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Abstract This paper studies a chemical reaction network’s (CRN) reactant subspace,
i.e. the linear subspace generated by its reactant complexes, to elucidate its role in the
system’s kinetic behaviour. We introduce concepts such as reactant rank and reactant
deficiency and compare them with their analogues currently used in chemical reaction
network theory. We construct a classification of CRNs based on the type of intersec-
tion between the reactant subspace R and the stoichiometric subspace S and identify
the subnetwork of S-complexes, i.e. complexes which, when viewed as vectors, are
contained in S, as a tool to study the network classes, which play a key role in the
kinetic behaviour. Our main results on new connections between reactant subspaces
and kinetic properties are (1) determination of kinetic characteristics of CRNs with
zero reactant deficiency by considering the difference between (network) deficiency
and reactant deficiency, (2) resolution of the coincidence problem between the reac-
tant and kinetic subspaces for complex factorizable kinetics via an analogue of the
generalized Feinberg–Horn theorem, and (3) construction of an appropriate subspace
for the parametrization and uniqueness of positive equilibria for complex factorizable
power law kinetics, extending the work of Müller and Regensburger.
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List of symbols

I −
a Branching map

I +
a Converse branching map

δ Deficiency of a CRN
ψK Factor map of a complex factorizable kinetics K
Ia Incidence map of a CRN
δk k-deficiency
Ik k-incidence map
Ak k-Laplacian map
˜S Kinetic flux space
s̃ Kinetic rank
q̃ Kinetic reactant rank
R Kinetic reactant subspace
K Kinetic subspace of a CKS
Y Molecularity map/matrix of complexes
π Product map
P Product subspace
Δ(N ) Rank difference
ρ Reactant map
R Reactant subspace
N− Reactant subspace map
S Stoichiometric subspace of a CRN
NS Subnetwork of S-complexes
T T matrix

Abbreviations

CFK Complex factorizable kinetics
CKS Chemical kinetic system
CRN Chemical reaction network
CRNT Chemical reaction network theory
FSK Factor span surjective kinetics
GMAK Generalized mass action kinetics
HRR High reactant rank
ILC Independent linkage classes
KSSC KSS coincidence
LRR Low reactant rank
MAK Mass action kinetics
MRR Medium reactant rank
NRS Nontrivial R–S intersection
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PLK Power law kinetics
PL-RDK Power law reactant-determined kinetics
PL-RLK Power law reactant set linear independent kinetics
PL-YKA Power law Y-kernel aligned kinetics
RES Reactant subspace equal to stoichiometric subspace
RKS Reactant-determined kinetic subspace
RSP S proper subspace of R
RSS Reactant-determined stoichiometric subspace
SCC Stoichiometric compatibility class
SRP R proper subspace of S
SRS R subspace of S
TRS Trivial R–S intersection

1 Introduction

The linear subspace generated by a Chemical Reaction Network’s (CRN) reactant
complexes in species (composition) space RS , which we call reactant subspace and
denote by R, and its impact on a kinetic system’s dynamics, have so far received
little attention in Chemical Reaction Network Theory (CRNT). This is surprising
in the sense that the coefficients of reactant complexes are important not only for
the network’s stoichiometry, but also, as the exponents of a mass action system’s
“monomial map”, i.e. its “kinetic orders”, determine the nonlinear behavior of the
system. To our knowledge, the reactant subspace R has been studied only in Injectivity
Theory formass action kinetics (MAK),whichwas pioneered byCraciun and Feinberg
in a series of papers starting with [5]. In fact, one of the original motivations for
our study was to understand a remark in [8] concerning a connection between the
dimension of R and the occurrence of non-degenerate equilibria.

The second motivation for our study of reactant subspaces stems from our analysis
of BST systems in [2], which highlighted the prevalent occurrence of terminal points
in their CRN representations. Since the number of terminal points in a CRN is given
by the difference n − nr (n = number of complexes and nr = number of reactant
complexes), this led to the realization of the importance of the invariant nr in such
networks. Deficiency theory in CRNT has mainly focused on weakly reversible net-
works, which form a subset of CRNs, in which each complex is a reactant complex,
i.e. n = nr (which we call cycle terminal networks), and hence has not considered
the invariant and related properties. For example, to date, there is no CRNT software
tool that automatically calculates nr for a given network. Our considerations led us
eventually to study a superset of cycle terminal and terminal point containing net-
works with the property that the stoichiometric subspace S ⊂ R (which we call RSS
= reactant-determined stoichiometric subspace), which possesses many interesting
kinetic properties, in particular, with respect to power law kinetics.

The study of RSS networks evolved to a full CRN classification based on the type
of the intersection R ∩ S. We demonstrate the key role of these network classes in two
significant problems concerning kinetics in the latter part of the paper.

We have structured the paper as follows:
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In Sect. 2, we collect the fundamentals of chemical reaction networks (CRNs) and
kinetics required for this Introduction and the latter sections.Weexpound the viewpoint
that CRNs are digraphs with a vertex-labelling called “stoichiometry”. This approach
allows easier application of general digraph theory to CRNT, and vice versa, easier
appreciation of original results from CRNT of relevance in general digraph theory.

In Sect. 3, we begin with the systematic study of the reactant subspace, highlighting
similarities to and differenceswith the stoichiometric subspace.We introduce concepts
such as reactant rank and rank difference, which play an important role in connection
to kinetics. The main result in this section (Theorem 1) is a formula for the difference
between (network) deficiency and reactant deficiency, which we use to determine
existence and characteristics of positive equilibria of kinetics on CRNs with zero
reactant deficiency. A brief introduction to the product subspace, the image of the
reactant subspace under the converse digraph transformation, concludes the section.

In Sect. 4, we deepen our study of the reactant subspace by introducing a classifica-
tion of CRNs based on the intersection R ∩ S. The network classes play an important
role in the reactant subspace’s connection to kinetic behavior. The main result in this
section (Theorem 2) characterizes the network classes in terms of the containment of
R and S in Im Y and the subnetwork of S-complexes, a new tool that we introduce.

In Sect. 5, we discuss coincidence problems of the kinetic subspace K , first studied
by Feinberg and Horn for K and the stoichiometric subspace S of MAK systems in
1977. The Feinberg–Horn KSSC (Kinetic and Stoichiometric Subspace Coincidence)
Theorem was extended to complex factorizable kinetics in [2]. The main result in this
section (Theorem 5) derives an analogue, the KRSC (Kinetic and Reactant Subspace
Coincidence) Theorem for complex factorizable kinetics. The striking fact that K and
R coincidence can occur only in the network class with R ∩ S = R follows from these
considerations.

In Sect. 6, we discuss the problem of constructing a kinetic analogue of the sto-
ichiometric subspace. Such a space is important for parametrization and uniqueness
questions of positive equilibria of complex factorizable power law kinetic systems
(denoted PL-RDK), as shown by previous work of Müller and Regensburger on
cycle terminal networks [13]. The main result in the section (Theorem 6) constructs
such a “kinetic flux subspace” satisfying the requirements of coincidence with the
stoichiometric subspace for MAK systems and with the kinetic order subspace of
Müller–Regensburger for PL-RDK systems on cycle terminal networks. A key obser-
vation is that these requirements imply that the construction can occur only when
R ∩ S = S.

2 Fundamentals of chemical reaction networks and kinetic systems

In this section, we briefly go through the fundamental concepts of CRNs and chemical
kinetic systems (CKS) needed for our results. We start by expounding the standpoint
that a CRN is a digraph with a vertex-labelling. In our view, this approach not only
allows us to apply (general) digraph theory results to CRNT, it also produces novel
contributions to the (general) digraph theory. We focus on the CKS side of complex
factorizable (CFK) and power-law (PLK) kinetic systems.
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2.1 Chemical reaction networks as vertex-labelled digraphs

Definition 1 A chemical reaction network is a digraph D = (C ,R) where each
vertex has positive degree and stoichiometry, i.e. there is a finite setS (whose elements
are called species) such that C is a subset of ZS≥ . Each vertex is called a complex
and its coordinates in Z

S≥ are called stoichiometric coefficients. The arcs are called
reactions. We denote the number of species with m, the number of complexes with n
and the number of reactions with r .

Stoichiometry is a special property of CRN. It can be viewed as a vertex-labelling
and allows the embedding of the graph’s vertices in the real vector space RS , called
species composition space (or simply species space). Its elements are (chemical)
compositions such that the coordinate values are concentrations of the different (chem-
ical) species. The standard notation to specify a CRN as a triple (S ,C ,R) is thus
indicated as the pair ((C ,R),S ).

Moreover, if S = {X1, . . . , Xm} then Xi can be identified with the vector with 1
in the i th coordinate and zero otherwise. As such thatS = ∪ supp y, for y ∈ C , each
species should appear in at least one of the complexes.

A complex is calledmonospecies if it consists of only one species, i.e. of the form
nXi , n a non-negative integer and Xi a species. It is called monomolecular if n = 1,
and is identified with the zero complex for n = 0. Zero complex is a special property
of CRNs. It represents the “outside” of the system studied, from which chemicals can
flow into the system at a constant rate and to which they can flow out at a linear rate
(proportional to the concentration of the species). In biological systems, the “outside”
also stands for the degradation of a species. An inflow reaction is a reaction with
source “0” and an outflow reaction is a reaction with a monomolecular complex as
source and the zero complex as target, respectively.

Below we define some useful maps that are associated with each reaction:

Definition 2 The reactant map ρ : R → C maps a reaction to its reactant complex
while the productmapπ : R → C maps it to its product complex.We denote |ρ(R)|
with nr , i.e. the number of reactant complexes. The reactions map ρ′ : RC → R

R

maps f : C → R to f ◦ ρ, i.e., ρ′( f ) = f ◦ ρ.

The reactant map of a CRN is surjective iff nr = n. In this case, the CRN is cycle
terminal. On the other hand, the reactant mapping ρ of a CRN is injective iff nr = r ,
which gives a nonbranching CRN.

2.2 Stoichiometry-independent properties of CRNs

2.2.1 Connectivity in a CRN

Connectivity in a digraph that is applied to CRNs is traditionally called a linkage
class in CRNT. A subset of this linkage class where any two elements are connected
by a directed path in each direction is known as the strong linkage class. If there is
no reaction from a complex in the strong linkage class to a complex outside the same

123



400 J Math Chem (2018) 56:395–422

strong linkage class, then we have a terminal strong linkage class. We denote the
number of linkage classes with l, that of the strong linkage classes with sl, and that
of terminal strong linkage classes with t . Clearly sl ≥ t ≥ l. A chemical reaction
network is called weakly reversible if sl = l. It is called t-minimal if t = l.

For each linkage class Li that forms a subnetwork, its number of complexes and
reactions inLi are denoted by ni and ri respectively, i = 1, 2, . . . , l.WithC i as the set
of complexes in linkage classLi , we set e1, e2, . . . , el ∈ {0, 1}n as the characteristic
vectors of the sets C 1,C 2, . . . ,C l , respectively.

There are two types of terminal (strong linkage) classes in a CRN: cycles (not
necessarily simple) and singletons (which we call “terminal points”). If tc = number
of cycle terminal classes and tp = number of point terminal classes, then t = tc + tp.
Note also that n − nr = tp = t − tc. A CRN is cycle terminal if tp = 0 (i.e. n = nr ),
point terminal if tc = 0 (i.e. t = n − nr ) and point and cycle terminal otherwise
(i.e. tp > 0 and tc > 0 or equivalently, t > n − nr ).

2.2.2 Linear algebra of a CRN

Here, we start by introducing a fundamental invariant of a digraph, that is the incidence
map Ia : RR → R

C . With f : R → R, it is defined as Ia( f )(v) = − f (a) and
f (a) if v = ρ(a) and v = π(a), respectively, and are 0 otherwise. Equivalently,
it maps the basis vector ωa to ωv′ − ωv if a : v → v′. It is clearly a linear map,
and its matrix representation (with respect to the standard bases ωa , ωv) is called the
incidence matrix and can be described as

(Ia)i, j =

⎧

⎪

⎨

⎪

⎩

−1 if ρ(a j ) = vi ,

1 if π(a j ) = vi ,

0 otherwise.

Note that in most digraph theory books, the incidence matrix is set as −Ia .
An important result of digraph theory regarding the incidence matrix is the following:

Proposition 1 Let I be the incidence matrix of the directed graph D = (V, E). Then
rank I = n − l, where l is the number of connected components of D.

Besides the vertex-labelling via stoichiometry, arc labels are often associated with
a CRN, i.e. a map k : R → R> is specified. Several linear maps are associated with
such k-labelled CRNS:

Definition 3 The k-diagonalmap diag (k)mapsωr to krωr . The k-incidencemap Ik

is defined as the composition diag (k) ◦ ρ′. The k-Laplacian map Ak : RC → R
C is

defined as the composition Ak = Ia ◦ Ik .

The k-diagonal map is clearly a linear isomorphism and maps the positive orthant
R
R
> onto itself. In fact, as pointed out in [11], all such maps are k-diagonal maps:

Proposition 2 ([11]) A linear, bijective mapping h : RR
> 
→ R

R
> may consist of at

most positive scaling and reindexing of coordinates.
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Proposition 3 ([2]) For any k–incidence map, dim ker Ik = n − nr and dim Im Ik =
nr . The mapping Ik is injective iff N is cycle terminal and surjective iff N is non-
branching.

2.3 Stoichiometry-dependent properties of a CRN

2.3.1 The stoichiometric map and matrix

The properties of stoichiometry and embedding in composition space add two impor-
tant maps to the linear algebra view: the map of complexes Y and the stoichiometric
map N , which we define in the following.

Definition 4 The map of complexes Y : RC → R
S is defined by its values on the

standard basis {ωy} where y is a complex. It is given by Y (ωy) = y and extends
linearly to all elements of RC . Clearly, its matrix (matrix of complexes; also denoted
with Y ) is an m × n matrix, its rows indexed by the species and its columns by the
complexes, with yi j being the stoichiometric coefficient of the j th complex in the i th
species. In other words, the columns are the complexes written as column vectors.

Remark 1 One often leaves out the column of zeros (for the zero complex) when
specifying the matrix Y .

Definition 5 The stoichiometric map N : RR → R
S is defined as N = Y ◦ Ia .

N also denotes its matrix (called the stoichiometric matrix), whose elements are the
differences of the stoichiometric coefficients of the product complex (target) and the
reactant (source) complex per species.

The kernel of the stoichiometric map (ker N ) contains ker Ia and plays a central
role in flux-oriented analysis (also summarily called “Stoichiometric Analysis”) in
Systems Biology. It is called the nullspace of the CRN.

2.3.2 The stoichiometric subspace of a CRN

Further examples of the “linear algebraic” view are given by the following definitions
and proposition.

Given the reaction vectors for a reaction network (S ,C ,R) that are the members
of the set {y′ − y ∈ R

S : y → y′ ∈ R}, the stoichiometric subspace S of a reaction
network (S ,C ,R) is the linear subspace of RS defined by

S := span
{

y′ − y ∈ R
S : y → y′ ∈ R

}

= Im N ⊂ Im Y.

The rank of a CRN, s, is defined as s = dim S.
The next proposition clarifies the relationship between S and N .

Proposition 4 S = Im (N ) and dim(ker N ) = r − s.
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The concepts of stoichiometric subspace and rank can be applied to the linkage classes
of a CRN.

Definition 6 In a reaction network (S ,C ,R), the rank of linkage classL , denoted
by sL , is the rank of the set

{

y′ − y ∈ R
S |y → y′, y ∈ L , y′ ∈ L

}

.

Through elementary algebraic considerations, it follows that the rank of the network
and the ranks of the linkage classes must be related in the following way:

s �
∑

C /∼
sL . (1)

2.3.3 The stoichiometric (compatibility) classes of a CRN

Definition 7 Two elements a, b ofRS are stoichiometrically compatible if a −b is
contained in S. The intersection of a coset c + S with R

S≥ is called a stoichiometric
compatibility class.

We note that stoichiometric compatibility is an equivalence relation that partitionsRS≥
into equivalence classes. Thus, the stoichiometric compatibility class (SCC) contain-
ing an arbitrary composition c, denoted (c + S) ∩ R

S≥ , is given by

(c + S) ∩ R
S≥ = {c′ ∈ R

S≥ : c′ − c ∈ S}. (2)

In recent papers, various authors use the shorter term “stoichiometric class” for an
SCC. A stoichiometric class is also called an invariant polyhedron of the CRN.

A stoichiometric compatibility class will typically contain a wealth of (strictly)
positive compositions. We say that a stoichiometric compatibility class is nontrivial
if it contains a member of (R>)S . To see that a stoichiometric compatibility class
can be trivial, consider the simple reaction network A + B � C , and let c̄ be the
composition defined by c̄A = 1, c̄B = 0, c̄C = 0. Then the stoichiometric compatibil-
ity class containing c̄ has c̄ as its only member. Such a network is called open. If the
stoichiometric subspace S = R

S , then there is only one SCC. A fully open network
is an example for this condition.

2.4 The deficiency concepts of a CRN

A central concept of the theory of chemical reaction networks is the deficiency of the
CRN, defined as δ = n − l − s. Geometrically, it is interpreted as dim(ker Y ∩ Im Ia).
The deficiency measures the amount of linear independence among the reactions of
the network. The higher the deficiency, the lower the extent of linear independence
[15].
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Definition 8 The deficiency of linkage class L (denoted by δL ) is defined by the
formula

δL := nL − 1 − sL ,

where nL is the number of complexes in linkage class L .

From the preceding definition and the fact thatC is the disjoint union of the linkage
classes, it follows that the deficiency of the network and the deficiencies of its linkage
classes must satisfy the relation

δ �
∑

C /∼
δL . (3)

Moreover, inequality holds in Eq. 3 if and only if inequality holds in Eq. 1.
Some authors have defined k-deficiency as a deficiency of a network (e.g. Gunawar-

dena [10], Otero-Murras et al. [12,14]) because they mainly considered weakly
reversible networks where the two values coincide (see below). Following our “struc-
tural view”, we associate it with a positive vector k.

Definition 9 The k-deficiency function of a CRN de f : RR
> → N0 assigns to each

vector k the non-negative integer δk = dim(ker Y ∩ Im Ak).

Since Im Ak ⊂ Im Ia , we have ker Y ∩ Im Ak ⊂ ker Y ∩ Im Ia ⇒ δk ≤ δ, so that
the function is bounded.

The following Proposition provides more specific bounds for the function:

Proposition 5 ([2]) δk ≥ δ + l − t . Moreover, Im Y Ak = S iff equality holds.

The upper and lower bounds for the k-deficiency function can be formulated as

n − s − l ≥ δk ≥ n − s − t, (4)

with the following special cases:

1. If t − l = 0, then it follows that δk = δ (again) and Im Y Ak = S for all k.
2. If t − l > δ, then 0 > δ + l − t , hence inequality holds and Im Y Ak �= S for all k.
3. If 0 < t − l ≤ δ, Im Y Ak = S or Im Y Ak �= S depends on the choice of k.

2.5 Fundamentals of chemical kinetic systems

In [2], we introduced a slightly more general definition of a kinetics. We say a kinetics
for a network N = (S ,C ,R) is an assignment to each reaction r j ∈ R of a rate
function K j : ΩK → R≥, whereΩK is a set such thatRS

> ⊆ ΩK ⊆ R
S≥ , c∧d ∈ ΩK

whenever c, d ∈ ΩK , and

K j (c) ≥ 0,∀c ∈ ΩK .

A kinetics for a network N is denoted by K = (K1, K2, . . . , Kr ) : ΩK → R
R≥ .

We focus on its subset relevant to our context:

123



404 J Math Chem (2018) 56:395–422

Definition 10 A chemical kinetics is a kinetics K satisfying the positivity condition:
for each reaction j : y → y′, K j (c) > 0 iff supp y ⊂ supp c.

The species formation rate function (SFRF) of a chemical kinetic system (CKS)
is the vector field

f (x) = N K (x) =
∑

y→y′
Ky→y′(x)(y′ − y).

The equation dx/dt = f (x) is the ODE or dynamical system of the CKS. A zero
of f is an element c of RS such that f (c) = 0. A zero of f is an equilibrium
or steady state of the ODE system. For a differentiable f , a steady state c is called
non-degenerate if ker(Jc( f )) ∩ S = {0}, where Jc( f ) is the Jacobian matrix of f at
c.

The difference between production and degradation for each complex is called the
“complex formation rate function” and given by the function g = Ia K : RS → R

C .
A fundamental connection between stoichiometry and kinetics is given by the fact

that the trajectory of the chemical system is contained in the stoichiometric compabil-
ity class of its initial point ([6], Lemma 2.2). Hence, all questions relating to existence
and number of steady states are relative to a stoichiometric compatibility class. In par-
ticular, a chemical kinetic system is multistationary (or has the capability for multiple
steady states) if there is at least one stoichiometric compatibility class with two distinct
steady states. Conversely, it is monostationary, if for all stoichiometric compatibility
classes, it has at most one steady state.

2.6 Span surjectivity in kinetic systems

We recall from [2] that a mapping w : R
u → R

v is called span surjective if
span (Im w) = R

v . It was shown in [2] that w is span surjective iff its component
functions w1, . . . , wv are linearly independent over R.

A kinetics can be viewed as a mapping from R
S to R

R . If it is span surjective
then it is called a span surjective kinetics. Span surjectivity induces a nice relationship
between the kinetic space K and stoichiometric subspace S of a CRN.

Proposition 6 ([2]) If a chemical kinetics K : RS → R
R is span surjective, then

K = S.

Proposition 7 ([2]) A PLK system is span surjective iff all rows in the kinetic order
matrix F are pairwise different (i.e. r �= r ′ ⇒ Fr �= Fr ′ ).

The preceding result proved in [2] used a generalization of a well-known fact that
if fi = ∏

X
gi j
j , with gi = (gi1, . . . , gin) in R

n then f1, f2, . . . , fm are linearly
independent (over R) iff the gi are pairwise different.
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2.7 Complex factorizable kinetics

We refine the definition of a complex factorizable kinetics (CFK) to accommodate a
more general domain ΩK and a more appropriate codomain:

Definition 11 A chemical kinetics K : ΩK → R
R≥ is complex factorizable if there

is a k ∈ R
R
> and a mapping ΨK : ΩK → R

ρ(R) such that K = Ik ◦ ΨK . The set of
complex factorizable kinetics is denoted as CFK (N ).

It can be deduced from the definition that if a chemical kinetics K is complex
factorizable, then its complex formation rate function g = Ak ◦ ΨK and its species
formation rate function f = Y ◦ Ak ◦ ΨK .

In [3] (see also [2]), we introduce a special subset of CFK (N ), which is the
set of power law kinetics with reactant-determined kinetic orders, denoted byPL −
RDK (N ). A PLK system has reactant-determined kinetic orders (of type PL-
RDK) if for any two reactions i, j with identical reactant complexes, the corresponding
rows of kinetic orders in V are identical, i.e., vik = v jk for k = 1, 2, . . . , m.

We note also in [2] thatPL −RDK (N ) includes mass action kinetics (MAK)
and coincides with the set of GMAK systems recently introduced by Müller and
Regensburger [13]. They also constitute the subset of power law systems for which
various authors claimed that their results “hold for complexes with real coefficients”
are valid.

Another important property of a complex factorizable kinetics is “factor span sur-
jectivity”:

Definition 12 Acomplex factorizable kinetics K is factor span surjective if its factor
map ΨK is span surjective. FSK (N ) denotes the set of factor span surjective
kinetics on a network N .

We characterized in [2] a factor span surjective PL-RDK system.

Proposition 8 A PL-RDK system is factor span surjective iff all rows with different
reactant complexes in the kinetic order matrix F are pairwise different (i.e. ρ(r) �=
ρ(r ′) ⇒ Fr �= Fr ′ ).

3 The reactant subspace of a CRN and related structures

In this section, we begin our systematic study of the reactant subspace R, i.e. the linear
space generated by the reactant complexes. We show that, as with the stoichiometric
subspace, it is the image of a linearmapRR → R

S , and introduce analogous concepts
such as reactant rank and reactant deficiency. Our main result in this section shows
that the difference between (network) deficiency and reactant deficiency is determined
by the network’s terminal class structure and its rank difference. In particular, cycle
terminal networks with zero reactant deficiency also have zero (network) deficieny,
while those with terminal points may have positive deficiency.
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3.1 Basic properties of the reactant subspace

Definition 13 The reactant subspace R is the linear space in R
S generated by the

reactant complexes, i.e. < ρ(R) >. The reactant rank of the network is denoted by
q := dim R.

We denote dim R with “q” (since “r” is already reserved for the number of reac-
tions). We also denote dim Im Y with “c” (since Im Y consists precisely of the
network’s complexes embedded in RS ).

We first note that since every reactant complex y is the image of ωy under Y , then
R ⊂ I mY , just as S ⊂ Y .We further broaden the analogy between R and S by showing
that R too is the image of a linear map N− : RR → R

S . To construct the map, we
first introduce the branching map: if one wrote the incidence matrix Ia = I +

a − I −
a ,

where the first term consisted only of the 1’s and 0’s in Ia and the second with only
the zeros and the absolute values of the −1’s, the latter provides a precise way to
identify the source vertices together with their branching behaviour (i.e. the number
of branching reactions is the number of 1’s in a row).

Definition 14 The linear map I −
a : RR → R

C defined by the matrix I −
a is called the

branching map of the CRN.

We have the following proposition:

Proposition 9 The image of the branching map is Rρ(R), hence, its dimension equals
nr . Its kernel is trivial iff the CRN is nonbranching.

Proof A basis of Rρ(R) is given by −ωy , where y is a reactant complex, hence there
must be at least one reaction mapped to it. The dimension of the kernel is r −nr , from
which the second claim follows. ��

We can now define N− and determine its image:

Definition 15 The reactant subspace map N− : RR → R
S is defined as N− =

Y ◦ I −
a .

Proposition 10 For any CRN, I m N− = R.

Proof I m N− = Y (I −
a (RR) = Y (Rρ(R)) since I −

a is surjective, which is equal to
Yres(R

ρ(R)) = R, where Yres is the restriction of Y to Rρ(R). ��
Remark 2 The previous proposition justifies the name for N−. The dimension of its
kernel equals r −q (again in analogy to dim ker N = r −s). This analogy also justifies
our calling dim R the reactant rank of the network.

The relationship of the reactant rank to the network’s rank is important in the study
of the reactant subspace and we introduce some relevant concepts:

Definition 16 The rank difference Δ(N ) is equal to s − q. The network has high
reactant rank (HRR) if Δ(N ) is negative, medium reactant rank (MRR) if it is
zero and low reactant rank (LRR) if it is positive.

We will discuss the relationship between q and s, especially the rank difference,
in more detail in the next two sections. In addition to q ≤ c ≤ m from the above
considerations, since there are nr reactant complexes, q ≤ nr .
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3.2 Deficiency and reactant deficiency

We introduce the essential measure of the linear independence of reactant complexes:

Definition 17 The reactant deficiency of a network is given by δρ := nr − q.

We also have shown the geometric interpretation of reactant deficiency:

δρ = dim(ker Y ∩ I m I −
a ).

Remark 3 We use the subscript “ρ” since we use the same symbol for the reactant
map and also already introduced the subscript “R” for the regulatory deficiency of a
BST representation.

Remark 4 If a CRN has an inflow reaction, then its reactant deficiency is greater than
0.

A natural question is: what is the relationship between reactant deficiency and
(network) deficiency? To answer this question, we first introduce further concepts
regarding the terminal class structure of a CRN.

M. Feinberg and F. Horn were the first to study the (non-negative) integer t − l,
which played a crucial role in their solution of the kinetic and stoichiometric subspace
coincidence problem for MAK systems (see Sect. 5 for details). As it also plays a
significant role in our considerations, we give it a formal name:

Definition 18 The terminality of a CRN is the non-negative integer τ(N ) := t − l.

In this terminology, a CRN N is t-minimal iff τ(N ) = 0.
Our main result in this section shows that the difference between deficiency

and reactant deficiency is determined by the CRN’s terminal class structure (a
stoichiometry-independent term) and its rank difference (a stoichiometry-depedent
one):

Theorem 1 Let N be a CRN with network deficiency δ and reactant deficiency δρ .
Then

δ − δρ = τ(N ) − tc − Δ(N ).

In particular,

(i) if N is cycle terminal, then 0 ≤ δρ − δ = l + Δ(N ) ≤ l;
(ii) if N is point terminal, then δ − δρ = τ(N ) − Δ(N );
(iii) if N is point and cycle terminal, then δ − δρ < τ(N ) − Δ(N ).

Proof δ − δρ = n − l − s − nr + q = n − nr − l − s + q = τ(N ) − tc − Δ(N ).

(i) IfN is cycle terminal, tp = n − nr = 0 ⇔ t = tc ⇔ τ(N ) − tc = −l. Hence,
δ − δρ = −l − Δ(N ). Since R = Im Y , q = c ≥ s, and Δ(N ) is negative.
Hence δρ − δ = l + Δ(N ) ≤ l. For the lower bound: δρ = nr − q = n − q ≥
n − c = dim ker Y ≥ dim(ker Y ∩ Im Ia) = δ.
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(ii) IfN is point terminal, tc = 0, hence the simpler formula.
(iii) IfN is point and cycle terminal, then tc > 0, which implies the inequality.

��

3.3 Kinetics on zero reactant deficiency CRNs

In this section, we use Theorem 1 to derive properties of kinetics on zero reactant
deficiency CRNs.

We have two immediate corollaries for cycle terminal networks:

Corollary 1 Any cycle terminal CRN with zero reactant deficiency also has network
deficiency equal to 0.

Corollary 2 If a cycle terminal network has the ILC property (i.e. δ1+δ2+· · ·+δl =
δ), then

∑

δρ,i = 0 implies δ = 0.

Proof 0 = ∑

δρ,i ≥ ∑

δi = δ. ��
Weakly reversible networks form an important subset of cycle terminal networks.

Hence, a weakly reversible network with δρ = 0 also has δ = 0. For a weakly
reversible network with δ = 0, it follows from the Deficiency Zero Theorem (DZT)
for MAK systems that it has a unique equilibrium in any stoichiometric class, which is
asymptotically stable. The existence also holds for certain power law kinetics where
analogues of the DZT are valid [15], with uniqueness in appropriate kinetic analogues
of the stoichiometric subspace (see Sect. 6 for a detailed discussion).

We have a further Corollary of Theorem 1:

Corollary 3 (i) A cycle terminal CRN with zero reactant deficiency has high reactant
rank , i.e. Δ(N ) < 0.

(ii) Any CRN with δρ = δ = 0 and low or medium reactant rank(Δ(N ) ≥ 0) has
no positive equilibria for any kinetics.

Proof (i) From Theorem 1 (i), we have 0 = l + Δ(N ) or l = q − s. Since l ≥ 1,
we conclude that the network has high reactant rank. Since a weakly reversible
network necessarily has high reactant rank, a CRNwith δρ = δ = 0 andΔ(N ) ≥
0 is not weakly reversible and it follows from classical results of Feinberg and
Horn that it has no positive equilibria for any kinetics.

��
If a CRN with δρ = 0 has δ > 0, we can combine Theorem 1, with the generalized

Feinberg–Horn KSSC (Kinetic and Stoichiometric Subspace Coincidence) Theorem
([2], see also Sect. 5) to derive properties of complex factorizable kinetics on the
network in the following proposition:

Proposition 11 (i) If N has low reactant rank, i.e. Δ(N ) > 0, then, any positive
equilibrium of a (differentiable) complex factorizable kinetics onN is degenerate.
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(ii) If N has medium or high reactant rank, i.e. Δ(N ) ≤ 0 and point terminal, then,
for any (differentiable) factor span surjective kinetics, either K coincides with S
(t-minimal case) or non-coincidence may occur (rate constant dependent in the
non-t-minimal case), implying degeneracy of positive equilibria.

Proof In (i), we have δ = τ(N ) − tc − Δ(N ) ≤ τ(N ) − Δ(N ) < τ(N ),
since tc ≥ 0 and Δ(N ) > 0. The KSSC implies that the kinetic and stoichiometric
subspaces do not coincide and hence all positive equilibria are degenerate. In (ii),
δ = τ(N ) − Δ(N ) ≥ τ(N ), since Δ(N ) ≤ 0. Hence, the KSSC implies for any
factor span surjective kinetics that either K = S (t-minimal case) and K = S is rate
constant dependent (non-t-minimal case). ��
Example 1 The EnvZ-OmpR system, a bacterial signalling system to respond to
osmotic pressure:

X � XT → X p

X p + Y � X pY → X + Yp

XT + Yp � XT Yp → XT + Y

is a point terminal system with HRR (q = 6 > 5 = s). It is t-minimal so network
deficiency is greater than reactant deficiency. One easily verifies that δ = 1, while
δρ = 0.

3.4 The product subspace and the converse transformation

We briefly introduce the product subspace of RS , which is the natural “dual” of the
reactant subspace under the converse graph transformation.

Definition 19 The subspace P of RS generated by the product complexes (i.e. <

π(R) >) is called the product subspace of the CRN. We denote the number of
product complexes with n p.

Proposition 12 p := dim P = dim I m N+, dim ker N+ = r − p.

Proof Use the converse graph transformation. ��
Proposition 13 (i) P + R = I m Y , dim(P ∩ R) = p+q −c (where c = dim I m Y ).
(ii) Networks with P ∩ R = 0 form a subset of the class of networks without inter-

mediate complexes, which is characterized by n p + nr = n.

Proof (i) An element x in I m Y has the form x = ∑

τi yi and hence a pre-image
z = ∑

τiωyi . The claim follows from the fact that each complex is a reactant or
product.

(ii) An intermediate complex would be a nonzero element in the intersection. The
characterization is given by the formula for the number of intermediate complexes
nr + n p − n.

��
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4 The relationship between the reactant and the stoichiometric
subspaces

The relationship between the reactant subspace R and the stoichiometric subspace S
of a CRN in terms of their intersection R ∩ S turns out to be important for the kinetic
behavior of systems on the network. Hence, we first introduce a classification of CRNs
based on the properties of the subspace R ∩ S. We then introduce the subnetwork of
S-complexes as an additional tool for analyzing R ∩ S and the network classes. The
main result of the section (Theorem 2) then characterizes the network classes by
equivalences in terms of the containment of R and S in Im Y and necessary conditions
for the subnetwork of S-complexes.

4.1 A classification of CRNs based on the subspace R ∩ S

A natural first step for a classification is to differentiate CRNs with trivial intersection,
i.e. R ∩ S = 0, from those with non-trivial ones. We denote the former set with TRS,
the latter with NRS. We also note that since the (standard) digraph definition excludes
loops, i.e. arcs y → y, in our considerations, S �= 0. However, R can be trivial, so
that such networks belong to TRS.

Two interesting subsets of NRS are defined as follows:

Definition 20 A CRN has a stoichiometry-determined reactant subspace (of type
SRS) if its nonzero reactant subspace R is contained in S, i.e. 0 �= R = R ∩ S. It has
a reactant-determined stoichiometric subspace (of type RSS) if S is contained in
R, i.e. R ∩ S = S. A CRN in SRS ∩ RSS has type RES, i.e. R = S.

Examples of SRSCRNs are open networks, i.e. S = RS , which include the familiar
fully open networks where each species has an outflow reaction. On the other hand,
cycle terminal CRNs, including the well-studied weakly reversible networks, belong
to RSS. An RSS network with terminal points is given by the following biological
system:

Example 2 The MAK system of the following CRN models the calcium dynamics of
olfactory cilia [22]:

A � B → D + B

C + 4D � E

B + E → F � A + E

D → 0

The set {A, B, C + 4D, E, F, D} is a basis of R. On the other hand, since all vectors
in the basis for S = {B − A, D, E − C − 4D, F − B − E} are linear combinations
of the R-basis , S is contained in R.

Since the kinetic impact of R also depends on its size relative to S, we differentiate
two further subsets in the following definition:
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Fig. 1 An overview of the network classes

Definition 21 ACRN is of type SRP if R is a proper subset of S, i.e. 0 �= R = R∩S �=
S. Similarly, it is of type RSP if S is a proper subset of R, i.e. R �= R ∩ S = S.

To complete the classification, we introduce a final network class:

Definition 22 A CRN has a non-trivial and non-containing intersection (of type
NRN) if R ∩ S �= 0 and R �= R ∩ S �= S. Equivalently, NRN = NRS \ (SRS ∪ RSS).

Example 3 TheCRNof the EnvZ-OmpR system in Example 1 belongs to this network
class. Since q > s, R �= R ∩ S. The reaction vector XT − X is in R ∩ S, but X p − Y
is not, hence 0 �= R ∩ S �= S.

Figure 1 provides an overview of the network classes.

4.2 The subnetwork of S-complexes

Our basic definition is:

Definition 23 An S-complex of a CRN is a complex which, as a vector in R
S , is

contained in the stoichiometric subspace S. We denote the subset of S-complexes in
C with CS .

Example 4 There are of course CRNs with no S-complexes. The network S =
{X1, X2}, r : X1 → X2, has the stoichiometric subspace <X1 − X2>, and neither
X1 nor X2 is contained in it, hence CS = ∅.
On the other hand, we have:

Example 5 IfN is an open network, then CS = C . This is evident, since S = R
S .

The following Proposition shows that the set of S-complexes, when non-empty, has
an interesting structure:

Proposition 14 (i) If y ∈ S, y′ is linked to y, then y′ ∈ S. In other words, in a
linkage class L , either all complexes are in S or none at all. In the first case, we
call the linkage class an S-linkage class.
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(ii) If a network N has a flow, then the linkage class of the zero complex L0 is
contained in CS, hence is non-empty.

(iii) IfCS is non-empty, then it is the union of linkage classes, and hence a subnetwork
of N , which we denote with NS. The rank (deficiency) of NS is less (greater)
than the sum of the ranks (deficiencies) of the S-linkage classes.

(iv) NS is an independent subnetwork iff N has independent linkage classes (ILC),
i.e.

∑

δi = δ, i = 1, . . . , l.

Proof (i) We first show that if y ∈ S, y → y′, then y′ ∈ S. Note that y′ =
y + (y′ − y), with both summands in S, hence also in S. Similary, if y′ → y,
y′ = y − (y − y′) is also in S. Hence any complex in the linkage class of y is also
in S. We denote the number of S-linkage classes with lS . We have 0 ≤ lS ≤ l.

(ii) Since 0 is in S, all of the complexes in its linkage class are also in S.
(iii) The first statement is clear, and since the complexes of a linkage class also

uniquely determine the reactions among them, to determine the subnetwork,
we set R′ as the union of all reactions between S-complexes. Recall that, as
formalized by Joshi-Shiu, we take as complexes those occurring in the reactions
in R′ -these are precisely the S-complexes, and as species those occurring in the
S-complexes.

(iv) The proof follows the fact that bothNS and its complement are unions of linkage
classes.

��
An immediate consequence is the following corollary:

Corollary 4 (The Single Linkage Class NS Alternative). If a network has a single
linkage class, then either N = NS or NS = ∅. If the network contains the zero
complex, then N = NS.

We note some properties of the reactant and stoichiometric subspaces of the sub-
network of S-complexes:

Proposition 15 Let RS and SS be the reactant and stoichiometric subspaces of NS,
respectively. Then:

(i) RS ⊂ SS, and
(ii) For qS := dim RS and sS := dim SS , we have qS ≤ ∑

qS,i and sS ≤ ∑

sS,i ,
respectively, where i runs over all linkage classes in NS. Equality holds if the
network has the ILC property.

Proof (i) By definition, all complexes in NS will be in SS so that (NS)S = NS ,
implying RS ⊂ SS . (ii) This follows directly from the usual rank inequalities for
linkage classes and networks for q and s. ��

4.3 Characterization of the R ∩ S-based network classes

The following characterization in terms of containment of R and S in Im Y and the sub-
network of S-complexes is the basis for the connections to kinetic properties discussed
in Sects. 5 and 6.
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Theorem 2 Let Y be the map of complexes of a network N with subnetwork NS of
S-complexes.

(i) N is SRS ⇔ Im Y = S ⇔ c = s. Furthermore, N is SRS ⇒ N = NS.
(ii) N is RSS ⇔ Im Y = R ⇔ c = q. Furthermore, N is RSS ⇒ either N =

NS(RES) or N �= NS(RSP).
(iii) N is TRS ⇔ Im Y is a direct sum of R and S ⇔ c = q + s. Furthermore, N

is TRS ⇒ N �= NS and, if N has no inflow reaction,NS = ∅.
(iv) N is NRN ⇒ c < q + s < 2c. Furthermore, N is NRN ⇒ N �= NS.

Proof For both (i) and (ii), the converse (⇐) is immediate since S and R are contained
in Im Y . To show (⇒) for (i), write y′ = (y′ − y) + y, and from which P ⊂ R will
follow. Since P + R = Im Y according to Proposition 13, we obtain R = Im Y . The
argument is analogous for (⇒) of (ii). If c = dim Im Y = rank Y , then (i) is also
equivalent to q = c and (ii) to s = c.

We now observe that the necessary conditions N �= NS in (ii), (iii) and (iv)
altogether are equivalent to N = NS ⇒ N is SRS. Hence, we next prove that N
is SRS ⇔ N = NS .

For (⇒), all complexes of the network are in S, including ρ(R), the generators of
R, hence R ⊂ S. For (⇐), by assumption, each reactant complex is in S. Now, since
in each linkage class there is at least one reactant complex, then each linkage class is
contained inNS and hence the whole network.

To prove (iii), we first show that Im Y = R + S. Any complex is either a reactant
complex or a product only complex. The former is clearly in the sum, in the latter case
write y′ = y + (y′ − y). Hence Im Y is the direct sum of R and S, and the dimension
equation follows.

Suppose the complex z ∈ NS . If z is a reactant complex, then we are done. If it is
a product, there is a reaction y → z, so that the nonzero reactant complex is in S too,
being in the same linkage class. This shows that R ∩ S �= 0.

Finally, to show (iv), since R ∩ S �= 0, dim R + dim S > dim(R + S) = dim Im Y ,
hence q + s > c. On the other hand, since the intersection is not equal to R or S, s < c
and q < c, so that q + s < 2c. This completes the proof of the Theorem. ��
Remark 5 The simple example 0 → X shows that the hypothesis N has no inflow
reaction is essential in Theorem 2 (iii).

Example 6 The EnvZ-OmpR model from Example 1 is a counterexample to the con-
verse of Theorem 2 (iii). One easily checks that it has no inflow reaction, NS = ∅,
but S ∩ R has at least dim =1 since XT − X is contained in it.

5 The coincidence of the reactant and the kinetic subspace of a chemical
kinetic system

The containment of a system’s kinetic subspace K in the stoichiometric subspace S of
its underlying network expresses an important connection between system behavior
and network structure. K �= S or their non-coincidence, for example, implies that all
of the system’s equilibria are degenerate. M. Feinberg and F. Horn were the first to
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study the coincidence of the kinetic and the stoichiometric subspaces in 1977[7]. Their
main result, which we call the Feinberg–Horn KSSC (Kinetic and Stoichiometric Sub-
space Coincidence) Theorem identified network properties sufficient for coincidence
in MAK systems:

Theorem 3 If K is the kinetic subspace of a MAK system, and:

(i) if t − l = 0, then K = S.
(ii) if t − l > δ, then K �= S.
(iii) if 0 < t − l ≤ δ, K = S or K �= S is rate constant dependent.

Forty years later, Arceo et al [2] extended the KSSC Theorem to the set of complex
factorizable kinetics (CFK) using the concept of span surjectivity as follows:

Theorem 4 For a complex factorizable system on a network N ,

(i) if t − l > δ , then K �= S.
(i’) if 0 < t − l ≥ δ, and a positive steady state exists, then K �= S. In fact

dim S − dim K ≥ t − l − δ + 1.
if the system is also factor span surjective and

(ii) if t − l = 0 (i.e. N is t–minimal), then K = S.
(iii) if 0 < t − l ≤ δ, then it is rate constant dependent whether K = S or not.

5.1 RKS kinetics

To better understand kinetics with the KRSC property, i.e. K = R, we study their
superset of kinetics with K ⊂ R. This containment in contrast to that in S is true only
for certain kinetics, which we denote as RKS kinetics:

Definition 24 A chemical kinetics on a CRN has a reactant-determined kinetic
subspace (of type RKS) if K is contained in R.

Determining the containment of K in R is in general not easy since one does not
have a generic set of generators for K . A useful approach is to determine a superset of
K , e.g. S, and study the relationship of the superset to R. The following proposition,
which demonstrates the strong dependence of RKSkinetics on network type, is derived
using this approach.

Proposition 16 (i) Any kinetics on an RSS network has the RKS property.
(ii) On a TRS network (i.e. R ∩ S = ∅), there are no RKS kinetics.

Proof (i) K ⊂ S and S ⊂ R (RSS property)⇒ K ⊂ R. (ii) Note that for any kinetics,
dim K ≥ 1. For an RKS kinetics, K = K ∩ S ⊂ R ∩ S = 0 (NRS property), implying
that no such kinetics exists. ��

Another useful superset of K is K + + K −, where K i = span(Im f i ) and f i =
Y I i

a K for i ∈ {+,−}. In fact, we have the following characterization of an RKS
kinetics:
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Proposition 17 K is an RKS kinetics ⇔ K + + K − ⊂ R.

Proof Recall that f (x) = f +(x) − f −(x) for all x ∈ ΩK , so K ⊂ K + + K − for
any kinetics, and (⇐) immediately follows. On the other hand, if K ⊂ R, each f (x)

is also in R implying f +(x) = f (x) + f −(x) is also in R. Since the f +(x) generate
K +, (⇒) follows. ��
Remark 6 Note that the subspace K + ∩ K − is of interest in determining positive
equilibria because it contains all the common values an equilibrium of f can attain
under f + and f −, since f (x) = 0 ⇔ f +(x) = f −(x). In particular, for any kinetics,
K + ∩ K − = 0 implies E+(N , K ) = E+(N , f +) ∩ E+(N , f −), where E+ is the
set of positive equilibria ofN . Also, if K is an RKS kinetics, then all these values are
in R.

In general, little is known about the dimension of the kinetic subspace K , only the
fact that 1 ≤ dim K ≤ s. For RKS kinetics, we can improve the upper bound:

Proposition 18 For an RKS kinetics, dim K ≤ q + s − c ≤ min(q, s).

Proof A kinetics is RKS ⇔ K ⊂ R ∩ S. Since Im Y = R + S, it follows from linear
algebra, that dim(R ∩ S) = q + s − c. Since q − c ≤ 0 and s − c ≤ 0, it follows that
s + q − c ≤ s and q + s − c ≤ q, respectively. ��

5.2 RKS kinetics and factor span surjectivity

For a complex factorizable kinetics, if K �= S and S is not a subset of R, there is still
a chance that K is contained in R. A sufficient condition would be the existence of a
positive vector k such that Im Y Ak is contained in R.

The following two propositions illustrate this and also elucidate further connections
between RKS kinetics and span surjectivity.

Proposition 19 Let N be a terminal point containing network. If for a CF kinetics
with factorization equals IkΨk and with Im Y Ak contained in R, then the kinetics has
the RKS property.

To apply this proposition, one can start from a basis ofRC (e.g. a basis of ker Ak and
(ker Ak)

⊥), then apply consecutively Ak and Y to obtain a generating set for Im Y Ak .
Then one can apply an appropriate software routine to check if it is contained in R.

For a factor span surjective kinetics, one obtains a converse:

Proposition 20 Let N be a terminal point containing network. If for a factor span
surjective kinetics Im Y Ak is not contained in R, then it does not have the RKS property.

Proof We showed in [2] that for factor span surjective kinetics, K = Im Y Ak .

5.3 The kinetic and reactant subspace coincidence (KRSC) theorem

Our main result provides further striking connections between the RKS property and
factor span surjectivity:
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Theorem 5 (Kinetic and Reactant Subspace Coincidence Theorem). Let c =
dimIm Y and s, q the rank and reactant rank of the network N , respectively. For
a complex factorizable system on N ,

(i) If c − s > 0, then K �= R.
(ii) If c − s = 0 and c − q > 0, t − l = 0 and the system is factor span surjective,

then K �= R.
(iii) If c−s = 0 and c−q > 0, t −l > 0 and the system is factor span surjective, then

whether K = R or not, is rate constant and equilibrium existence dependent.
(iv) If c − s = 0 and c − q = 0, t − l = 0 and the system is factor span surjective,

then K = R.

Proof (i) c − s > 0 ⇔ S is a proper subset of Im Y . It follows from Theorem 2 that
N is not an SRS network, i.e. R is not contained in S ⇔ S ∩ R �= R. If K = R,
then K = K ∩ S = R ∩ S �= R, a contradiction. Hence K �= R.

(ii) c − s = 0 and c − q > 0 imply that if K = S, then K �= R. Since the system is
factor span surjective, statement (2) of the KSSC implies this for t − l = 0.

(iii) For c − s = 0 and c − q > 0 and t − l > 0, statement (3) of the KSSC implies
that K = S is rate constant and equilibrium existence dependent, and hence this
also holds for K and R coincidence.

(iv) c − s = 0 and c − q = 0 ⇔ S = R. Statement (2) of the KSSC again implies
that K = S, hence K = R.

��
Remark 7 (i) Theorem 5 (i) depends only on network properties just as in KSSC. In

contrast to KSSC (where the subspace Im Y Ak plays a key role in the derivation),
it is based only on the intersection R ∩ S and hence is also valid for non-complex
factorizable kinetics.

(ii) Theorem 5 (iv) uses the Feinberg–Horn Theorem to achieve K = S. Hence
for R = S, the assertion is also valid for other kinetics with KSSC such as
span surjective kinetics. These are non-complex factorizable on networks with no
inflow-branching and non-inflow branching (which is the branching type “S” in
[2]).

In summary, we conclude that the coincidence of K and R can occur only on
SRS networks, but it has a dual character: coincidence on an SRP network implies
that K �= S, and hence all the equilibria of a complex factorizable kinetics with
differentiable factor map are degenerate. On the other hand, coincidence on an RES
network implies K = S and hence the possibility of the existence of non-degenerate
equilibria.

6 The kinetic flux subspace of power law systems

In the Deficiency Zero and Deficiency One Theorems for MAK systems, the stoi-
chiometric subspace S plays an important kinetic role in two ways: its orthogonal
complement is used to parametrize the set of positive equilibria and each stoichiomet-
ric class intersects the equilibria set in a unique point. More precisely, one has:
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(a) x∗ ∈ E+ implies that E+ = {x ∈ R
S
> | log(x) − log(x∗) ∈ S⊥}, and

(b) |E+ ∩ P| = 1 for each positive stoichiometric class P .

Hence, in order to establish analogues for the Low Deficiency Theorems for power
law kinetic systems, a “kinetic analogue” of the stoichiometric subspace needs to be
identified. In their work on Generalized Mass Action Kinetic (GMAK) systems , a
superset of PL-RDK systems, Müller and Regensburger [12] introduced the kinetic
order subspace ˜SMR as such an analogue for cycle terminal networks and derived
a Deficiency Zero Theorem for systems with zero kinetic deficiency, which form a
subset of zero deficiency systems.

The Müller–Regensburger kinetic order subspace is sufficient for zero deficiency
systems since for such systems, the positive equilibria set is non-empty if and only if
the network is weakly reversible, and such networks are cycle terminal. However, for
theDeficiencyOneTheorem, non-cycle terminal networks, i.e. networkswith terminal
points, also need to be considered. The main result of this section is the construction
of the kinetic flux subspace ˜S for any PL-RDK system with the following properties:

(a) ˜S = S for the subset of MAK systems.
(b) ˜S = ˜SMR for a PL-RDK system on a cycle terminal network.

We illustrate the kinetic role of˜S with examples of PL-RLK systems, a set of PL-RDK
systems with “linearly independent” kinetics in Sect. 7. In [17], a subspace of˜S, which
in many cases coincides with it, is used for the parametrization and uniqueness results
in the Low Deficiency Theorems derived there for a superset of PL-RLK systems.

6.1 The kinetic reactant subspace and T matrix of a PL-RDK system

In their more geometric approach to power law kinetics in [12], Müller and Regens-
burger introduced the concept of a generalized chemical reaction network (GCRN)
by specifying a map ỹ : ρ(R) → R

S , assigning to a reactant complex y the row of
kinetic order matrix of its reaction, which they called its kinetic complex ỹ(y). The
kinetic complexes appear in a further construct in their paper, namely as columns of the
m × n matrix ˜Y corresponding to reactant complexes together with zero columns for
non-reactant complexes (i.e. terminal points). In this section, we refine their concepts
by (1) considering the subspace generated by the kinetic complexes and (2) truncating
away the zero columns of ˜Y . These two changes enable a stronger “reactant-oriented”
conceptual focus.

6.1.1 The kinetic reactant subspace of a power law system

In analogy to the reactant subspace of the network, we now define:

Definition 25 The kinetic reactant subspace ˜R is the subspace generated by the
kinetic complexes inRS . The dim ˜R is called the kinetic reactant rank and elements
of RS /˜R the kinetic reactant classes.

For aMAK system, ỹ = id and hence ˜R = R. For a cycle terminal network,Müller
and Regensburger introduced the kinetic analogue of the stoichiometric subspace of
the network:

123



418 J Math Chem (2018) 56:395–422

Definition 26 For a cycle terminal network N , the kinetic order subspace ˜SMR is
the span of the fluxes of the kinetic complexes, i.e.

˜SMR := span
{

ỹ(y′) − ỹ(y)|y → y′ ∈ R
}

.

We observe that for any PL-RDK system, ˜SMR ⊂ ˜R. This suggests that a gener-
alization to non-cycle terminal networks should also be contained in ˜R. For a MAK
system on a cycle terminal network, ˜SMR = S ⊂ R. With these considerations in
mind, we reformulate our task - on an RSS network (i.e. S ⊂ R), identify a subspace
of ˜R with the following properties:

(i) ˜S = S for the subset of MAK systems,
(ii) ˜S = ˜SMR for a PL-RDK system on a cycle terminal network.

6.1.2 The T matrix of a PL-RDK system

We recall the definition of the m × n matrix ˜Y from [13]: for a reactant complex, the
column of ˜Y is the transpose of the kinetic order matrix row of the complex’s reaction,
otherwise (i.e. for a terminal point), the column is 0.

Definition 27 The T matrix of a PL-RDK system is formed by truncating away the
columns of the terminal points in ˜Y , obtaining an m × nr matrix. The corresponding
linear map T : R

ρ(R) → R
S maps ωρ(r) to (Fr )

T . The T matrix is the kinetic
analog on of the map Yres : Rρ(R) → R

S on network (or MAK system) level. Just
as Im Yres = R, Im T = ˜R.

6.2 Kernel-aligned PL-RDK systems on RSS networks

Let N be an RSS network, K a PL-RDK kinetics on N . If the map of sets ỹ can
be extended to a linear map of subspaces R → ˜R, then the image ỹ(S) would be a
candidate for the subspace we are looking for. A subset of PL-RDK enabling this is
easily identified:

Definition 28 A PL-RDK kinetics is Y -kernel aligned (of type YKA) if ker Yres ⊂
ker T .

Proposition 21 For a PL-YKA system, the linear map ỹ : R → ˜R is well defined
(and surjective). If N has zero reactant deficiency, then PL − RDK (N ) =
PL − Y K A (N ).

Proof We extend ỹ linearly to R → ˜R, i.e. for y = ∑

αi yi with yi ∈ ρ(R), ỹ(y) :=
∑

αi ỹ(yi ). If y = ∑

βi yi , then
∑

(αi −βi )ωyi ∈ ker Yres. Since the kinetics is YKA,
T (

∑

(αi −βi )ωyi ) = ∑

(αi −βi )T (ωyi ) = ∑

(αi −βi )ỹ(yi) = 0 and themap is well-
defined and surjective. Furthermore,N has zero reactant deficiency ⇔ ker Yres = 0,
which implies PL − RDK (N ) = PL − Y K A (N ).

Definition 29 For a PL-YKA system on an RSS network, the kernel-aligned kinetic
flux subspace ˜SK := ỹ(S).
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Clearly, any MAK system on an RSS network is YKA, so that ˜SK = S. For a
cycle terminal network, since ỹ(y j yi ) = ỹ(y j )ỹ(yi ) for reactant complexes yi , y j ,
we have ˜SK = ˜SMR. Hence, the kernel-aligned kinetic flux subspace has both desired
properties for a subspace of ˜R. However, as the following example shows, there are
RSS networks where PL − RDK (N ) �= PL − Y K A (N ), so that ˜SK does
not provide a complete solution for our search.

Example 7 The RSS network given by X1+ X2 → X1 and 2X1+ 2X2 → 2X1 has
a 1-dim ker Yres. On the other hand, the PL-RDK system with T matrix

T =
[

0.1 0
0 0.2

]

has ker T = 0, so it is not YKA on the network above.

6.3 The kinetic flux subspace of a PL-RDK system

The observation that for an RSS network with zero reactant deficiency, ỹ(S) = T ◦
Y −1
res (S), where Y −1

res is the inverse map, suggested the correct general solution for the
problem:

Definition 30 For a PL-RDK kinetics on an RSS network, the kinetic flux subspace
˜S is the subspace T (Y −1

res (S)) of ˜R. We denote by s̃ = dim˜S the kinetic rank.

In the definition, Y −1
res (S) is the pre-image of S in Rρ(R), which is also a linear

subspace. We note that an RES network implies ˜S = ˜R and s̃ = q̃ . This follows
immediately from Y −1

res (R) = Rρ(R) and T (Rρ(R)) = ˜R.

Remark 8 Applying the Nullity Theorem to the restriction of T to Y −1
res (S) shows that

˜S is isomorphic to Y −1
res (S)/Y −1

res (S) ∩ ker T . This means that the ambiguities with
ker T are factored away.

We now prove our main result in Sect. 6:

Theorem 6 Let (N , K ) be a PL-RDK system on an RSS network N with kinetic flux
subspace ˜S.

(i) If N is cycle terminal and ˜SMR is its kinetic order subspace, then ˜S = ˜SMR.
(ii) For any MAK system on N , ˜S = S.
(iii) For a PL-YKA kinetics, ˜SK = ˜S.

Proof (i) The equality ỹ(ρ(r)) = T (ωρ(r)) holds for any PL-RDK system. For
a cycle terminal network, the coincidence of ˜S = ˜SMR rests on the fact
that z = ỹ(ρ(r ′)) − ỹ(ρ(r)) is a generator of the kinetic order subspace iff
z = T (ωρ(r ′) − ωρ(r)) is a generator of T (Y −1

res (S)).
Let x ∈ ˜SMR and write x = ∑

αi (ỹ(y′
i ) − ỹ(yi )) , where the sum is over

all reactions, which are indexed by i = 1, . . . , r . Substituting as above, x =
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∑

αi (T (ωy′
i
) − T (ωyi )) = T (

∑

αi (ωy′
i
− ωyi )) since the network is cycle ter-

minal. Since Y (
∑

αi (ωy′
i
− ωyi )) = ∑

αi (y′
i − yi ) then z = ∑

αi (ωy′
i
− ωyi ) ∈

Y −1
res (S) and T (z) = x .

Let x ∈ ˜S. Then x = T (z), z ∈ Y −1
res (S). Write z = ∑

αi (ωy′
i
− ωyi ). Then x =

T (z) = T (
∑

αi (ωy′
i
−ωyi )) = ∑

αi (T (ωy′
i
)−T (ωyi )) = ∑

αi (ỹ(y′
i )− ỹ(yi )),

since the network is cycle terminal. The last term is clearly in ˜SMR.
(ii) This is straightforward from the surjectivity of Yres.
(iii) An element x of ˜SK has form ỹ(

∑

αi (y′
i − yi )) = ∑

αi (ỹ(y′
i ) − ỹ(yi )), since

ỹ is linear and hence in the kinetic flux subspace ˜S. The same argument as in (i)
establishes that each x in the kinetic flux space is also in ỹ(S).

��
We now present a comparison with another subspace of ˜R to broaden our under-

standing of ˜S.
In [16], D. Talabis introduced for any PL-RDK system themap ˜FT := T ◦projR′ ◦ Ia

where R′ = R
ρ(R), which we now call the “truncated kinetic map”.

Definition 31 The image of ˜FT is called the truncated kinetic order subspace ˜ST

of the PL-RDK system. For a MAK system, it is a subspace of R and denoted with
ST and called the truncated stoichiometric subspace.

The truncated kinetic order subspace clearly coincides with the Müller–Regens-
burger kinetic order space for cycle terminal networks, the projection map being the
identity. On the other hand, the following example provides a network with S �= ST .

Example 8 A simple example from [4] is the following:

R1 : 2X1 → X1 + X2

R2 : X1 + X2 → 2X1

R3 : X1 + X2 → 2X2

It is t-minimal, has δ = 1 and δρ = 0. For any MAK system, ˜S = S = 〈X1 − X2〉 is
one-dimensional while ˜R = R = 〈X1 + X2, 2X1〉 = R

2.

So the condition S = ST must be explicitly required if the truncated kinetic order
subspace shouldqualify as an extensionof theMüller–Regensburger construct. S = ST

immediately implies that the network is RSS, so we can compare the truncated kinetic
order subspace ˜ST with the kinetic flux subspace ˜S.

Proposition 22 LetN be an RSS network with stoichiometric subspace S and kinetic
flux subspace ˜S. If S = ST , for a PL-RDK kinetics, ˜S = ˜ST + T (ker Yres). ˜S = ˜ST iff
the kinetics is PL-YKA.

Proof S = ST implies Y −1
res (S) = Y −1

res (ST ). An element of Ia,ρ(r)(R
R) has the form

z = ∑

αi (ωy′
i
− ωyi ) + ∑

αi (−ωyi ) with the first sum over all non-terminal and

the second over all terminal reactions of the network, is in Y −1
res (ST ). This is because
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s := Yres(z) = ∑

αi (y′
i − yi ) + ∑

αi (−yi ), is an element of ST . If Yres(z′) = s for
another z′ ∈ Y −1

res (ST ), thenYres(z−z′) = 0. In otherwords,Y −1
res (ST ) = Ia,ρ(r)(R

R)+
ker Yres. If we apply T to both sides, we obtain the claim. The second statement follows
immediately from the definition of PL-YKA. ��
Remark 9 (i) IfN is cycle terminal, ST = S and˜ST = ˜SMR (since Ia,ρ(r) = Ia) and

hence˜ST = ˜S. It follows fromProposition 11 that, in this case, T (ker Yres) ⊂ ˜ST .
(ii) TheYKA-property is sufficient for˜ST = ˜S, but not necessary. On a cycle terminal

network with nr ≤ m and no zero complex, there are PL-RDK kinetics with
ker T = 0, so if its reactant deficiency is greater than 0, then those kinetics are
not YKA. Nevertheless, as noted in (i) ˜ST = ˜S for any PL-RDK system.

7 Conclusion

In conclusion,we summarize ourmain results and outline someperspectives for further
research.

1. We derived a formula for the difference between (network) deficiency and reactant
deficiency (Theorem 1), which we use to determine existence and characteristics
of positive equilibria of kinetics on CRNs with zero reactant deficiency.

2. We characterized the network classes (Theorem 2) in terms of the containment of
R and S in Im Y and the subnetwork of S-complexes, a new tool that we introduce.
The network classes play an important role in the connections between R and the
system kinetics.

3. We provided an analogue of the Feinberg–Horn Theorem on the coincidence of
the kinetic and stoichiometric subspaces for the kinetic and reactant subspaces
of complex factorizable kinetics (Theorem 5). The striking fact that K and R
coincidence can occur only in the network class with R ∩ S = R exemplifies the
role of the network classes in the connections between R and kinetics.

4. We constructed the “kinetic flux subspace” and showed in Theorem 6 that it sat-
isfied the requirements of coincidence with the stoichiometric subspace for MAK
systems and with the kinetic order subspace of Müller–Regensburger for PL-RDK
systems on cycle terminal networks. A key observation is that these requirements
imply that the construction can occur only when R ∩ S = S, again emphasizing
the role of the network classes.

Further research should explore applying the results to existing models to uncover
further connections between R and system kinetics. In a companion paper [1], we have
carried this out for biochemical systems modeled in the S-system formalism. Com-
parative analysis of models of the earth’s carbon cycle has provided further interesting
results regarding CRNs with zero reactant deficiency [9].
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