corresponding lineshapes for m = 0. This problem consists of long, extended
Lorentzian tails, that additionally mask adjacent and even distant spectral structures
of potentially informative content. Extended resonance tails are present in all line-
shapes, not only of the Lorentzian profile. One of the methods used for computation
of general profile areas is integration by numerical quadratures, as often done inMRS,
and this was also the case with the study [12] by reference to which we synthesized
the present FIDs. For this purpose, the upper and lower integration limits around a
given peak need to be fixed. This evidently becomes a matter of subjectivity. Such a
circumstance invalidates the estimates of the peak areas. Consequently, the resulting
estimates of the abundance or concentrations of substances (that are metabolites in
MRS) will be biased, at best. The high-order derivative envelopes circumvent this
obstacle altogether and exactly determine the peak areas, thus yielding the correct
concentrations.

As per our analysis of the dFPT(−) in the case of Figs. 1–6 for the SRI, ν ∈
[3.205, 3.290]ppm, the most intriguing and clinically relevant finding is in the very
narrow region 3.220–3.221 ppm with the closely overlapped PC and PE resonances.
Recall that the diagnostic significance of phosphocholine, PC, is in its role as a rec-
ognized cancer biomarker. It is, therefore, warranted to zoom into a narrow SRI
around PC and PE such as ν ∈ [3.219, 3.222] ppm. With this SRI we shall focus
the subsequent analysis and illustrations from the dFPT(−) exclusively on the PC
and PE peaks for the case of noiseless time signals. This is done in Figs. 7–9
where a similar pattern in consecutiveness of increasing the derivative order m is
followed as that in Figs. 3–6. Namely, we begin with smaller differentiation order m
in Fig. 7 and proceed further with higher values of m in Figs. 8 and 9. Specifically,
Fig. 7 shows real-valued spectra Re

(
(d/dν)m P−

K /Q−
K

)
and the corresponding mag-

nitudes
∣∣(d/dν)m P−

K /Q−
K

∣∣ for 0 ≤ m ≤ 2. The former and the latter envelopes are
respectively seen on the left column (without normalization) and right column (with
normalization) of Fig. 7. The zeroth-order derivative spectrum (m = 0) on panel
(a) is the standard absorption envelope, Re

(
P−

K /Q−
K

)
. Its magnitude counterpart,∣∣P−

K /Q−
K

∣∣, is on panel (d). As to the prospect of separating the PC and PE peaks,
the situation is initially worsened when passing from the absorption to the magnitude
modes for m = 0. This is seen by having the full line in panel (d) further away from
the filled circle for the input peak height of PC than in panel (a). Such an occurrence
is caused by the broadening of the peak width in the magnitude mode for m = 0 rel-
ative to the absorption mode. As discussed, this occurs with non-derivative envelopes
because of the interference of the absorptive and dispersive lineshapes in (d). Overall,
neither the absorption nor themagnitudemodes on panels (a) and (d), respectively, give
any hint of the existence of the PC resonance. In particular, no curvature change from
a smooth, continuous decrease, is noticeable in the full curves anywhere downstream
of the PE peak in either panel (a) or (d).

However, this discouraging situation with the non-derivative magnitude spectrum
(m = 0) on panel (d), is quickly ameliorated on panels (e) and (f) for the asso-
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Fig. 7 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from
(24) and the spectral parameters (37) according to the FIDs encoded by in vitro MRS from excised
human breast cancer tissue, as per Ref. [12]. SRI: ν ∈ [3.219, 3.222]ppm. Real parts Re(P−

K /Q−
K ):

(a), Re((d/dν) P−
K /Q−

K ): (b), Re((d/dν)2 P−
K /Q−

K ): (c). Magnitudes |P−
K /Q−

K |: (d), |(d/dν)P−
K /Q−

K | :
(e) , |(d/dν)2 P−

K /Q−
K | : (f). Circles denote the input data for peak heights hk from (41). (Color online)
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Fig. 8 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from
(24) and the spectral parameters (37) according to the FIDs encoded by in vitro MRS from excised human
breast cancer tissue, as per Ref. [12]. SRI: ν ∈ [3.219, 3.222] ppm. Magnitudes |(d/dν)6 P−

K /Q−
K |:

(a), |(d/dν)10 P−
K /Q−

K |: (b), |(d/dν)14 P−
K /Q−

K |: (c), |(d/dν)18 P−
K /Q−

K |: (d), |(d/dν)22 P−
K /Q−

K |: (e),
|(d/dν)26 P−

K /Q−
K |: (f). Circles denote the input data for peak heights hk from (41). (Color online)
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Fig. 9 Derivative fast Padé transform, dFPT(−), for a synthesized time signal sampled by using cn from
(24) and the spectral parameters (37) according to the FIDs encoded by in vitro MRS from excised human
breast cancer tissue, as per Ref. [12]. SRI: ν ∈ [3.219, 3.222] ppm. Magnitudes: |(d/dν)30 P−

K /Q−
K |:

(a), |(d/dν)34 P−
K /Q−

K |: (b), |(d/dν)38 P−
K /Q−

K |: (c), |(d/dν)42 P−
K /Q−

K |: (d), |(d/dν)46 P−
K /Q−

K |: (e),
|(d/dν)50 P−

K /Q−
K |: (f). Circles denote the input data for peak heights hk from (41). (Color online)
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ciated 1st (m = 1) and the 2nd (m = 2) derivative envelopes
∣∣(d/dν) P−

K /Q−
K

∣∣
and

∣∣(d/dν)2 P−
K /Q−

K

∣∣, respectively. Thus, on panel (e), an evident slope change is
observed in the full curve at the level of the peak height of PC. This indirect indi-
cation of the existence of the underlying PC structure in

∣∣(d/dν) P−
K /Q−

K

∣∣ on panel
(e) becomes even more suggestive on panel (f) for

∣∣(d/dν)2 P−
K /Q−

K

∣∣. Therein, for
the first time, the full curve touches the filled circle for the input peak height of the
PC resonance. However, only a dip appears instead of a peak at the input chemical
shift for PC. Specifically, an indication of a broad peak is seen downstream, slightly
away from the correct chemical shift 3.220 ppm for PC. By comparison with panel
(f), the real-valued envelope Re

(
(d/dν)2 P−

K /Q−
K

)
on panel (c) exhibits a completely

different pattern. Both the PE and PC resonances are characterized by their minimae
on panel (c). While the PE minimum is quite symmetrical and, thus, reasonably well
delineated, the other minimum is only suggestive, at best, of the existence of PC. As to
the 1st derivative real-valued spectrumRe

(
(d/dν) P−

K /Q−
K

)
on panel (b), its lineshape

is of an asymmetric dispersion type. Asymmetry appears as a slight curvature change
in the full curve around the PC position, 3.220 ppm. This corresponds to the change
in slope of the associated positive-definite spectrum

∣∣(d/dν) P−
K /Q−

K

∣∣ on panel (e).
Figures 8 and 9 are also for the narrow band as in Fig. 7, but they deal only

with the magnitudes of the Padé derivative spectra normalized according to (47) for
the extended SRI: ν ∈ [1.30, 3.29]ppm. Figure 8 presents the derivative spectral
envelopes in the magnitude modes,

∣∣(d/dν)m P−
K /Q−

K

∣∣ , for 6 ≤ m ≤ 26, with m =
2+ �m, . . . , 22+ �m, where �m = 4. A gradual emergence of the PC peak is seen
by proceeding from panel (a) to panel (f) on Fig. 8. On panel (a) for m = 6, merely
a bump is observed surrounding the peak tip of PC. Therein, the peak height of the
PE resonance is very slightly overestimated. A broad, small, asymmetric maximum
is present on panel (b) for m = 10, and therein the full curve of

∣∣(d/dν)10 P−
K /Q−

K

∣∣
coincides with the filled circle for the input data of the peak height of PC. The peak
height of PE is also seen to be correctly predicted by the 10th derivative envelope.
From panel (c) up to panel (f), the PC peak becomes completely clear, symmetrical
and with the correct peak height, hPC. The same applies to hPE for the dominant PE
resonance. By progressing from panel (a) to panel (f), the resonance widths of both
PE and PC are systematically narrowed. Further, the peak-to-peak vertical distance
remains constant on panels (c)–(f). The peak heights hPC and hPE on panels (b)–(f)
are correctly placed at the input chemical shifts.

Figure 9 displays the highest-order derivative spectral envelopes
∣∣(d/dν)m P−

K /Q−
K

∣∣
form = 30(4)50 on panels (a)-(f), i.e. form = 26+�m, . . . , 46+�m,with�m = 4.
Here, strikingly, the peak width narrowing has proceeded to such an extent that the
baseline between the PC and PE peaks becomes flattened to the level of the pure
chemical shift axis. This is best seen by comparing panels (a) and (f) for m = 30
and m = 50, respectively. On panel (a), there is a rolling valley between PC and
PE. This valley becomes mainly a straight line on panel (f) for a considerable portion
of the PC-PE distance on the chemical shift axis. Moreover, the PE-PC peak height
ratio has completely stabilized, to the exact ratio 7.5 given by the corresponding input
data from (41). Likewise, the PE-PC peak width ratio has also steadily maintained
the exact value equal to 1, from panel (a) to panel (f), i.e. throughout Fig. 9. This is
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fully in accordance with the input data (41), where all the full widths at half maximae
{FWHM}k are the same, since Im (νk) = 0.0008 ppm (1 ≤ k ≤ 9) as per (37), so that
{FWHM}k / {FWHM}k′ = 1 for any two k and k′ (1 ≤ k ≤ 9, 1 ≤ k′ ≤ 9, k′ �= k

)
.

Also, throughout Fig. 9 the input chemical shifts 3.220 and 3.221 ppm are seen to
exactly match the positions (locations) of the Padé-reconstructed PC and PE peaks,
respectively.

Overall, in the dFPT(−), for the higher-order derivative envelopes, the reconstructed
peak positions Re (νk) do not alter, whereas simultaneously, the peak widths Im (νk)

decrease and the peak heights hk increase. These two latter trends are mutually com-
pensating in the sense that their product hkIm (νk)becomes proportional to the absolute
value |dk | of the amplitude dk , according to the formula (40). Importantly, it is pre-
cisely this type of product which is proportional to the peak area Ak in (39). In this
way, the derivative envelopes in the dFPT(−) directly yield the peak areas that, in turn,
are proportional to the metabolite concentrations, as stated. This is most important
for overlapping resonances, such as PC and PE, which cannot even be spotted in the
conventional zeroth-order derivative (m = 0) envelopes, let alone quantified.

4.2.2 Noisy reconstructions

In this sub-section, the dFPT(−) is compared with the dFFT. Both processors (Padé,
Fourier) perform envelope lineshape estimations using the same noisy time signal
points {cn + rn} from the noise model described in Sect. 4.1.3. Here, {cn} are the
noiseless FID points synthesized according to cn from (24). The added corruptions
{rn} are a set of random numbers with zero-mean Gaussian distributions (white noise)
of standard deviation σ = 0.0289 RMS0. As stated, the presently simulated time
signals are based upon FIDs encoded by in vitro MRS from breast cancer tissue [12].
Recall that the signal length on the encoded FIDs was 65536 points, as per Ref. [12].
That long signal length, which we also use for the dFFT, was needed in Ref. [12],
in order to obtain reasonable appearing envelopes in the FFT. As explained, for the
simulated noiseless time signal, there is no reason at all to use all the 65536 data
points in the Padé-based reconstructions. The same rationale also applies to the noisy
synthesized FID for which we use in the FPT(−) and dFPT(−) a much shorter signal
length, N = 2048 (the same as in Sect. 4.2.1).

The results of the reconstructions by the dFPT(−) and the dFFT are shown in Fig. 10
(m = 3, 4) and Fig. 11 (m = 5, 6), as illustrations. No normalization is used for the
dFPT(−) or the dFFT in Figs. 10 and 11. Therein, the top (a, b) and bottom (c, d) pairs
of panels are for the 3rd and 4th (Fig. 10) and the 5th and 6th (Fig. 11) order derivative
spectra, respectively. In Figs. 10 and 11, panels (a) and (c) are for the dFPT(−), whereas
panels (b) and (d) are for the dFFT. It is seen on Figs. 10 and 11, that on both panels
(a) and (c), the dFPT(−) yields the results that are the same for the noiseless and noisy
FIDs. This implies noise suppression by the 3rd–6th order differentiation transform
in the dFPT(−). On the other hand, as per panels (b) and (d) in Figs. 10 and 11, the
same added noise distorts the 3rd–6th order derivative spectral envelopes in the dFFT.
Even though the noise corruption level of the input FID is of a rather small standard
deviation (σ = 0.0289 RMS0), it is remarkable that this noise is hugely amplified in
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Fig. 10 The derivative fast Padé transform, dFPT(−), versus the derivative fast Fourier transform, dFFT.
Use of a synthesized noisy time signal {cn + rn} . The noiseless cn is from (24) with the input spectral
parameters (37) associated with FIDs encoded by in vitro MRS from excised human breast cancer tissue,
as per Ref. [12]. The addition {rn} is a set of random complex numbers obeying the Gaussian zero-mean
distribution (white noise) of standard deviation σ = 0.0289RMS0. Real parts Re((d/dν)m P−

K /Q−
K ),

m = 3 (a), m = 4 (c): dFPT(−) and Re
(
(d/dν)m Fk

)
, m = 3 (b), m = 4 (d): dFFT. (Color online)
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Fig. 11 The derivative fast Padé transform, dFPT(−), versus the derivative fast Fourier transform, dFFT.
Use of a synthesized noisy time signal {cn + rn} . The noiseless cn is from (24) with the input spectral
parameters (37) associated with FIDs encoded by in vitro MRS from excised human breast cancer tissue,
as per Ref. [12]. The addition {rn} is a set of random complex numbers obeying the Gaussian zero-mean
distribution (white noise) of standard deviation σ = 0.0289RMS0 Real parts Re((d/dν)m P−

K /Q−
K ),

m = 5 (a), m = 6 (c) : dFPT(−) and Re
(
(d/dν)m Fk

)
, m = 5 (b), m = 6 (d): dFFT. (Color online)
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the dFFT bymerely proceeding from the relatively low third (Fig. 10) to the sixth-order
(Fig. 11) derivatives on panels (b) and (d), respectively.

We have not shown the results in the dFFT for higher-orders m of differentiation
(m ≥ 7) because in such cases noise completely fills the entire panels for the derivative
Fourier spectra. By contrast, the results from the dFPT(−) remain the same for noise-
free and noise-corrupted FIDs in the case of m ≥ 7 (and for 0 ≤ m ≤ 6). This
demonstrates the remarkable noise suppression capability of the mth differentiation
operatorwithin thePadé-basednon-parametric signal processing of spectral envelopes.
In sharp contrast, the derivative operator of the same order m hugely amplifies noise in
the Fourier-based envelopes. There is more to this juxtaposition of the non-parametric
Padé vis-à-vis Fourier processing.And that is themost important bonus for noisy FIDs:
the dFPT(−) can quantify, whereas the dFFT cannot, even though both estimators rely
exclusively upon envelope lineshapes. When applied to noise-corrupted time signals,
the dFFT yields no meaningful information, as all the physical content is buried in
noise which grows with augmentation of the derivative order m. For example, Fig. 11
shows that in the dFFT no physical resonance can be seen on panels (b) and (d) for
m = 5 and m = 6, respectively. Moreover, for m = 6 in the dFFT on panel (d)
the tallest noisy structure of height ∼ 1.4 × 108 at 3.270 ppm surpasses by a factor
of 20 the dominant double lobe of the physical resonance Tau of height ∼ 7 × 106

at 3.273 ppm on panel (c) from the dFPT(−). Note that higher order derivatives of
envelopes are necessary to achieve resolution enhancement in quantification by shape
estimation alone. It is these higher order derivatives (of total shape spectra) that make
non-parametric Padé-based processing quantitative, in the sense of providing accurate
peak positions, widths and heights for all physical resonances.

Thus, the prospect of a veritable paradigm shift is feasible. Indeed, this is a paradigm
shift in all of signal processing within any spectroscopy, not only the ones based upon
magnetic resonance phenomena. The reason is in the fact that despite belonging to
non-parametric signal processors for qualitative lineshape estimation alone, the dFPT
can split apart any number of overlapping peaks, no matter how tightly packed they
might be, and exactly reconstructs their positions, widths and heights that constitute
the parametric quantitative information. It should be noted that the same conclusions
are drawn for the even and odd order derivative spectra. The polarity of lineshapes is
opposite for even and odd derivative ordersm (maximae andminimae inter-change i.e.
peaks become dips and vice versa). However, the steady convergence with increasing
m is maintained in the same way for both even and odd differentiation order. This
holds true irrespective of the graphically displayed mode of spectral envelopes (real
or imaginary parts, magnitudes, power).

5 Clinical relevance of derivatives of total shape spectra through the FPT

All the expounded characteristics of the dFPT, especially relative to the dFFT for noisy
time signals, lead to the following anticipation of utmost importance, particularly
for medical diagnostics by way of MRS. Being algorithmically/computationally fast,
with robust noise suppression, the automatic dFPT is poised to be implemented in
clinical MR scanners. With this, the long sought hope of radiologists would at last
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be realized: to visualize the entire clinical MRS information by seeing the clearly
disentangled overlapping peaks and then inspecting the displayed concentrations of
all the diagnostically relevant metabolites. This vision would enable the entry of MRS
to the hospitals as a standard, clinically reliable part of the diagnostic armamentarium
for cancer and other pathologies. The immense value of MR-based modalities in
being non-invasive and free of exposure to ionizing radiation further motivates the
implementation of this strategy.

5.1 Implications for molecular imaging through MRSI

As noted, volumetric coverage throughMRSI is frequently needed for cancer diagnos-
tics. Namely, a single voxel is often insufficiently representative of the imaged tissue.
The combination of the anatomic information of MRI with the metabolic insights of
MRS provides molecular imaging through MRSI. Namely, via MRSI the chemical
specificity of MRS is joined with the spatial localization techniques of MRI to yield
multiple MRS signals (in the time domain of encoding) over a volume of interest of
tissue [4,23]. Therein, however, thousands of noisy spectra need to be processed. We
can justifiably anticipate that this efficient strategy by way of derivatives of total shape
spectra via the dFPT would be particularly appropriate for putting molecular imaging
through MRSI into clinical practice. We would then have the derivative versions of
MRS and MRSI, i.e. dMRS and dMRSI, respectively.

5.2 Potential for improved diagnosis of a wide range of cancers

Our motivation in choosing the problem of breast cancer is multifold. First to mention
is the clinical, public health importance since breast cancer is the most frequently
occurring malignancy and cause of cancer-related deaths among women across the
world [24], together with the well-established value of early breast cancer detection
for improved survival [24–26]. Further improvements in diagnostic accuracy over
the anatomic imaging methods via MRI are anticipated by molecular imaging through
MRS andMRSI [27]. However, as reviewed in detail in Ref. [2], reliance upon Fourier-
based processing of the encoded FIDs has severely limited the potential added value
of MRS and MRSI for improving the accuracy with which breast cancer is detected
and distinguished from benign pathology. In the present study, on the Padé-based line-
shape estimations, not only do we succeed in identifying the breast cancer biomarker,
phosphocholine, PC, by non-parametric analysis alone, but for the first time through
the derivative spectra in the dFPT, exact quantification is also achieved through this
efficient strategy.

It should be emphasized that PC is also a biomarker of other cancers [28–30]. This
may be related to loss of tumor suppressor p53 function [31]. Thus far, it has only
been through parametric analysis with the FPT, that PC has been identified via in vivo
encoded FIDs from proton MRS from brain and ovarian tumors [32,33]. Further, it
should be underscored that dense spectra with many other overlapping resonances
of diagnostic importance are also characteristic of brain tumors, ovarian cancers as
well as prostate, lung and other cancers [19,22,32–34]. We have pointed out that
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there is a major potential for synergistic development, such that each step forward
with Padé-optimized MRS in cancer diagnostics, informs and advances other areas
[22]. This statement now becomes particularly salient, with the possibilities offered
by non-parametric quantification using derivative spectra in the dFPT, in practical
implementation of in vivo MRS and MRSI for early cancer diagnostics, as well as for
other aspects of cancer care.

6 Conclusions and perspectives

It is well-known that total shape spectra or envelopes have previously provided only
partial, qualitative estimations on the processed time signals. Such extracted informa-
tion is qualitative because it exclusively concerns the lineshapes of envelopes. It is
partial, since the spectral content hidden within the usually abundant compound peaks
tightly packed with overlapping resonances in envelopes has remained generally inac-
cessible.

Conventionally, all non-parametric signal processors are limited to shape esti-
mations alone. For reconstruction of the fundamental eigen-pairs (frequencies and
amplitudes, both complex), parametric estimation is needed to solve the inverse prob-
lem called “spectral analysis” or quantification.

The parametric FPT is a prime example of a signal processor capable of exactly
reconstructing all the genuine frequencies and amplitudes from synthesized (noise-
free, noise-corrupted) and encoded time signals. The complex frequencies are
themselves a pair of real numbers representing the chemical shifts (location) and
widths of resonances or peaks. Complex amplitudes are also a tandem of values: the
amplitude magnitudes (absolute value of the complex amplitudes) and the amplitude
phases. Thus, the parametric FPT provides four real parameters per resonance: the
peak position, the peak width, as well as the magnitude and phase of the amplitude.
On theoretical grounds, all the amplitude phases are expected to be zero-valued in
time signals encoded by magnetic resonance spectroscopy, MRS, which is the main
focus of the present study. For the reason of various imperfections in encoding, the
phases of time signal amplitudes are non-zero, and the so-called zeroth- and 1st-order
phase corrections are usually made to produce partially positive-definite absorptive
envelopes.

Alternatively, and by definition, spectral envelopes are always strictly positive-
definite in their magnitude modes (absolute values). This has not been used in practice
withinMRS. The reasons are the peakwidth broadening in customary (non-derivative)
magnitude envelopes, and their distortions by the interference (destructive, construc-
tive) of the constituent absorptions and dispersions. Moreover, widening of the bottom
of peaks in the magnitude modes of non-derivative envelopes, makes weaker res-
onances (near the background level) even more hidden beneath the long tails of
lineshapes than in the associated absorptive envelopes. If not for these obstacles, the
magnitude mode would be most convenient, because it does not necessitate any phase
corrections (that are subjective and arbitrary), and yet it provides positive-definite
envelopes from the onset.
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Fortunately, however, the mentioned disadvantages of the envelope magnitudes are
restricted only to the conventional, non-derivative total shape spectra. For the derivative
envelopes in the magnitude mode, the universal pattern is diametrically opposite.
Namely, with augmentation of the differentiation order m in the magnitude modes of
the envelopes in the derivative fast Padé transform, dFPT, via

∣∣(d/dν)m PK /QK
∣∣, the

peak widths gradually decrease and the resonance tails flatten to the baseline level of
the background. This enables the dFPT to separate the overlapped peaks in compound
spectral structures and to make the hidden peaks, even the weakest, emerge in an
unequivocal manner.

The dFPT does not stop at visualization of the hidden resonances. It proceeds with
a critical step further by exactly quantifying all the reconstructed physical resonances,
isolated and overlapped alike, despite performing shape estimation alone.Most impor-
tantly, as opposed to the derivative fast Fourier transform, dFFT, where differentiation
hugely amplifies noise, the dFPT acts as an efficient noise suppressor, i.e. a noise fil-
ter. All these features are presently illustrated for synthesized noiseless and noisy time
signals reminiscent of the corresponding data encoded by in vitro MRS from excised
breast cancer tissue. In breast tumor diagnostics via MRS, a key achievement would
be to reliably identify and quantify the recognized breast cancer biomarker, phospho-
choline, PC. This is one of the most demanding tasks for any non-parametric signal
processing method including the non-derivative FPT, since the PC resonance is com-
pletely invisible in customary zeroth-order (m = 0) derivative envelopes due to the
dominant adjacent resonance of phosphoethanolamine, PE. The PC-to-PE chemical
shift separation is only 0.001 ppm.

We show, however, that the dFPT successfully solves this problem by unam-
biguously identifying and quantifying all the genuine resonances, including the PC
peak. In this way, with the dFPT, one would have on the same screen not only
visualized the PC-PE separation, but also the automatically, objectively and reliably
reconstructed concentrations of these two metabolites, alongside the corresponding
numerical parameters for all the other molecules. The same opportunities apply to any
other signal processing problem that poses diagnostic dilemmas in MRS for oncology
and beyond. More broadly, the dFPT is anticipated to find useful applications in other
areas of both research and technology, especially when signal processing is faced
with the usually insurmountable problem of crowded spectra laden with unresolved
resonances that could contain vitally important information.

Overall, it can be patently concluded that the higher-order differentiation transform,
when used in conjunction with the derivative fast Padé transform, dFPT, simultane-
ously achieves resolution enhancement, noise suppression and exact quantification,
despite explicit non-parametric processing of envelope lineshapes alone (i.e. without
solving the quantification problem).

Over the years, firmly grounded was the parametric version of the FPT which per-
forms explicit quantification by finding the exact solution of the problem of spectral
analysis for the fundamental complex frequencies and the corresponding complex
amplitudes. This variant of the FPT, quantification-equipped from the onset, as the
gold standard, continues to be irreplaceable and, as such, should always be applied to
any time signal, synthesized or encoded alike. The non-parametric version of the FPT,
enriched by the differentiation transform, yields the derivative fast Padé transform,
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dFPT. The standard non-parametric FPT (the zeroth-order derivative m = 0) is not
for quantification, since it is restricted to estimation of spectral envelope lineshapes.
However, the dFPT is quantification equipped despite being a non-parametric shape
estimator. It is the differential transforms, especially of higher orders of derivatives, that
are responsible for establishing the quantification capabilities of an initially designed
non-parametric shape estimator. In other words, the dFPT acquires quantification fea-
tures en route, by differentiation. As such, the non-parametric quantification-equipped
dFPT is not meant to be a substitute for its parametric quantification-equipped FPT.
Rather, the non-parametric dFPT and parametric FPT are complementary, and should
be applied in concert to the same input time signals, so as to cross-validate each other.
Crucially, in very different ways, both the parametric FPT and the non-parametric
dFPT reconstruct all the component spectra of every physical resonance in the studied
envelope.

The non-parametric dFPT could, for example, be used first to quickly display the
gestalt right on the screen: the spectral lineshapes and the parameter linelist (peak
position, widths, heights, and component concentrations) provided by the higher-order
derivatives. This first insight should be subsequently checked for corroboration with
the direct solution of the quantification problem by the parametric FPT. It is in this way
that these two versions of the fast Padé transform (derivative dFPT and non-derivative
FPT) should run hand-in-hand to reconstruct the most reliable information from the
input time signals. Such a perspective is crucially important for interdisciplinary appli-
cations. For MRS in medicine, this avenue has special ramifications, as it is poised to
provide the long-sought clinical reliability particularly for early cancer diagnostics.
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Amsterdam, 2014), pp. 331–345
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