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Abstract The recently introduced concept of envelope partitioning for shape estima-
tion within the fast Padé transform (FPT) is presently further explored and solidified.
Earlier, noise-free time signals were used and the results were reported for a single
model order K. Currently, partitioned envelopes are computed for several values of
model orders K by employing noise-corrupted time signals of increasing standard
deviations, σ = 0.0289, 0.289, 2.89 in units of root-mean-square of the noise-free
time signal. Moreover, spectra averaging is exploited to stabilize shape estimation
in face of sensitivity to changes in model order. The main goal of this study is to
establish the robustness of the non-parametric FPT for reconstructions of partitioned
average envelopes computed with noisy time signals. Both the previous and present
illustrations concern synthesized time signals typically encountered in single-voxel
magnetic resonance spectroscopy (MRS), akin to in vitro encoding from malignant
breast tissue. This particular problem area is chosen for a twofold reason: clinical
urgency in cancer medicine, and a huge challenge to reliably identify a key cancer
biomarker (phosphocholine), completely hidden underneath a dominant peak (phos-
phoethanolamine), with a separation of mere 0.001 parts per million of chemical shift.
Upon successful benchmarking of partitioned envelopes for noisy simulatedMRS time
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signals, the road would be paved for applications of this special shape estimation to
the associated data from in vivo encodings. Partitioned envelopes are important since
they offer possibilities to peer into the tightly overlapped resonances by splitting their
components apart already at the level of sole total shape spectra. Although constrained
by non-parametric estimations, they can still qualitatively decompose the regions of
higher spectral density. This would enable subsequent focusing on the most critical
spectral regions of interest when solving the local quantification problem by paramet-
ric estimations. Such a stepwise strategy is expected to be especially beneficial for
multi-voxel magnetic resonance spectroscopic imaging (MRSI), where thousands of
noisy spectra need to be processed. The FPT-based partitioned envelopes, followed by
accurate local spectral analysis in narrow frequency intervals are poised to help MRSI
become an efficient diagnostic modality for everyday clinical practice.

Keywords Magnetic resonance spectroscopy · Mathematical optimization · Fast
Padé transform · Partitioning · Breast cancer diagnostics

Abbreviations

Ala Alanine
AR Auto-regression
ARMA Auto-regressive moving average
au Arbitrary units
Av Average
β-Glc = β-glucose
BW Bandwidth
Cho Choline
FFT Fast Fourier transform
FID Free induction decay
FPT Fast Padé transform
GPC Glycerophosphocholine
Lac Lactate
MA Moving average
Met Metabolite
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
m-Ins Myoinositol
NCT Neoadjuvant chemotherapy
NMR Nuclear magnetic resonance
PC Phosphocholine
PCM Personalized cancer medicine
PE Phosphoethanolamine
ppm Parts per million
ref Reference
RMS Root mean square
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SNR Signal-to-noise ratio
SRI Spectral region of interest
Tau Taurine
tCho Total choline
TSP 3-(trimethylsilyl-)3,3,2,2-tetradeutero-propionic acid
ww Wet weight

1 Introduction

Time signals are ubiquitous in experimental measurements across vastly different
interdisciplinary research fields in basic and applied sciences alike. They also appear
everywhere in technological and industrial advances. The great majority of dynamic
phenomena in all these branches, and in all of nature for that matter, undergoes time
evolution during its development. It is precisely time signals that capture the essence
of such evolution to house the entire content of the underlying information. However,
the measured time signals do not generally deliver this information to the user “on
a silver platter” in a ready-made mode to exploit it. Rather, they very often hide it,
fold it and otherwise mask this information. There is a myriad of reasons for such
intricate convolutions. The complexity of the examined phenomena, external pertur-
bations and unavoidable noise are among the prominent nuisances that compromise
the resilience of the system to disturbances. Add to this the appearance of many time
signals, and the challenge of analyzing and interpreting them becomes overwhelming.
Many time signals appear as tightly packed waveforms that decay with increasing
time. Their mathematical function is invariably a linear combination of exponentially
damped sinusoids buried in noise. Little or nothing can be deciphered by inspection of
such waveforms in the original time domain of measurement. The reason is that most
systems usually have many degrees of freedom and modes of internal motions, encap-
sulated in oscillations, and manifested through the mentioned complex exponentials
that all blend together. This is why usually we cannot simply peer into a time signal
waveform and read off its content.

The mentioned exponential damping implies instability as the system responds to
a perturbation through time signals whose decay is associated with unsteady, tran-
sient phenomena. To discern, at least qualitatively, the structure of a given time signal,
computations are vital using a mathematical transformation to generate an equiva-
lent representation called the frequency spectrum. This dual representation is possible
thanks to the fact that time and frequency are conjugate variables. It is a spectrum
which can transcend some of the time signal’s structure, and uncover a part of the
hidden information. A spectrum exhibits a number of relatively discernable peaks or
resonances, each of which may correspond to one or more decaying oscillatory wave-
forms of the time signal. As such, the frequency domain through the computed spectra
becomes more amenable to direct interpretation of what has actually been measured
in the time domain. A total shape spectrum or envelope provides qualitative informa-
tion. Quantitative information is given by component shape spectra of an envelope.
These qualitative and quantitative interpretations are the subject of a separate branch
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called signal processing. Therein, one encounters the so-called “shape estimators” for
envelopes and “parameter estimators” for components.

The fast fourier transform (FFT) is the prime example of a shape estimator. There
are many parameter estimators, one of which is the fast Padé transform (FPT).
Advantageously, the FPT can also perform shape estimations through non-parametric
processing. Standard envelopes are useful only if there are no overlapping peaks. For
overlapping peaks, parameter estimation is needed to carry out the spectral analysis
(also called quantification) which splits the given envelope into its component shape
spectra. This is how traditionally signal processing has been done.

Of late, however, the possibility was explored to decompose an envelope into its
components by shape estimation alone [1]. To this end, the non-parametric version of
the FPT has been used as a shape estimator to qualitatively extract the components of
compound peaks that appear as single isolated resonances in standard envelopes. This
was achieved by exploiting the fact the time domain evolution of a generic system is
described in the FPT by way of the auto-regressive moving average (ARMA) process.
The z−transform (or the transfer function) of the ARMA time domain process is
a quotient of two polynomials and this is a spectrum (or response function) in the
FPT. Prior to inspecting such a complex-valued spectrum PK /QK of model order
K , it is possible to disentangle it and visualize the separate contributions from its
two constituents, the moving average (MA) and auto-regression (AR) given by the
numerator PK and denominator QK polynomial, respectively. The main reason for
the overwhelming use of ARMA estimations in vastly different fields is that the MA
part efficiently models noise, while the AR part provides the spectral poles. It turns out
that the so-called “partitioned envelopes”, as the unique combinations of absorptive
and dispersive envelopes from the MA and AR processing, are able to visualize the
hidden components of compound peaks [1]. The first illustrations of the concept of
spectra partitioning was in a medical application by reconstruction of the Padé-based
partitioned envelope spectra for a single model order K . As the entries, synthesized
noiseless time signals were generated to be reminiscent of the corresponding data,
alternatively called a free induction decay (FID), encoded from cancerous breast tissue
via magnetic resonance spectroscopy (MRS).

We chose this example for two reasons. First, it is a case of utmost relevance for
breast cancer diagnostics,which could be greatly improved by timely identification of a
recognized cancer biomarker, phosphocholine (PC). Second, in an envelope spectrum,
the PC peak is completely hidden underneath of a nearby dominant resonance, phos-
phoethanolamine (PE), which is not a cancer biomarker. The partitioned absorptive
envelopes were shown to be able of visualizing both PC and PE that in the associated
total shape spectrumRe(PK /QK ) appear as a single perfectly symmetrical Lorentzian
[1]. By construction, the partitioned envelopes are unique. This is also confirmed in
numerical computations by proving that the appropriate combinations of the MA and
AR pathways yield exactly the result from direct computations of PK /QK (with no
recourse to separate evaluations of moving average and auto-regression). Guided by
the initial success, it was deemed necessary to further test the findings reported in Ref.
[1] so as to firmly establish the robustness of visualization of hidden resonances by
using noise-contaminated time signals, as well. Moreover, it would be important to
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carry out reconstructions by the non-parametric FPT for a sequence of model orders
K , followed by arithmetic averaging. This is the subject of the present work.

2 Advanced signal processing by the fast Padé transform

Effective strategies for the non-invasive detection of cancer biomarkers throughmolec-
ular imaging are being urgently sought. Magnetic resonance spectroscopy, MRS, and
spectroscopic imaging (MRSI) hold particular promise to realize this aim. In line with
this overall goal, we investigated the advantageous properties of rational polynomials
for handling functions containing resonances. Due to its uniqueness for the power
series expansion of the given function, the Padé approximant is the most important
of these rational polynomials. Very recently, we explored the heretofore unrealized
possibilities of non-parametric analysis with partitioning via the fast Padé transform,
FPT, as an expedient first step in processing MRS time signals. The convenience of
this initial analysis is that it can be accomplished once the expansion coefficients of
the polynomials are generated from the time signal, without polynomial rooting. Our
focus in Ref. [1] was upon the breast cancer biomarker phosphocholine, PC, a hidden
component, which had not previously been visualized with non-parametric analysis
of MRS time signals via the FPT. The present paper continues with this sub-topic in
further depth. We begin with salient background for this multi-faceted problem.

It should be recalled that time signals, i.e. free induction decay, FID, curves in
MRS and MRSI must be converted into their spectral representation in the frequency
domain. In conventional practice this is done by the fast Fourier transform, FFT, which
is built-in to practically all magnetic resonance (MR) scanners. The advantages and
drawbacks of the FFT for MRS have been exhaustively reviewed in e.g. Refs. [1–4].
Herein, we note that the Fourier spectrum is conveyed as a single polynomial. The
lack of a polar structure is one of the important reasons for the inadequacy of the FFT
in processing MRS data, since these are representations of functions with peaks [2,5].
Thus, we now turn our attention to the FPT starting with a brief review of its basic
features.

2.1 Basic features of the fast Padé transform

Through the FPT, a spectrum is generated as a non-linear response function via the
unique ratio of two polynomials [2]. In the diagonal form, where K is the model order
or polynomial degree, this spectrum is PK /QK . The exact response function is given
by the infinite-rank Green function G(z−1), which is defined by the Maclaurin series:

G(z−1) =
∞∑

n=0

cnz
−n, z = eiτω (exact Green series), (1)

where i is imaginary unity (i = √−1) and the time signal points {cn} are the expansion
coefficients. Whenever only a finite number N (N < ∞) of signal points {cn} is
available, as is always the case in practice, a truncated response function is needed.
This is the finite-rank Green function or the Green polynomial GN (z−1):
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GN (z−1) =
N−1∑

n=0

cnz
−n (exact Green polynomial). (2)

A major advantage of rational polynomials, as a quotient of two polynomials, is that
the polar representation is automatically built-in by design [5]. For that reason, rational
polynomials are the most appropriate for describing functions with peaks, such as MR
spectra. Among the rational polynomials, the Padé approximant is the most important
because of its uniqueness for the power series expansion of the given function.

There are two variants of the FPT with respect to the complex harmonic variable z.
These are defined inside (|z| < 1) andoutside (|z| > 1) the unit circle for the causal and
anti-causal representations, and are termedFPT(+) andFPT(−), respectively. Both FPT
variants are frequency-dependent polynomial quotients extracted from the common
exact Green polynomial (2) [2,4]. Consequently, the single input response function
GN (z−1) from (2) in the FPT(±) is approximated by the two Green-Padé functions
G±

K (z±1), defined by the diagonal rational polynomials in their respective harmonic
variables z±1:

FPT(+) : GN (z) ≈ G(+)
K (z) = P+

K (z)

Q+
K (z)

≡
∑K

r=1 p
+
r z

r

∑K
s=0 q

+
s zs

; p+
0 = 0, (3)

FPT(−) : GN (z−1) ≈ G−
K (z−1) = P−

K (z−1)

Q−
K (z−1)

≡
∑K

r=0 p
−
r z

−r

∑K
s=0 q

−
s z−s

. (4)

Thus, for the same input GN (z−1), the two equivalent Green-Padé representations (3)
and (4) for spectra P+

K (z)/Q+
K (z) and P−

K (z−1)/Q−
K (z−1) are the mentioned causal

and anti-causal response functions in the FPT(+) and FPT(−), respectively. In fact,
many more variants of the FPT(±) can be generated for the more general case of non-
different degrees K and L of the numerator and denominator polynomials P±

K and
Q±

L according to the definitions:

GN (z−1) ≈ G±
K ,L(z±1) = P±

K (z±1)

Q±
L (z±1)

+ O(z±K±L±1). (5)

Here, the remainders O(z±K±L±1) are theMaclaurin series in power of z±1 beginning
with the first terms z±K±L±1. There are twomain important features that emanate from
(5). First, O(z±K±L±1) are the errors of the approximations GN (z−1) ≈ G±

K ,L(z±1),

as evident from the difference of the input GN (z−1) and the output (or model)
G±

K ,L(z±1) functions via:

�G±
K ,L(z±1) ≡ {GN (z−1)} − {G±

K ,L(z±1)} = {O(z±K±L±1)}
{Input} − {Outputs} = {Errors}

}
. (6)

Second, the errors �G±
K ,L(z±1) are the smallest via O(z±K±L±1) for the diagonal

(L = K ) case, G±
K ,K (z±1) ≡ G±

K (z±1), and this is why we opt to work with the
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diagonal forms of the FPT(±) from (3) and (4). The expansion coefficients of the
numerators P±

K (z±1) and denominators Q±
K (z±1) are

{
p±
r

}
and

{
q±
s

}
, respectively.

By solving a single system of linear equations from definitions (3) or (4), these latter
coefficients are extracted uniquely from the time signal points {cn} for fixed values of
q±
0 . The FPT(−) operates with the reciprocal variable 1/z and, thus, it is an accelerator
of convergence of the input slowly converging expansion in powers of z−1 [2,3]. The
FPT(+) works with variable z and, hence, performs analytical continuation of the same
input development (3), which is in powers of z−1. The FPT(+) is algorithmically more
difficult, since it must induce convergence into divergent series [2,6]. Therefore, for
convergence, the FPT(+) generally requires more signal points than the FPT(−). By
definition, the FPT(+) and FPT(−) converge for |z| < 1 and |z| > 1, respectively.
However, by the Cauchy concept of analytical continuation, the FPT(+) and FPT(−)

also converge in their complementary domains |z| > 1 and |z| < 1, respectively. Thus,
the FPT(±) converge everywhere in the z±1 complex planes, with the exceptions of the
poles given by the zeros of the denominator polynomials, Q±

K (z±1) = 0. The FPT(+)

and FPT(−) are always employed simultaneously for a fully self-contained cross vali-
dation, using different algorithms [2,4,7]. It is for this reason of cross-validationwithin
the same type of methodology that we use both variants of the FPT in practice.

Extensive investigations demonstrate that the FPT achieves high resolution [2–5,7–
11], for which there is a number of reasons. Firstly, unlike the FFT for which there is
a sharp cut-off of the time signal at the end of the total acquisition time, T , the FPT
can extrapolate beyond T via the unique polynomial quotient PK /QK . Secondly, in
the FPT, the fixed equidistant Fourier mesh frequencies 2πm/T (m = 0, 1, 2, . . . )

are not required. Once the Padé polynomials PK and QK become available, the non-
parametric total shape spectrum PK /QK can be reconstructed by the FPT at any sweep
frequency. Thirdly, due to the non-linearity of the FPT, as a rational response function,
noise is suppressed and, thus, signal-to-noise ratio (SNR) is enhanced [2–4].

The FPT can be applied as both a non-parametric and parametric processor. Regard-
ing the latter, extensive controlled study with and without added noise indicates that
exact reconstruction of the input spectral parameters is achieved by the FPT [4,9–22].
Extremely closely overlapping resonances are fully resolved in that way by the FPT.
Studies of in vivo encoded MRS time signals processed by the parametric FPT con-
cordantly indicate that full convergence of spectral parameters is achieved, even for
resonances that are entirely overlapping [5,23–28]. Quantification through the FPT
amounts to solving exactly the problem of spectral analysis to determine four real
parameters per resonance (position, height, width and phase) [4,24,29]. Herein, we
focus upon the non-parametric capabilities of the FPT, as an important initial step for
processing MRS time signals, particularly in the clinical setting, as mentioned, and
will be elaborated further on in this paper.

2.2 Non-parametric computation of envelopes through the FPT with and
without partitioning

Notwithstanding the well-documented capabilities of the FPT to carry out quantifica-
tion in themost reliableway, it was nevertheless deemed important to considerwhether
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shape estimation alone by this method could be explored to gain the first hint about
the components of the envelopes and spectral density, prior to precise parametriza-
tion of the investigated system. The answer to this query is in the affirmative, as was
initially demonstrated in Ref. [1] for synthesized noise-free time signals. To this end,
a novel notion of the so-named “partitioned envelopes” was introduced to show that
the non-parametric FPT can qualitatively decipher the constituents of a given com-
pound resonance. This is remarkable, especially for e.g. a composite resonance which
appears as a single absorptive Lorentzian peak in the conventional envelope com-
puted without partitioning. Throughout, partitioning refers to splitting the absorption
and dispersion lineshapes into two distinct sections uniquely extracted analytically
(from a complex-valued spectrum) prior to numerical computations. The encourag-
ing results from Ref. [1] with noise-free time signals motivate an extension to also
encompass noise-corrupted input data. This is what we are set to do in the present
investigation.

Once the expansion coefficients
{
p±
r

}
and

{
q±
s

}
of the polynomials P±

K and Q±
K ,

respectively, are extracted using the intact input time signal {cn}, non-parametric anal-
yses by the FPT(±) are carried out automatically. The non-parametric Padé envelopes
P±
K /Q±

K are thereby generated. The standard way to do so has been by directly feed-
ing the set of the extracted complex numbers P±

K /Q±
K into the computer to generate

the spectral absorptions Re(P±
K /Q±

K ) and dispersions Im(P±
K /Q±

K ). Such lineshapes
will be purely absorptive and dispersive, respectively, if in a synthesized FID, all the
amplitude phases are set to be equal to zero.

Alternatively, these absorption anddispersion lineshapes can also be computed from
the explicit expressions for the real and imaginary parts, respectively, of the complex
spectra P±

K /Q±
K .WhenRe(P±

K /Q±
K ) and Im(P±

K /Q±
K ) are calculated analytically, i.e.

taken “by hand” from P±
K /Q±

K , the partitioned envelopes are obtained. Polynomials
P±
K and Q±

K can produce only zeros and poles, respectively, in the spectra P±
K /Q±

K
that are the meromorphic complex functions. A meromorphic function is a function
in which the only singularities are its poles. Importantly, each of the spectra P±

K /Q±
K

is itself already composed of two parts as the z−transforms of the moving averages,
MA via P±

K and that of the auto-regressions, AR, through Q±
K . The combined spectra

P±
K /Q±

K of both AR and MA processes are the auto-regressive moving averages,
ARMA. As such, the z−transforms of the ARMA processes are equivalent to the
FPT(±) [2,4]. Note that the expansion coefficients {q±

s } (1 ≤ s ≤ K ) of polynomial
Q±

K correspond to the backward and forward prediction coefficients, respectively, in
the AR processes.

Use of the P±
K alone produces spectra corresponding to an “All-zero model”,

whereas an “All-pole model” results when spectra are built only with Q±
K . Thus, the

reciprocals 1/Q±
K would contain only poles and these are determined by the roots of

the characteristic or secular equations Q±
K = 0.By considering the quotients P±

K /Q±
K

as the equivalent products [P±
K ] · [1/Q±

K ], the separate contributions to Re(P±
K /Q±

K )

and Im(P±
K /Q±

K ) could be deduced by the various products of the real and imaginary
parts of P±

K (MA) and [1/Q±
K ] (AR). And this is how the partitioned envelopes are

generated.
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2.2.1 Formulae for the partitioned envelopes

From here on in this paper, we will be directly referring to the FPT(+). We now
proceed to create the separate products that follow automatically from the formula
for the ratio of any two complex numbers z1 and z2 as z1/z2 = z1z∗2/ |z2|2. Here,
the star superscript specifies the standard operation of complex conjugation. With this
rule applied to P+

K /Q+
K , we obtain the mentioned separate products in the form of the

quantities A+
K , B+

K , C+
K and D+

K that represent the partitioned envelopes:

P+
K

Q+
K

= Re
(
P+
K /Q+

K

) + i · Im (
P+
K /Q+

K

)
, (7)

where,

Re
(
P+
K /Q+

K

) = A+
K + B+

K , Im
(
P+
K /Q+

K

) = C+
K + D+

K , (8)

with

A+
K = [

Re
(
P+
K

)] [
Re

(
Q+

K

)]
/
∣∣Q+

K

∣∣2 = [
Re

(
P+
K

)]
Re

(
1/Q+

K

)
, (9)

B+
K = [

Im
(
P+
K

)] [
Im

(
Q+

K

)]
/
∣∣Q+

K

∣∣2 = − [
Im

(
P+
K

)]
Im

(
1/Q+

K

)
, (10)

and

C+
K = − [

Re
(
P+
K

)] [
Im

(
Q+

K

)]
/
∣∣Q+

K

∣∣2 = [
Re

(
P+
K

)]
Im

(
1/Q+

K

)
, (11)

D+
K = [

Im
(
P+
K

)] [
Re

(
Q+

K

)]
/
∣∣Q+

K

∣∣2 = [
Im

(
P+
K

)]
Re

(
1/Q+

K

)
. (12)

Here, we use the property Im
(
1/Q+

K

) = − [
Im

(
Q+

K

)]
/

∣∣Q+
K

∣∣2. As in an “All pole

model”, the quantity 1/
∣∣Q+

K

∣∣2 in A+
K , B

+
K , C

+
K and D+

K is the power spectrum. In the
Result Section, we shall present both partitioned spectra and their arithmetic average
values for a selected sequence of model orders K . The average partitioned spectra will
be denoted as {X+

K }Av, where X = A, B, C, D and the complete average envelopes
shall be labeled by {A+

K + B+
K }Av and {C+

K + D+
K }Av. The numerical results from the

latter two quantities are expected to coincide with the corresponding conventional
(non-partitioned) average absorption and dispersion lineshapes, Re

(
P+
K /Q+

K

)
Av and

Im
(
P+
K /Q+

K

)
Av, respectively.

Overall, we see that there is an additional degree of freedom with the non-
parametric complex spectrum P+

K /Q+
K consisting of an alternative way of computing

Re(P+
K /Q+

K ) and Im(P+
K /Q+

K ). As stated, customarily, these two latter absorption and
dispersion spectra are obtained directly from the computer using the complex-valued
entry P+

K /Q+
K . Alternatively, however, the analytical expression for e.g. Re(P

+
K /Q+

K )

can be derived first in the form of two partitions A+
K and B+

K . Similarly, the analyt-
ical expression for Im(P+

K /Q+
K ) also contains its own two partitions, C+

K and D+
K .

The sum of the partitioned spectra A+
K and B+

K is the complete absorption partitioned
spectrum, A+

K + B+
K , so that, theoretically, we must have A+

K + B+
K = Re(P+

K /Q+
K ).
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This is because A+
K and B+

K are uniquely extracted from Re(P+
K /Q+

K ). Likewise,
when the partitioned spectra C+

K and D+
K are added together, the complete dispersion

partitioned spectrum is C+
K + D+

K . This latter sum, in theory, must satisfy the relation
C+
K + D+

K = Im(P+
K /Q+

K ), since the unique partition of Im(P+
K /Q+

K ), in fact, led to
C+
K and D+

K . Thus, our nomenclature is to call Re(P+
K /Q+

K ) the complete absorptive
partitioned envelope when generated by way of the sum A+

K + B+
K .By the same token,

Im(P+
K /Q+

K ) is termed the complete dispersive partitioned envelope if it is obtained
from the sum C+

K + D+
K . On the other hand, when Re(P+

K /Q+
K ) and Im(P+

K /Q+
K )

are computed directly without partitioning, they will be referred to as the conven-
tionally (or customarily) generated non-partitioned envelopes. In the case of envelope
partitioning, it is the analytical expressions for A+

K , B+
K , C+

K and D+
K that we feed

separately into the computer. The ensuing numerical results are graphed to visualize
the partitioned absorption envelopes A+

K and B+
K , as well as the partitioned dispersion

envelopes C+
K and D+

K . The partitions A+
K and B+

K in Re(P+
K /Q+

K ) as well as C+
K

and D+
K in Im(P+

K /Q+
K ) redistribute the interference effect. This is the mechanism

behind separating overlapping peaks in composite resonances. It is the interference
of A+

K and B+
K in A+

K + B+
K that, in fact, prevents splitting of adjacent overlapping

resonances in a composite peak. In a rearranged interference, followed by plotting
A+
K and B+

K separately, the individual resonances have a chance to “pop up” and,
thus, split apart the compound peaks in A+

K + B+
K . We therefore computed the partial

envelope spectra from A+
K , B+

K , C+
K and D+

K . As a check, the results for the complete
absorptive partition A+

K + B+
K and the complete dispersive partition C+

K + D+
K must

be shown to coincide with the conventional non-partitioned absorption Re(P+
K /Q+

K )

and conventional non-partitioned dispersion Im(P+
K /Q+

K ) envelopes, respectively.

2.2.2 Partitioning for peering into the inner structure of total shape spectra

When P+
K and Q+

K become available and their quotient P+
K /Q+

K directly pro-
grammed by this indicated division, the computer would give the entire contributions
Re(P+

K /Q+
K ) and Im(P+

K /Q+
K ) as in (7), without the explicit information contained

in (8)–(12). Customarily, computed in that way, all the intact interference effects in
Re(P+

K /Q+
K ) and likewise in Im(P+

K /Q+
K ) are at play, but no insight can be gleaned

into the contribution of the constituent parts of Re(P+
K /Q+

K ) and Im(P+
K /Q+

K ).
In contrast, insofar as Re(P+

K /Q+
K ) and Im(P+

K /Q+
K ) are identified by (8)–(12),

before performing numerical computations, it becomes possible to look into the inner
structure of these absorptive and dispersive envelopes, respectively. This inner struc-
ture is apparent in the partitioned envelopes A+

K , B
+
K ,C

+
K and D+

K that are built from the
products of the two spectra (at a time) in theMA andAR sequences. Consequently, the
absorptive portion Re(P+

K /Q+
K ) of the entire complex spectrum P+

K /Q+
K is the sum

A+
K + B+

K of the absorption-absorption (A+
K ) and dispersion-dispersion (B+

K ) prod-

ucts via A+
K = [Re(P+

K )]Re(1/Q+
K ) and B+

K = −[Im(P
+
K )]Im(1/Q+

K ), as per (9) and
(10), respectively. By the same token, the dispersion Im(P+

K /Q+
K ) of P+

K /Q+
K is the

sumC+
K +D+

K of the cross-products (ormixed products) through absorptive-dispersive
C+
K = [Re(P+

K )]Im(1/Q+
K ) and dispersive-absorptive D+

K = [Im(P+
K )]Re(1/Q+

K )

lineshapes, as per (11) and (12), respectively.
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The full interference between the two partitioned envelopes is, in fact, redistributed
via this compartmentalization of both Re

(
P+
K /Q+

K

)
and Im

(
P+
K /Q+

K

)
. Consequently,

the interference effect in A+
K and B+

K is diminished when each of these are examined
separately. Hidden resonances can thereby be identified in compound peaks. Similarly,
when C+

K and D+
K are taken as individual, partitioned envelopes, some concealed

resonances can be seen that otherwise can be absent or obscured in C+
K + D+

K .
In order to check the correctness of the expressions (7)–(12), the numerical values of

the spectrum Re
(
P+
K /Q+

K

)
computed conventionally, i.e. directly, must fully coincide

with the sum A+
K + B+

K . Likewise, the direct computation of Im
(
P+
K /Q+

K

)
and that

via C+
K + D+

K must be entirely coincident.
Either of these two computations would merely result in superpositions of peaks

with minimal interference effects for resonances that are single and isolated due to
weak or virtually non-existent interactions. However, overlapping resonances can
interact strongly, with the amount of their interference being related to the extent
of overlap. With augmented interference, individual lineshapes of closely spaced
resonances would be masked. Partitioned envelopes are then found to be helpful in
disentangling the hidden spectral content of the component peaks. This expectation
from the theory has been confirmed by the FPT(+) in our initial study on noise-free
synthesized time signals for a single value of model order K in P+

K /Q+
K [1]. This

finding is encouraging. Nevertheless, it needs to be further scrutinized in light of the
known sensitivity of reconstructions to the presence of noise and to changes in model
order K . Moreover, the reconstructed noisy envelopes for a sequence of values of
model order K need to be averaged to improve SNR and damp the outliers (spikes in
spectra).

It should be emphasized that, in principle, the concept of envelope partitioning is not
limited to the FPT and, thus, can be tried with some other processors. However, what is
particularly appealing in the FPT is that its envelope partitioning comes naturally as the
unique decomposition into the two already ingrained constituents, the moving average
and auto-regression. This great advantage of the Padé-based envelope partitioning
permits realistic interpretations of absorptions and dispersions directly in terms of the
familiar MA and AR processing, thus attaching physical meanings and rationale to
the spectra partitioning concept.

We re-emphasize that both sets of Padé-based partitioned envelopes {A+
K , B+

K }
and {C+

K , D+
K } represent the unique and exact decomposition of Re

(
P+
K /Q+

K

)
and

Im
(
P+
K /Q+

K

)
, respectively. In other words, there are no freely adjustable parameters

in either of the two sets of partitioned envelopes. Of course, envelope partitioning
is restricted to qualitative estimation alone. Such a restriction is expected from the
onset since non-parametric processing can provide only shape estimation. This is a
qualitative evaluation, which is descriptive regarding the components: i.e. “present”
or “absent”. It is important to note this feature in order to avoid any attempt to view
envelope partitioning as a substitute (or alternative) to quantification. It is not. Instead,
it should be considered as a practical aid (or supplement) to quantification. Scanning,
i.e. monitoring envelopes in a pre-quantitative stage could be used to spot the regions
of high spectral density and determine whether compound peaks are decomposed.
The partitioned envelopes would thus play the role of an adaptive pre-processor,
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laying the ground for a more focused local quantification. Taken in this way, both
envelope partitioning and local quantification have clearly defined, complementary
tasks.

We now proceed to briefly describe the spectra averaging procedure, an important
application of the FPT, which can be used to further refine the information gleaned
from the total shape spectra.

2.3 Spectra averaging through the FPT

A serious problem which has been noted to arise with spectra in MRS is the desta-
bilizing effect of marked changes in the sought model order K [24–28]. Namely, for
different values of model order K , many large noise-like spikes appear in the spectra.
Earlier, we referred to these spikes as outliers, because they single themselves out
from the more or less coherent pattern of most of the spectral peaks. We introduced
an averaging procedure of spectra to handle this over-sensitivity to alterations in K
[24]. This procedure regularizes spectra by taking the arithmetic average of a set of
envelopes computed for selected values of K . Using a sequence of values of the model
order K , an average envelope (arithmetic average) is produced.

This spectra averaging procedure is carried out within the FPT. Through the FFT,
averaging of spectra is not possible since Fourier vectors in the frequency domain are
not of the same length for different truncation of the total acquisition time T [24].

Spectra averaging can be performed iteratively. Thereby, the complex average enve-
lope is inverted to generate the 1st reconstructed complex FID. The latter is then
subjected to the FPT to generate the next set of envelopes for the same sequence of
values of K as considered in the previous iteration. This new sequence of envelopes is
averaged and the procedure can be repeated until the prescribed accuracy of the recon-
structed spectral parameters is attained. With each iteration, there is progressively
greater suppression of spurious spectral structures [24].

Whether performed once or iteratively, spectra averaging is an effective and unbi-
ased strategy for alleviating the effect of redundancy and unphysical degrees of
freedom from the reconstructions. This problem stems from the non-coherent part
of the extracted information, present in the input encoded FIDs and also stemming
from the reconstructed data (computational round-off errors, unstable recovered res-
onances, etc.). Through spectra averaging for a number of values of K , these random
errors can be corrected in the stabilized quotient P+

K /Q+
K . This reflects error self-

correction through the unique coupling of averaging of Padé spectra and the rational
function response of the examined system to external perturbations. Heretofore, spec-
tra averaging through the FPT has been performed for in vivo encoded MRS signals
[24–28].

We now orient the above-outlined considerations concerning signal processing to a
specific clinical problem in MRS, for which the envelope-partitioning capabilities of
the FPT are particularly salient. Namely, through the FPT(+), we address the question
of how non-parametric analysis can visually identify the presence of a recognized
breast cancer biomarker.
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2.4 Clinical motivation: Towards an effective strategy for detection of the breast
cancer biomarker phosphocholine through MRS

The clinical motivation for the present study is to help develop an effective strategy for
identifying phosphocholine, PC, which is a molecular indicator of breast cancer. The
importance of this problem is underscored by the fact that breast cancer is the most
frequently occurring cancer and cause of cancer-related deaths among women world-
wide [30,31]. Early detection unequivocally contributes to better survival [31–33].
Further improvements in diagnostic accuracy over the anatomic imaging methods via
magnetic resonance imaging (MRI), which is very sensitive but insufficiently specific,
are anticipated by molecular imaging through MRS [34]. With the FFT processing
for in vivo MRS and MRSI, somewhat higher specificity has been achieved. This
has mainly been through assessment of a single peak, total choline (tCho), located at
chemical shift ∼3.2 parts per million (ppm). Reports have been published on assess-
ment of tCho via in vivo MRS for several hundred breast lesions, but pooled estimates
of sensitivity and specificity have not ever surpassed 90% [35–38]. As summarized
in more detail in Ref. [1], based upon tCho assessments through in vivo MRS, there
are still no sufficiently trustworthy standards to diagnose a breast lesion as cancerous
versus benign.

In vitro nuclear magnetic resonance (NMR) spectroscopic studies of extracted
specimens show that within the tCho peak are not only phosphocholine, PC, at
∼3.22 ppm, but also glycerophosphocholine (GPC) at ∼3.23 ppm and free choline
(Cho) resonating at ∼3.21 ppm [39]. A high PC to GPC concentration ratio and
increased PC levels are associated with malignant transformation of the breast, as
well as of other tissues [40–42], possibly related to loss of tumor suppressor p53
function [43]. The much more abundant phosphoethanolamine, PE, which is not a
cancer biomarker, also resonates at ∼3.22 ppm [44]. For synthesized noiseless and
noise-corrupted FIDs akin to in vitro MRS time signals encoded from normal breast,
fibroadenoma and breast cancer, as per Ref. [44], the standard non-parametric for-
mula for Re(PK /QK ) was applied to visualize the total shape spectrum in the FPT
[11,16,19–21]. Thereby, the large peak centered at ∼3.22 ppm appeared as a pure
Lorentzian, without any suggestion whatsoever that underneath PE was a PC res-
onance. With the parametric FPT, applied to the same synthesized noise-free and
noise-corrupted MRS time signals from Ref. [44], both PC and PE were identified
and precisely quantified, as was also the case with the seven other resonances for
all three types of breast tissue [11,16,19–21,45]. In Ref. [11], we explored in detail
how these results could contribute to a more individualized approach to breast cancer
diagnosis and treatment, coherent with the aims of “personalized cancer medicine”
(PCM).

2.4.1 PC and PE resolved in partitioned envelopes through the FPT for breast
cancer: The noiseless case

Most recently in Ref. [1], we computed absorptive Re
(
P+
K /Q+

K

)
and dispersive

Im(P+
K /Q+

K ) envelope spectra from their corresponding partitioned analytical expres-
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sions as described in subsection 2.2. The question was raised as to whether a clear
indication of the presence of underlying resonances in some composite spectral struc-
tures could be ascertained from these alternative, non-parametric representations
despite their default restriction to estimations of lineshapes alone. This was carried
out using a single value of model order K in the spectral region between 3.2 and
3.3 ppm for synthesized, noise-free MRS time signals associated with breast cancer
according to the in vitro data of Ref. [44]. In the absorptive partitioned envelopes,
both PC and PE were clearly distinguished as two separate peaks. In fact, they were
so well delineated that in the absorption mode, a dip between them descended all
the way down to the baseline. In the dispersion mode via the partitioned envelopes,
both PC and PE were also readily identifiable. In sharp contrast, without partitioning,
the non-parametric FPT generated a single composite smooth Lorentzian peak (PC
+ PE) in the absorptive envelopes, without any indication that two resonances PC
and PE were present therein. This was the first study applying the non-parametric
FPT in the partitioned manner, i.e. without resorting to quantification at all. The
conclusion was that this line of investigation was fruitful. A qualitative comparison
with the kth component shape spectrum (1 ≤ k ≤ K ) , parametrically computed via
Re(P+

K /Q+
K )k and Im(P+

K /Q+
K )k, confirmed the reliability of this approach for the

noiseless case at a single model order K . Here, as before, the adjective “qualitative”
is used to refer to the situations “PC and PE visualized as two separate lineshapes”
without regard to their correct relative abundance, which is the subject of quantifica-
tion.

2.5 Aims of the present study

This is the second study on the sub-topic of partitioned envelopes, where we continue
our investigation of the capabilities of the non-parametric FPT(+) prior to quantifica-
tion of noisy synthesized time signals. We seek to ascertain whether phosphocholine,
PC, and phosphoethanolamine, PE, are still identifiable on the envelopes generated
non-parametrically with partitioning via the FPT(+), if progressively greater levels
of noise were added to the noiseless MRS time signals associated with breast can-
cer. We also examine whether PC and PE are recognizable across a wide range of
model orders K on the partitioned envelopes. Spectra averaging is implemented
to improve SNR and to determine whether the findings remain robust. In particu-
lar, it is necessary to check if the clear splitting of PC and PE found in each of
the partitioned envelopes would persist once spectra have been averaged over dif-
ferent model orders K . Such a check is needed because spectra averaging could
mask or wash out the splitting of PC and PE if the lineshapes of the partitioned
envelopes would exhibit huge changes for varying K . These aims constitute the most
thorough validation of the concept of non-parametric envelope partitioning within
the FPT(+) in the controlled setting with simulated FIDs. The clinical incentive
of this study is to justify implementing this strategy for in vivo MRS for a wide
range of concerns within the realm of diagnosis and treatment of breast cancer and
beyond.
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3 Methods

3.1 The input data: Time signals based on in vitro encoding from breast cancer

Following the quantum-mechanical form of autocorrelation functions (arising directly
from the general time evolution operator):

cn =
K∑

k=1

dkz
n
k , zk = eiτωk , 0 ≤ n ≤ N − 1, Im(ωk) > 0, ωk = 2πνk, (13)

we synthesized the MRS time signals as the sum of the indicated complex-valued
attenuated exponentials. Here, the positive integer N denotes the total signal length.
These data are based upon the encoded MRS time signals from cancerous breast, as
per Ref. [44]. For concreteness, and following Ref. [44], each signal point cn from
(13) is the sum of K = 9 damped complex exponentials exp (inτωk) (1 ≤ k ≤ 9).
The angular frequencies ωk are also complex, with an exponential decrease in cn over
time nτ (n = 0, 1, 2, . . . , N − 1). The amplitudes dk are generally complex, as well.
The corresponding FIDs of total length N = 65536 in Ref. [44] were encoded at a
Larmor frequency (νL) of 600 MHz, which corresponds to static magnetic field of
strength B0 ≈ 14.1T. The bandwidth (BW) was 6 MHz, where the inverse of this
bandwidth is the sampling time τ .

We use only one quarter of the above full signal length, namely N/4 = 16384. The
median metabolite concentrations were based upon 14 samples (with two exceptions)
taken from twelve patients (2 samples were taken from two of the patients). How-
ever, for β-glucose (β-Glc) and myoinositol (m-Ins) metabolite concentrations were
available for only 6 and 9 samples, respectively [44]. The values of |dk | were derived
from the median concentrations for the breast cancer input data, using the relation
|dk | = 2Cmet/Cref , where Cref is the reference concentration (Cref = 0.05mM/g).
We denoted the mean metabolite concentration by Cmet. The T ∗

2 relaxation times were
not specified in Ref. [44], so we set the imaginary parts of the complex frequencies
νk to be 0.0008 ppm. The peaks are all Lorentzian, in accordance with the time sig-
nal from (13). The input amplitudes are defined as real, dk = |dk |, since the phases
ϕk (1 ≤ k ≤ 9) from generally complex-valued dk , were all set to zero. The string of
the input metabolites and their fundamental parameters are:

Metk = {Lac, Ala, Cho, PC, PE, GPC,β-Glc, Tau, m-Ins}
Re(νk) = {1.332, 1.471, 3.212, 3.220, 3.221, 3.232, 3.251, 3.273, 3.281} ppm
Im(νk) = 0.0008 ppm (1 ≤ k ≤ 9)
dk = |dk | = {0.325, 0.032, 0.004, 0.012, 0.090, 0.009, 0.029, 0.112, 0.036} au

⎫
⎪⎪⎬

⎪⎪⎭

(1 ≤ k ≤ 9) , (14)

where the acronym “au” denotes arbitrary units. The internal reference (ref) was TSP
(3-(trimethylsilyl-) 3,3,2,2-tetradeutero-propionic acid), a molecule which is, in fact,
not present in the tissue. Thus, |dk | = Cmet/(25μM/g) of wet weight (ww).
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We focus on the frequency band between 3.2 and 3.3 ppm, wherein PC and PE
resonate at 3.220 and 3.221 ppm, respectively, as per (14) i.e. they are separated by
only 0.001 ppm. Seven of the mentioned resonances lie within this spectral region of
interest (SRI) for sweep frequencies ν ∈ [3.2, 3.3] ppm. The remaining two of the
nine resonances, lactate (Lac) at 1.332 ppm and alanine (Ala) at 1.471 ppm, reported
in Ref. [44] are outside our current SRI. Within this SRI, the largest concentration is
that of taurine (Tau).

3.2 Addition of noise

Prior to reconstructions, the noiseless input time signals were mixed with added com-
plex valued random zero-mean Gauss-distributed white noise of selected levels or
standard deviations (σ = 0.0289, σ = 0.289 and σ = 2.89 RMS). Here, the acronym
RMS refers to the ordinary root-mean-square, RMS = (1/N )

∑N−1
n=0 |cn|, where {cn}

is the noiseless FID from (13).We express the noise level in a noisy FID by percentage
of the RMS of the noiseless time signal {cn}. For example, stating that a noisy FID
contains 3% of noise means that “the noisy RMS” is 3% of “the noiseless RMS”, or
equivalently, RMS (FIDwith 3% noise level)= 0.3 RMS (noiseless FID).Wemeasure
the noise level in terms of RMS because this noise quantifier minimizes the bias rela-
tive to the actual (sought) value and the variance of noise. Furthermore, RMS converts
signal oscillations to variations of the power of the signal across a given bandwidth.
Thus, RMS is a measure of the dynamics of the signal [21,22]. The FPT(+) is herein
applied to the noise-free and noise-corrupted MRS time signals.

3.3 Non-parametric computation of the envelopes with and without spectra
partitioning

The envelopes will be computed as in the standard way, by directly feeding the set of
extracted complex numbers P+

K /Q+
K into the computer to generate the pure absorptive,

Re
(
P+
K /Q+

K

)
, and dispersive, Im

(
P+
K /Q+

K

)
, spectral lineshapes. In this way, the

computer generates both spectra Re(P+
K /Q+

K ) and Im
(
P+
K /Q+

K

)
in their entirety as

non-partitioned, i.e. composite envelopes. These conventionally computed spectra are
the reference envelopes for establishing the validity of their partitioned counterparts.

As described in Sect. 2.2.1, we will obtain the separate partitioned products in
the form of the quantities A+

K , B
+
K , C

+
K and D+

K , corresponding, respectively to (9),
(10), (11) and (12). The spectra Re

(
P+
K /Q+

K

)
computed directly and via A+

K + B+
K

will be checked for their expected coincidence. Similarly, the direct computation of
Im

(
P+
K /Q+

K

)
and via the sum C+

K + D+
K will also be compared to verify agreement

of these two quantities.

3.4 Examination of several model orders and spectra averaging

Herein, we examine 6 model orders K with an increment of 500, ranging from 2500
to 5000. This is written from here on according to the mathematical convention
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K = 2500 (500) 5000 with the increment �K = 500 written in the parentheses
between Kmin = 2500 and Kmax = 5000 [28]. The very large increment was chosen
to scrutinize sensitivity of reconstructions to vastly different values of themodel orders
because their huge changes are likely to produce markedly different lineshapes of par-
titioned envelopes [26]. The arithmetic average of all the envelopes (partitioned and
non-partitioned) for these 6 model orders will be computed, and denoted with the sub-
script Av, e.g. {X+

K }Av (X = A, B,C, D) , {Re(P+
K /Q+

K }Av and {Im(P+
K /Q+

K }Av. It
should be noted that the reconstructions are performed using partial signal lengths
NP = 5000 (K = 2500) to NP = 10 000 (K = 5000) of full signal length
N = 16384, and these are approximately thirty to sixty percent of its encoded coun-
terpart of 65536 FID data points from Ref. [44]. In order to check the dependence
of the results upon the choice of the interval for K and �K , we have also carried
out computations of partitioned envelopes for �K = 250 in the following three sets:
K = 250 (250) 5000, K = 1000 (250) 5000 and K = 2500 (250) 5000 with some
20, 17 and 11 values of K , respectively. The findings from each of these sets were
fully consistent with those from the set K = 2500 (500) 5000 presented in the Results
section.

4 Results

The level of added noise is σ = 0.0289RMS for Figs. 1–8, whereas for Fig. 9, it
is σ = 0.289RMS and σ = 2.89RMS. Figure 1 presents the partitioned (noisy)
and non-partitioned (noiseless) absorption and dispersion envelopes computed non-
parametrically in the FPT(+), within the critical frequency window [3.215, 3.225]
ppm containing the overlapping PC and PE resonances. All six model orders K =
2500 (500) 5000 are displayed with color coding as black (K = 2500), green (K =
3000), cyan (K = 3500), red (K = 4000), magenta (K = 4500) and blue (K =
5000). The absorption spectra are presented in the left column, whereas the right
column shows the dispersion spectra. Along the abscissae of each panel are the input
chemical shifts, that are symbolized by filled circles only when the PC and/or PE
lineshape peaks are located practically at their correct chemical shifts 3.220 and 3.221
ppm, respectively.

In panel (a) of Fig. 1 are the noisy partitioned absorption envelope spectra for A+
K .

Resonance PC at 3.220 ppm is indicated with a filled circle, and clearly seen at nearly
the correct chemical shift position for all the model orders, albeit with slight variations
among these six different values of K . Greater variation is observed at 3.221 ppm,
with the PE peak marked by an open circle signifying a slight displacement. There is
also more variation in the PE lineshapes among the 6 model orders. Still, the PE peak
is clearly present for each of the model orders. In panel (b) are the noisy partitioned
absorption envelope spectra for B+

K . Resonance PE at 3.221 ppm is a filled circle at the
practically correct position and the variation among the 6 model orders is somewhat
less pronounced than for the corresponding peaks in panel (a). This time, the circle at
3.220 associated with PC is open since that resonance is slightly shifted to the right
in panel (b). Nevertheless, also in this panel, PC is well visualized for all the 6 model
orders. In panel (c), the complete noisy absorption envelopes A+

K+B+
K are displayed for
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Absorption & Dispersion in FPT(+): Non−Parametric Visualisation of the Hidden Phosphocholine, PC

6 Partitioned Envelopes (σ = 0.0289 RMS) for K = 2500 (500) 5000 in SRI: ν = [3.215,3.225] ppm

Fig. 1 Partitioned and non-partitioned envelopes computed non-parametrically in the FPT(+) in the SRI
with [3.215, 3.225] ppm containing PC and PE. Use of the FID sampled at N = 16384 with noise level
σ = 0.0289RMS and model orders K = 2500 (500) 5000, color coded as black (K = 2500), green
(K = 3000), cyan (K = 3500), red (K = 4000), magenta (K = 4500) and blue (K = 5000). Panel
(a): the noisy partitioned absorptions for A+

K (PC correct, filled circle). Panel (b): the noisy partitioned

absorptions for B+
K (PE correct, filled circle). Panel (c) for the 6 values of K : the noisy complete partitioned

absorptions A+
K + B+

K and noiseless non-partitioned (conventional) absorptions Re(P+
K /Q+

K ). These 12

curves are indistinguishable. Panel (d): the noisy partitioned dispersions for C+
K (PC correct, filled circle).

Panel (e): the noisy partitioned dispersions for D+
K (PE correct, filled circle). Panel (f) for the 6 values of K :

the noisy complete partitioned dispersionsC+
K +D+

K and noiseless conventional dispersions Im(P+
K /Q+

K ).
These 12 curves are indistinguishable. (Color online)
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the 6model orders. In addition, the noiseless non-partitioned (conventional) absorption
envelopes Re(P+

K /Q+
K ) are presented therein for the 6 model orders. Thus, altogether

there are 12 curves that fully coincide, appearing as an entirely blue single curve,which
is drawn last for K = 5000. However, in the noisy complete partitioned absorption
envelopes A+

K + B+
K , just like in the noiseless conventional absorption envelopes

Re(P+
K /Q+

K ), there is no suggestion whatsoever of the two resonances PC and PE.
Rather, a single smooth Lorentzian appears. Thus, in panel (c), both PC and PE are
symbolized by their open circles.

Panel (d) of Fig. 1 shows the noisy partitioned dispersion envelope spectra for C+
K

with the 6 model orders. Therein, the PC dip at 3.220 ppm is a filled circle, with slight
discordance among the 6 model orders. Also, the PE is slightly pushed relative to
3.221 ppm and, thus, the associated circle is open. Although there is more noticeable
variance associated with the displaced PE compared to PC, the former resonance can
still be seen for each of the 6 model orders. In panel (e) are the noisy partitioned
dispersion envelopes for D+

K , where PE at 3.221 ppm is a filled circle and the PC
circle at 3.220 is open, due to a displacement. Nevertheless, the PC resonance is
still identifiable for all the model orders. In panel (f), the noisy complete dispersion
envelopes C+

K + D+
K are shown with the 6 model orders. The noiseless conventional,

non-partitioned dispersion envelopes Im(P+
K /Q+

K ) are also depicted therein for the
6 model orders. In panel (f), there are actually 12 curves that appear as one single
blue line (the last drawn for K = 5000), without indication of the two component
resonances PC and PE. Consequently, in panel (f), both PC and PE are symbolized by
open circles. Importantly, full agreement between the noisy (partitioned) and noiseless
(non-partitioned) spectra, as seen in panels (c) and (f) of Fig. 1, demonstrates the noise
suppression ability of the FPT(+).

Figure 2 displays the partitioned (noisy) and non-partitioned (noiseless) absorption
and dispersion envelopes computed non-parametrically by the FPT(+) for a wider SRI
which is enlarged to include chemical shifts between 3.205 and 3.290 ppm. Again,
the six model orders K = 2500 (500) 5000 are used, with color coding as in Fig. 1.
Along the abscissae of each panel are the input chemical shifts in this extended SRI.
These are symbolized by circles that are mainly open. The two exceptions with the
filled circles relate to PC and PE. Circles for 5 isolated non-overlapping resonances
(Cho, GPC,β-Glc, Tau,m-Ins) are systematically kept as open, irrespective ofwhether
or not their positions of the reconstructed metabolites are close to the input chemical
shifts. This practice is introduced because the primary focus here is on the overlapping
PC and PE resonances. Thus, in panels (a), (b), (d) and (e), resonances PC and PE are
marked with filled circles. Therein, two filled circles are not simultaneously present
on any panel. For example, on panel (a), the location of the center of the reconstructed
lineshape for PC almost coincides with the input chemical shift (3.220 ppm) and,
thus, appears as a full circle. However, on the same panel (a), the PE resonance is
seen as being slightly displaced from its exact position (3.221 ppm) and, therefore,
the location of this lineshape is marked with an open circle. This pattern is reversed
on panel (b), where the PE resonance is retrieved at its correct location (3.221 ppm)
and, hence, marked by a filled circle. On the other hand, panel (b) shows an open
circle for the PC resonance due to its slight displacement from the correct chemical
shift (3.220 ppm). Panels (a) and (b) are for the noisy absorption spectra A+

K and B+
K ,
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Absorption & Dispersion in FPT(+): Non−Parametric Visualisation of the Hidden Phosphocholine, PC

6 Partitioned Envelopes (σ = 0.0289 RMS) for K = 2500 (500) 5000 in SRI: ν = [3.205,3.290] ppm

Fig. 2 Partitioned and non-partitioned envelopes computed non-parametrically in the FPT(+) in the SRI
with [3.205, 3.290] ppm. Use of the FID sampled at N = 16384 with noise level σ = 0.0289RMS and
model orders K = 2500 (500) 5000, color coded as in Fig. 1. Panel (a): the noisy partitioned absorptions
for A+

K (PC correct, filled circle); the other input chemical shifts are represented by open circles. Panel

(b): the noisy partitioned absorptions for B+
K (PE correct, filled circle). Panel (c) for the 6 values of K :

the noisy complete partitioned envelope A+
K + B+

K and noiseless non-partitioned (conventional) absorption

envelopes Re(P+
K /Q+

K ). These 12 curves are indistinguishable. Panel (d): the noisy partitioned dispersions

for C+
K (PC correct, filled circle). Panel (e): the noisy partitioned dispersions for D+

K (PE correct, filled

circle). Panel (f) for the 6 values of K : the noisy complete partitioned dispersions C+
K + D+

K and noiseless

conventional dispersions Im(P+
K /Q+

K ). These 12 curves are indistinguishable. (Color online)
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respectively. A similar situation with the appearance of filled and open circles for the
PC and PE resonances is also encountered for the noisy dispersion spectra C+

K and
D+

K in panels (d) and (e), respectively. Overall, in panels (a), (b), (d) and (e), there is
quite close concordance among the partitioned envelopes for the 6 model orders, with
noticeable, but fairly minimal discrepancies seen at PE, PC, and elsewhere along the
SRI. Nevertheless, all the resonances, including PC and PE are clearly resolved in each
of the panels displaying noisy partitioned envelopes for every model order K . Taurine
and β − Glc show much smaller peak heights in the partitioned envelope spectra for
B+
K compared to that for A+

K and in D+
K compared to that for C+

K . For the 6 model
orders K = 2500 (500) 5000 in panel (c), the noisy complete partitioned absorp-
tion envelopes A+

K + B+
K and the noiseless non-partitioned (conventional) absorption

envelopes Re(P+
K /Q+

K ) are displayed. The resultant 12 curves are fully concordant,
and appear as a single blue curve (the last plotted for K = 5000). The peak at ∼3.22
ppm is a smooth, regular Lorentzian. Analogously, in panel (f) for the 6 model orders
K = 2500 (500) 5000, the noisy complete dispersion envelopes C+

K + D+
K , and the

noiseless conventional dispersion envelopes Im(P+
K /Q+

K ) are shown, appearing as a
single blue curve, which is also the last plotted for K = 5000. In panels (c) and (f),
there is no suggestion at all of the two resonances PC and PE. Thus, both PC and
PE are open circles in both these panels. For this larger SRI, [3.205, 3.290] ppm, the
FPT(+) efficiently suppresses noise as evidenced by full agreement between the noisy
(partitioned) and noiseless (non-partitioned) envelopes in panels (c) and (f) of Fig. 2.

Figure 3 shows only noisy partitioned envelopes. Therein, displayed are the absorp-
tion spectra, sequential (left column) and averaged (right column), reconstructed by
the FPT(+) on the critical frequency window [3.215, 3.225] ppm. On the left side, for
the six model orders K = 2500 (500) 5000, color coded as previously, are the parti-
tioned absorption envelope spectra for A+

K in panel (a), for B+
K in panel (b) and for the

complete envelope A+
K + B+

K in panel (c). In other words, we are basically repeating
the left column of Fig. 1, except that in panel (c) only the complete envelopes A+

K +B+
K

for the 6 model orders are actually present. This repetition is done to remind us about
the source used in spectra averaging. On the right side of Fig. 3 are the averaged parti-
tioned spectra for {A+

K }Av in panel (d), for {B+
K }Av in panel (e) and for {A+

K + B+
K }Av in

panel (f). On panel (d) for {A+
K }Av, the PC lineshape is correctly placed at 3.220 ppm.

Therein, the PE peak, while slightly displaced to the left, is a well-defined resonance
separated from PC almost all the way down to the baseline. Analogously, on panel
(e) for {B+

K }Av, both PC and PE are seen as entirely separate peaks, with PE correctly
placed at 3.221 ppm and larger than PC, which is pushed slightly rightward. Panel
(f) with the complete envelope {A+

K + B+
K }Av coincides with the complete envelopes

A+
K + B+

K for the six model orders K = 2500 (500) 5000 in panel (c).
Figure 4 also depicts only noisy partitioned envelopes. Herein, we continue with

spectra averaging of the absorption envelopes reconstructed by the FPT(+) in the
extended SRI between 3.205 and 3.290 ppm. On the left side for the 6 model orders
K = 2500 (500) 5000, color coded as before, are the partitioned absorption envelopes
for A+

K in panel (a), for B+
K in panel (b) and for the complete envelopes A+

K + B+
K

in panel (c). This is a repeat of the left column of Fig. 2, except that here in panel
(c), the noiseless case for the conventional absorption envelopes is not included. The
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Absorption Averaging in FPT(+): Non−Parametric Visualisation of the Hidden Phosphocholine, PC

6 Partitioned Envelopes (σ = 0.0289 RMS) for K = 2500 (500) 5000 in SRI: ν = [3.215,3.225] ppm

Fig. 3 Partitioned envelopes computed non-parametrically in the FPT(+) in the SRI with [3.215, 3.225]
ppm containing PC and PE. Use of the FID sampled at N = 16384 all with noise level σ = 0.0289RMS
and model orders K = 2500 (500) 5000, color coded as in Fig. 1. Panel (a): the partitioned absorptions
for A+

K (PC correct, filled circle). Panel (b): the partitioned absorptions for B+
K (PE correct, filled circle).

Panel (c) for the 6 values of K : the complete partitioned envelope A+
K + B+

K . On the right side are the

average envelopes {A+
K }Av in panel (d), for {B+

K }Av in panel (e) and for the average complete envelope

{A+
K + B+

K }Av in panel (f). These latter averages are from the envelopes on the left column. (Color online)
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Absorption Averaging in FPT(+): Non−Parametric Visualisation of the Hidden Phosphocholine, PC

6 Partitioned Envelopes (σ = 0.0289 RMS) for K = 2500 (500) 5000 in SRI: ν = [3.205,3.290] ppm

Fig. 4 Partitioned envelopes computed non-parametrically in the FPT(+) in the SRI with [3.205, 3.290]
ppm. Use of the FID sampled at N = 16384 with noise level σ = 0.0289RMS and model orders K =
2500 (500) 5000, color coded as in Fig. 1. Panel (a): the partitioned absorptions for A+

K (PC correct, filled

circle). Panel (b): the partitioned absorptions for B+
K (PE correct, filled circle). Panel (c): the complete

partitioned envelope A+
K + B+

K for the 6 model orders of K . On the right side are the average envelopes

{A+
K }Av in panel (d), for {B+

K }Av in panel (e) and for the average complete absorptions {A+
K + B+

K }Av in
panel (f). These latter averages are from the envelopes on the left column. (Color online)
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average partitioned spectra for {A+
K }Av in panel (d), for {B+

K }Av in panel (e) and for
{A+

K + B+
K }Av in panel (f) are displayed on the right side of Fig. 4. In panel (d), both PC

(correctly placed at 3.220 ppm) and PE (slightly displaced to the left) are well-defined,
sharply separated resonances. All the other resonances are also clearly delineated, with
Tau by far themost prominent. For {B+

K }Av in panel (e), both PC and PE are completely
distinct peaks, with PE correctly placed at 3.221 ppm and more prominent than PC,
which is displaced slightly rightward. Taurine, m-Ins and β-Glc are attenuated in panel
(e), compared to panel (d). The average complete envelope {A+

K + B+
K }Av in panel (f)

is indistinguishable from the sequential complete envelopes A+
K + B+

K for the 6 model
orders K = 2500 (500) 5000 from panel (c).

The noisy partitioned dispersion envelopes reconstructed by the FPT(+) on the fre-
quency window [3.215, 3.225] ppm are presented in Fig. 5. On the left side, for 6
model orders K = 2500 (500) 5000, color coded as previously, are the noisy par-
titioned dispersion envelopes for C+

K in panel (a), for D+
K in panel (b) and for the

complete envelopes C+
K + D+

K in panel (c). This repeats the right column of Fig. 1,
with the exception that here in panel (c), the noiseless case for the conventional (non-
partitioned) dispersion envelopes is not included. On the right side of Fig. 5 are the
average partitioned spectra for {C+

K }Av in panel (d), for {D+
K }Av in panel (e) and for

{C+
K + D+

K }Av in panel (f). Panel (d) shows PC as being correctly located at 3.220
ppm. Therein, the PE lineshape displaced a bit to the left, is also a well-defined dip
which is separated from PC. Similarly, in panel (e) for {D+

K }Av , both PC and PE are
entirely distinct lineshapes, nowwith PE correctly placed at 3.221 ppm and larger than
PC, which is pushed slightly rightward. Panel (f) with the complete average envelope
{C+

K + D+
K }Av is precisely the same as the complete sequential envelopes C+

K + D+
K

for the 6 model orders K = 2500 (500) 5000 in panel (c).
Figure 6 displays the noisy partitioned dispersion spectra reconstructed by the

FPT(+) without and with averaging, for the wider SRI between 3.205 and 3.290 ppm.
On the left side are the 6 model orders K = 2500 (500) 5000, color coded as earlier,
with the partitioned dispersion envelopes for C+

K in panel (a), for D+
K in panel (b)

and for the complete envelopes C+
K + D+

K in panel (c). This is a repeat of the right
column of Fig. 2, except that here on panel (c), the noiseless case for the conventional
(non-partitioned) dispersion envelopes is not given. On the right side of Fig. 6 are
the averaged partitioned spectra for {C+

K }Av in panel (d), for {D+
K }Av in panel (e) and

for {C+
K + D+

K }Av in panel (f). Panel (d) shows the PC resonance as being accurately
placed at 3.220 ppm,with the PE resonance pushed a bit to the left. The two resonances,
PC and PE, are entirely distinguishable. The other resonances in this fuller SRI are
also distinct, with Tau being the dominant lineshape. For {D+

K }Av in panel (e), the PC
and PE lineshapes are separate resonances. Therein, PE is correctly placed at 3.221
ppm and larger than PC, which is pushed rightward somewhat. Compared to panel (d),
resonances Tau, m-Ins and β-Glc are attenuated in panel (e). The complete envelopes
are identical with and without averaging, namely the average spectrum {C+

K + D+
K }Av

in panel (f) is indistinguishable from the complete sequential envelopes C+
K + D+

K for
the 6 model orders K = 2500 (500) 5000 in panel (c).

Figure 7 compares noisy and noiseless partitioned absorption envelopes. Therein,
in panels (a), (b) and (c), we present the partitioned absorption envelopes A+

K and
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Dispersion Averaging in FPT(+): Non−Parametric Visualisation of the Hidden Phosphocholine, PC

6 Partitioned Envelopes (σ = 0.0289 RMS) for K = 2500 (500) 5000 in SRI: ν = [3.215,3.225] ppm

Fig. 5 Partitioned envelopes computed non-parametrically in the FPT(+) in the SRI with [3.215, 3.225]
ppm containing PC and PE. Use of the FID sampled at N = 16384 with noise level σ = 0.0289RMS for
model orders K = 2500 (500) 5000, color coded as in Fig. 1. Panel (a): the partitioned dispersions for C+

K
(PC correct, filled circle). Panel (b): partitioned dispersions for D+

K (PE correct, filled circle). Panel (c) for

the 6 values of K : the complete dispersions C+
K + D+

K . On the right column are the average dispersions for

{C+
K }Av in panel (d), for {D+

K }Av in panel (e) and for the average complete dispersions {C+
K + D+

K }Av in
panel (f). These latter averages are from the envelopes on the left column. (Color online)
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Dispersion Averaging in FPT(+): Non−Parametric Visualisation of the Hidden Phosphocholine, PC

6 Partitioned Envelopes (σ = 0.0289 RMS) for K = 2500 (500) 5000 in SRI: ν = [3.205,3.290] ppm

Fig. 6 Partitioned envelopes computed non-parametrically in the FPT(+) in the SRI with [3.205, 3.290]
ppm. Use of the FID sampled at N = 16384 with noise level σ = 0.0289RMS for model orders K =
2500 (500) 5000, color coded as in Fig. 1. Panel (a): the partitioned dispersions for C+

K (PC correct, filled

circle). Panel (b): partitioned dispersions for D+
K (PE correct, filled circle). Panel (c) for the 6 values of K :

the complete dispersions C+
K + D+

K . On the right column are the average dispersions for {C+
K }Av in panel

(d), for {D+
K }Av in panel (e) and for the average complete dispersions {C+

K + D+
K }Av in panel (f). These

latter averages are from the envelopes on the left column. (Color online)
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Fig. 7 Partitioned envelopes computed non-parametrically in the FPT(+) in the SRI with [3.205, 3.290]
ppm. Use of the FID sampled at N = 16384 for model orders K = 2500 (500) 5000. Panel (a): the
partitioned absorptions for A+

K with noise level σ = 0.0289RMS. Panel (b): the noiseless partitioned

absorptions for A+
K . Color coding for panels (a) and (b) as in Fig. 1. Panel (c): the average absorptions

for {A+
K }Av with noise level σ = 0.0289RMS (blue) and noiseless (red). Averages in panel (c) computed

from absorptions from panels (a) and (b). Panels (a−c): PC correctly located (filled circles). (Color online)
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their averages {A+
K }Av reconstructed by the FPT(+) for the SRI of chemical shifts

[3.205, 3.290] ppm with six model orders K = 2500 (500) 5000. In panel (a) are
the partitioned absorption envelopes for A+

K with noise of level σ = 0.0289RMS.
The PC resonance is correctly placed and its spread is quite minimal, whereas the
PE peak is pushed a bit leftward with more noticeable spread. Panel (b) shows the
noiseless partitioned absorption envelopes for A+

K for the 6 model orders. Again, PC is
correctly placed and PE is pushed leftward. Good agreement between the two sets of
envelopes from panels (a) and (b) illustrates the powerful noise suppression capability
of the FPT(+). Spectra averaging for the 6 model orders is displayed in panel (c)
with the results for the partitioned average absorption envelopes {A+

K }Av indicated in
red (noiseless) and blue (noisy, σ = 0.0289RMS). These averages for the noise-free
and noise-contaminated data, especially at 3.220 ppm corresponding to the correctly
placed PC, are almost perfectly concordant, with also very good agreement seen for
the other resonances in the SRI.

Figure 8 compares the noisy and noiseless partitioned absorption envelopes
B+
K as well as their averages {B+

K }Av, as reconstructed by the FPT(+) for the
SRI of [3.205, 3.290] ppm with 6 model orders K = 2500 (500) 5000. For a
cross–validation, also compared are the averaged partitioned {A+

K + B+
K }Av and non-

partitioned {Re(P+
K /Q+

K )}Av absorption envelopes, where {A+
K }Av is taken from

Fig. 7c. In panel (a) are the partitioned absorption envelopes for B+
K with added

noise of level σ = 0.0289RMS. The PE resonance is correctly placed, whereas PC
is slightly displaced rightward. Throughout the SRI, the spread among the lineshapes
for different values of K is quite minimal. In the noiseless case in panel (b), the PE
peak is also correctly placed, whereas PC is shifted rightward. Therein, the spread
for PE is slightly more noticeable than that for the noisy case in panel (a). Spectra
averaging for the 6 model orders is shown in panel (c), with the results for the par-
titioned average absorption envelopes {B+

K }Av indicated in red (noiseless) and blue
(noisy, σ = 0.0289RMS). These averages for the noise-free and noise-contaminated
data, especially at 3.221 ppm corresponding to the correctly placed PE are almost
entirely aligned. For the other resonances in the SRI, concordance is also quite close
in panel (c). Panel (d) of Fig. 8 represents the complete envelopes {A+

K + B+
K }Av for

the noiseless (red) and noisy (blue, σ = 0.0289RMS) data. These two curves are
indistinguishable testifying to the noise-suppression feature of the FPT(+). As such,
whatever discrepancies in {A+

K }Av and {B+
K }Av might exist between the noiseless and

noisy partitions, these disappear when the sum of {A+
K }Av and {B+

K }Av is taken via
{A+

K }Av+ {B+
K }Av, forwhich the shortened notation {A+

K + B+
K }Av is used. There is yet

a third curve (green) plotted in panel (d) for the non-partitioned conventionally com-
puted noiseless envelope Re(P+

K /Q+
K )Av. This latter result too blends together with its

two partitioned counterparts. All the 3 curves entirely coincide and, thus, appear as a
blue single curve, which is the last drawn. In the noisy absorption partitioned average
envelope, {A+

K + B+
K }Av, and the noiseless conventional non-partitioned envelope,

Re(P+
K /Q+

K )Av, there is no suggestion whatsoever of the two resonances PC and PE.
Rather, a single smooth Lorentzian appears. Thus, both PC and PE are symbolized by
open circles in panel (d). Spectra averaging was carried out to ascertain whether the
findings about the PC splitting from PE remain robust for noisy input time signals.
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Fig. 8 Partitioned envelopes computed non-parametrically in the FPT(+) in the SRI with [3.205, 3.290]
ppm. Use of the FID sampled at N = 16384 for model orders K = 2500 (500) 5000. Panel (a): the
partitioned absorptions for B+

K with noise level σ = 0.0289RMS. Panel (b): the noiseless partitioned

absorptions for B+
K . Color coding for panels (a) and (b) as in Fig. 1. Panel (c): the average absorption for

{B+
K }Av with noise level σ = 0.0289RMS (blue) and noiseless (red). Panels (a−c): PE correctly located

(filled circles). Panel (d): the average complete absorption {A+
K + B+

K }Av for noise level σ = 0.0289RMS

(blue), noiseless (red) and the noiseless non-partitioned (conventional) absorptionsRe(P+
K /Q+

K )Av (green).
All three curves are indistinguishable. Averages computed from the corresponding envelopes for the 6 values
of model order K . (Color online)
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The outcome is that the partitioning strategy ensures unequivocal identification of PC
and PE as two separate resonances for each of the 6 model orders. Spectra averaging
for the 6 model orders provides clear delineation of the two resonances, PC and PE,
in the average partitioned envelopes for both noiseless and noisy input time signals.

Figure 9 displays the absorption envelopes reconstructed by the FPT(+) for
the extended SRI between 3.205 and 3.290 ppm with the 6 model orders K =
2500 (500) 5000, color coded as previously, with added noise of two levels differing
by a factor of 10. Namely, the added noise is with standard deviations σ = 0.289RMS
and σ = 2.89RMS, where the latter level is 100 times larger than σ = 0.0289RMS
in Figs. 1–8. In panel (a) is the partitioned absorption envelope spectra for A+

K with
K = 2500 (500) 5000 and the noise level of σ = 2.89RMS. The PC resonance is cor-
rectly placed and its spread is quite minimal, although the wing to its right side shows
substantial spread among the 6 model orders K . Though identifiable for all the model
orders, PE is displaced somewhat leftward, and the spread for the 6 model orders is
apparent. The four single peaks to the left of PE are all clearly defined, with the distinc-
tion among the 6 model orders being noticeable, but fairly minimal. Panel (b) of Fig. 9
shows the partitioned absorption envelope spectra for A+

K with the 6model orders with
added noise of σ = 0.289RMS. In panel (b), the lineshape spread for the 6 model
orders is rather small. Next, spectra averaging for the 6 model orders is performed in
partitioned envelopes, with the results for the two noise levels displayed in panel (c) of
Fig. 9. Therein, {A+

K }Av forσ = 0.289RMS is indicated in red, and forσ = 2.89RMS
in blue. Their concordance is remarkably close throughout the SRI. In panel (d), we
zoom into the critical frequency window [3.215, 3.225] ppm to compare the average
absorption envelope from the other partition, namely {B+

K }Av for σ = 0.289RMS
and σ = 2.89RMS marked in red and blue, respectively. Therein, while both PC and
PE are resolved for the two noise levels, it is the PE chemical shift which is correctly
reconstructed and with less discrepancy between the envelopes for σ = 0.289RMS
and σ = 2.89RMS. Pushed to the right, PC shows slightly closer concordance with
its actual chemical shift position at the higher noise level, σ = 2.89RMS. Panel (e) of
Fig. 9 presents the average complete envelopes {A+

K + B+
K }Av for both noise levels,

again with the color coding of red for σ = 0.289RMS and blue for σ = 2.89RMS. In
panel (e), the noiseless average complete envelope {A+

K + B+
K }Av is drawn in green.

It is seen that all the 3 curves entirely coincide and, hence, they appear as a blue
single curve, which is the last drawn for σ = 2.89RMS. Hence, the remarkable noise-
suppression capacity of the FPT(+) also in this more demanding case with 10 and 100
times higher noise levels than in Figs. 1–8. In the absorption mode of the complete
{A+

K + B+
K }Av from panel (e), there is no suggestion whatsoever of the two resonances

PC and PE. Rather, a single smooth Lorentzian appears. Thus, both PC and PE are
symbolized by their open circles in panel (e).

5 Discussion

5.1 General considerations

Major challenges were herein placed upon the non-parametric FPT, applied in the
partitioned manner, to identify the potential underlying components in the total shape
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MRS for Breast Cancer: Robust Non−Parametric FPT(+) Visualises the Hidden Phosphocholine, PC

Partitioned Envelopes: 6 Model Orders K = 2500 (500) 5000 and 10 & 100 Times Higher Noise Levels

Fig. 9 Partitioned envelopes computed non-parametrically in the FPT(+), using the FID sampled at
N = 16384 for model orders K = 2500 (500) 5000. Panel (a): the partitioned absorptions for
A+
K with noise level σ = 2.89RMS. Panel (b): the partitioned absorptions for A+

K with noise level σ =
0.289RMS. Panels (a) and (b) color coded as in Fig. 1. Panel (c): the average absorptions {A+

K }Av with noise
levels σ = 2.89RMS (blue) and σ = 0.289RMS (red). Panels (a−c): PC correctly located (filled circles).
Panel (d): the partitioned envelopes for {B+

K }Av with noise levelsσ = 2.89RMS (blue) andσ = 0.289RMS

(red); PE correctly located (filled circle). Panel (e): The complete absorptions {A+
K + B+

K }Av with noise

levels σ = 2.89RMS (blue), σ = 0.289RMS (red) and noiseless {A+
K + B+

K }Av (green). The averages
computed from the corresponding absorptions obtained for the 6 model orders K . All three curves are
indistinguishable. (Color online)
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spectra or envelopes. Firstly, in addition to solely processing the noiseless case, as in
our previous study [1], progressively greater levels of noise were added. Secondly,
instead of using a single model order, as done earlier [1], some 6 model orders ranging
from 2500 to 5000 with a very large interval (�K = 500) were examined. Thirdly,
the partitioned envelopes for these 6 model orders were averaged to assess the stability
of estimations within envelope partitions. In other words, we inquired as to whether
there was a reasonable degree of concordance between the average spectra and the
sequential envelopes for the 6 model orders? For each of these challenges, it can be
said that the partitioned non-parametric FPT(+) demonstrated remarkable robustness.
Simply stated, in this controlled setting, the partitioned non-parametric FPT(+) passed
all the necessary tests that were particularly focused on the qualitative identification
of PC and PE in the sense of “present versus absent splitting of PC and PE”.

As in the previous study with the noiseless case [1], the interference mechanism
present in A+

K and in B+
K for the partitioned absorption envelopes as well as in C+

K and
in D+

K for the partitioned dispersion envelopeswas such that in all four of these spectra,
PC and PE were clearly resolved in the presence of added noise of standard deviations
differing by 10 (σ = 0.289RMS) and 100 (σ = 2.89RMS) from the beginning value
(σ = 0.0289 RMS: Figs. 1–8). On the other hand, with the sums A+

K + B+
K for the real

part, Re
(
P+
K /Q+

K

)
, or C+

K + D+
K for the imaginary part, Im

(
P+
K /Q+

K

)
, the interfer-

ence effect caused PC and PE to appear as a single unresolved peak. Once again, the
absorption and dispersion envelopes for A+

K + B+
K and C+

K + D+
K were found to be

identical to the conventional, non-partitioned total shape envelopes Re
(
P+
K /Q+

K

)
and

Im
(
P+
K /Q+

K

)
, respectively. This latter finding is further confirmation of the remark-

able stability of the sums from the partitions (A+
K + B+

K ,C+
K + D+

K ) with respect to
the associated conventional non-partitioned reconstruction of the total shape spectra.
Overall, neither of the two sums A+

K + B+
K and C+

K + D+
K nor their customary non-

parametric counterparts Re
(
P+
K /Q+

K

)
and Im

(
P+
K /Q+

K

)
, respectively, resolved PC

and PE. This, in turn, underscores the pivotal importance of the partitioning strategy.
Sensitivity to model order K with the very wide interval of 500 between successive

values of K was apparent, particularly at the highest noise level of σ = 2.89RMS.
Nevertheless, the partitioning strategy is seen to be sufficiently hardy so as to still
ensure that PC and PE were identified for each of the 6 model orders, despite the
noticeable variance among them. Moreover, spectra averaging for the 6 model orders
was found to provide patently clear delineation of the two resonances, PC and PE,
in the partitioned envelopes from Fig. 9 for noise levels σ = 0.289RMS and σ =
2.89RMS, as was also the case for σ = 0.0289 from Figs. 1–8.

It should be recalled that within the FPT, the concept of spectra averaging was first
introduced for in vivo encoded MRS time signals [24–28], where its effectiveness in
both non-parametric and parametric processing was clearly demonstrated. In those
studies with in vivo encoded FIDs, validation of the spectra averaging procedure
was achieved by examining elimination of spurious spikes in total shape spectra and
by investigating convergence of the spectral parameters from which the component
spectra are built. Further confirmation of the effectiveness of spectra averaging for in
vivo MRS was provided by scrutinizing the poles and zeros, as the key to stability of
response functions of systems to external perturbations [28]. With the present study in
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the controlled setting using the synthesized FIDs reminiscent of the corresponding data
encoded by way of in vitro MRS, we have the possibility to validate spectra averaging
by comparison with the known input data. This stringent trial is hereby passed, notably
with PC distinctly identified by shape estimation alone, albeit known beforehand to
completely underlie PE. These findings in the controlled setting further benchmark
spectra averaging to overcome the estimation sensitivity to changes in model order K .

With the results of the present study alongside those exclusively from the noise-
less case [1], it can be confidently recommended to first apply the non-parametric
partitioned FPT, by explicitly extracting the analytical expressions for the real and
imaginary parts of complex spectrum PK /QK following (9)−(12). This would be the
initial “screening” step to find out whether the breast cancer biomarker PC is present
or absent. The quantification procedure through the parametric FPT could then be
applied to those clinical cases in which PC was advantageously identified stepwise
by non-parametric processing applied first. By comparison, the FFT conventionally
computed envelopes for in vivo encoded MRS time signals are unable to identify the
recognized cancer biomarker, PC. It is mainly for this reason that the efforts of theMR
community have shifted to the usage of stronger magnetic fields in attempts to detect
breast cancers and distinguish these from benign breast lesions. Such a strategy would
not only be extremely costly [46], but its effectiveness has not been demonstrated
either [1,47]. Notably, with higher field scanners, even tCho remained undetected in
a number of breast cancers, whereas in several benign breast lesions and in normal
breast, tCho was reported as actually being present [47].

5.1.1 Particular importance for molecular imaging of the breast through MRSI

The outlined strategy could be especially useful for MRSI, which is often needed
in clinical evaluations regarding breast cancer. Notably, volumetric coverage through
MRSI is frequently warranted since a single voxel may not always be sufficiently rep-
resentative of the status of the imaged breast tissue. Viewing MRI and MRS together
brings us to molecular imaging through MRSI. By way of MRSI, the chemical speci-
ficity of MRS is combined with the spatial localization techniques provided through
MRI to obtain multiple MRS time signals over a volume of interest of scanned tissue
[48]. While with single-voxel spectroscopy, which is MRS, three orthogonal slices are
selected to encompass a specific volume of interest of about 1.5 to 4 cm2, in MRSI
for a chosen slice a full spectrum at each point of the selected grid is computed. By
processing the data, one can later make images of reconstructed peaks or one can
zoom into an image and obtain the local spectra at a specific region of interest. Further
details aboutMRSI can be found in e.g. Ref. [49]. The non-parametric partitioned FPT
could be first applied to the voxels in the region of interest. Insofar as PC is detected
in any of the voxels, the parametric FPT would be used therein for quantification to
extract the metabolite concentrations, their chemical shifts and relaxation times T ∗

2 .
At this juncture, to acknowledge the fuller scope of the usefulness of envelope

partitioning, it is pertinent to recall the obstacles that hamper more vigorous progress
of MRSI in the clinic. It is MRSI (multi-voxel), even more than MRS (single-voxel),
that is being eagerly awaited by the radiologist for the understandable reasons of
volumetric coverage of the scanned tissue by the former diagnostic modality. The
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radiologist wants first and, if possible, quickly to know the clinically reliable answer
to a key question: Is PC present or absent? If PC is present, then the abundance
or concentration of this cancer biomarker would be the next sought information on
the radiologist’s “to do list”. However, getting this done is itself a formidable task
given that from the myriad of encoded FIDs in MRSI, one is faced with thousands of
computed spectral envelopes that should all be subjected to accurate quantification.

This challenge is further exacerbated by noise (encoded alongside the signal) which
is more abundant with MRSI than is the case for MRS. How to cope with this twofold
obstacle: efficient estimation of a huge number of spectra and reasonable noise sup-
pression? It is precisely here that the Padé-based envelope partitioning with spectra
averaging comes into play via a “split and conquer” strategy. Just like the radiologist’s
stepwise approach, so would we in signal processing apply envelope partitioning first
to pinpoint the presence of PC, and then to perform the local quantification to recon-
struct the concentration of this cancer biomarker as the next task. Such a fast and
accurate procedure within the FPT, would simultaneously surmount both mentioned
obstacles. And, therefore, it is indeed MRSI where the concept of Padé-devised enve-
lope partitioning would find its match—where it matters most, as per the radiologist’s
“wish list”. Needless to say, this practical methodology would also be advantageous
for the patient and, due to its efficiency, to the health care system for the obvious
reason of this newly designed MRSI. Overall, we see that it is actually MRSI where
spectra partitioning is expected to find its most prominent applications of paramount
clinical importance.

For each of the specific clinical issues that will now be reviewed, applyingMRSI in
thisway could be particularly helpful.On the basis of the present study and the previous
one on the envelope partitioning sub-topic [1], it can now be fully recommended that
this stepwise, multi-faceted Padé-based approach be applied to in vivo MRS and
MRSI, aimed at validation on clinical MR scanners for breast cancer diagnostics, and
beyond. As elaborated in the next subsection, it can be envisioned that this approach
could contribute in many ways to a more individualized approach to breast cancer, via
Padé-optimized MRS and MRSI.

5.2 Potential contributions to a more personalized approach to breast cancer

In Ref. [11], we elaborated extensively on the implications of Padé-optimized MRS
for a more personalized approach to various aspects of the diagnostics and treatment
of breast cancer. This was viewed within the framework of molecular imaging for
personalized cancer medicine, PCM. Saliently, it has been stated: “Molecular imaging
is rapidly gaining recognition as a tool that has the capacity to improve every facet
of cancer care. The growing demands among physicians, patients and society for
personalized care are increasing the importance of molecular imaging and shaping
the development of biomedical imaging as a whole” [34] (p. 182). Our findings in
Ref. [11] focused upon the capability of the parametric FPT to identify and quantify
PC, as well as a substantial number of other diagnostically important metabolites. We
concluded that in addition to aiding initial detection of breast cancer, this information
could also be used to better adapt therapy to the individual patient and to monitor the
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patient thereafter. Herein, we direct our attention on the partitioning strategy within
the non-parametric FPT for visualizing PC as a cancer biomarker. Bolstered by our
experience with in vivo MRS and the findings of the present paper, the application of
spectra averaging is strongly recommended to reduce the sensitivity to model order
K .

5.2.1 Monitoring the presence versus absence of PC reflecting response to
neoadjuvant therapy

Neoadjuvant chemotherapy (NCT) is currently used to treat patients with locally
advanced or inflammatory breast cancers, and is often chosen for aggressive tumors.
With NCT, more direct evaluation of breast cancer treatment effectiveness becomes
possible [50]. Response to NCT for breast cancer is most often evaluated according
to change in tumor size as manifested on MRI together with the pathological charac-
teristics at subsequent surgery, both of which are relatively late indicators. Regarding
NCT, it has been stated: “no imaging-based, early-response biomarker has been suit-
ably validated to become incorporated either as standard of care … or as a routine
component of clinical trials” [51] (p. 140). There is some, albeit mixed evidence, that
changes in total choline, tCho, as assessed via Fourier-basedMRS is reflective of early
response to NCT [52–54]. Insofar the Padé-based partitioning strategy for identifying
the presence of phosphocholine, PC, is validated in vivo, this might contribute to more
efficient assessment of early response to NCT, as well as for repeated monitoring dur-
ing and after the therapy. This strategy could be especially helpful for younger women
with aggressive breast cancer, since these patients often have poor outcomes, despite
intensive treatment [55].

5.2.2 Detection of PC to better identify hypoxic regions for tailoring radiation
therapy

Identifying the most significant regions to improve target definition for radiother-
apy can be aided by MR-modalities [56]. Localization of tumor hypoxia is of key
importance, since it reflects radiotherapy resistance, driving genomic instability and
progression to invasive/metastatic breast cancer [57]. In breast cancer models, tumor
hypoxia has been found to be associated with regions of higher tCho as assessed via
MRSI. The elevated tCho was primarily associated with elevated PC, as shown by in
vitro MRS [58]. These findings suggest a potential role for the Padé-based partition-
ing strategy to help identify hypoxic regions associated with PC, so as to aid tailoring
radiation therapy for patients with breast cancer.

5.2.3 Post-therapeutic surveillance for the presence versus absence of PC

The number of women who have survived breast cancer is rapidly growing as a conse-
quence of early detection togetherwithmore effective treatment. Theoptimal strategies
for post-therapeutic imaging surveillance remain to be determined [59]. Since a criti-
cal concern for survivors is that breast cancer might recur [56], false positive results
can be devastating. On the other hand, insofar as the patient does not receive adequate
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follow-up, a feeling of abandonment often arises [60], and this can also heighten fear
of recurrence. As the patient herself becomesmore actively involved in decisions about
the surveillance strategy, and is better informed about the results, her sense of con-
trol through self-management of aftercare is found to improve with beneficial effects
[61,62]. With this aim in mind, greater confidence is needed about the findings, for the
patient as well as for the clinician. An efficient strategy for monitoring the presence
versus absence of PC, could well contribute to improving post-therapeutic surveil-
lance strategies to better meet the needs of individual patients who have survived
breast cancer.

5.2.4 Detection of PC for surveillance of women at high breast cancer risk

For women at high breast cancer risk, imaging surveillance, especially with the excel-
lent sensitivity of MRI, clearly contributes to timely breast cancer detection [63–67].
Being non-invasive, having no interference with child bearing and few adverse long-
term effects [68], intensive imaging surveillance appears to be preferred by women
at high breast cancer risk [69]. Women cite the feeling of security and reassurance
that breast cancer will be detected early as a key benefit of imaging surveillance
[70,71]. However, false positive findings discourage participation in imaging surveil-
lance [72,73]. Since the breast is a radiosensitive organ and surveillance for women at
high risk should begin at an early age, and possibly with greater frequency, radiation
exposure associated with mammography is also of concern, especially for women
with BRCA1/2 mutations, Li Fraumeni syndrome or ataxia-telangiectasia, for whom
there is heightened vulnerability to radiation damage [64,74]. Further, mammography
is generally less effective for women with a genetic predisposition to breast cancer
due to increased mammographic density [65], although mammography sometimes
detects early breast cancers missed on MRI [75]. Moreover, BRCA1-associated breast
cancers may appear on MRI as benign, with relatively smooth margins, and/or with
enhancement kinetics typical of fibroadenomas [64]. Consequently, biopsy has been
recommended for MRI-detected fibroadenomas or even cyst-like masses in young
patients with BRCA1/2 mutations or otherwise strong family breast cancer history
[64]. However, this recommendation can lead to more false-positive findings, and
thereafter to further worsening in the specificity of MRI after excisional biopsy [76].
It should be noted that women at high breast cancer risk often turn down invitations to
participate in MRI surveillance programs due to fear of being sent for biopsy or other
testing [77].

There is a pressing need to improve breast cancer imaging strategies to be better
adapted to women’s needs, especially their risk profile [78]. Improved diagnostic
accuracy, especially specificity, is vital. As noted, molecular imaging with the FFT for
in vivoMRS andMRSI has contributed to somewhat higher specificity,mainly through
assessment of total choline, tCho. However, reliance upon tCho assessments does not
provide sufficiently trustworthy standards to diagnose a breast lesion as cancerous
versus benign [1]. In addition to the possibilities of applying the parametric FPT-
MRS and FPT-MRSI to quantify phosphocholine, PC, as a breast cancer marker, as
elaborated in detail in Refs. [11,16,19–21,45], the results presented in Ref. [1] and in
the present study, suggest a potential role of the associated non-parametric estimation
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of partitioned envelopes for initial detection of PC on in vivo data. This strategy is
anticipated to be a particularly helpful contribution toMR-based imaging surveillance
via MRSI.

The stringent, multi-faceted testing carried out in the present study indicates that
through partitioning, the non-parametric fast Padé transform, FPT, can reliably detect
phosphocholine, PC, the otherwise hidden component ofMRS andMRSI envelopes or
total shape spectra. It is now fully warranted to apply the non-parametric, partitioned
FPT to in vivo MRS time signals encoded from the breast. Partitioning should be
applied together with spectra averaging to diminish the sensitivity to model order K
and suppress noise. The expectation is justified that this approach will contribute in
practical improvements for diagnosis and management of breast cancer, concordant
with the aims of personalized cancer medicine, PCM.

6 Conclusion and future outlooks

All sciences ultimately deal with signals. They may come from very different sources
and, yet, they all have one generic feature in common: being carriers of the unknown
causes that produced the detected effects (in the sense of inverse problems that are in
ordinary life knownas reverse engineering). There is noblueprint for success in unlock-
ing the system’s secrets so as to determine its structure. Nevertheless, the abundant
past experience in different fields (resulting in 9 fascinating Nobel prizes) indicates
that nuclear magnetic resonance, NMR, is universally the most powerful strategy for
revealing the structure of general matter, including the anatomy and function of human
tissues. The method of NMR spectroscopy is renamed to magnetic resonance spec-
troscopy, MRS, in medicine to avoid the patients’ fear that the word “nuclear” might
be associated with nuclear radiation (otherwise non-existent in MR phenomena). The
present theoretical study deals with times signals typical of those fromMRS in cancer
diagnostics.

Signal processing is a huge field. Traditionally, for decades now, it has been a
stand-alone branch, focused almost exclusively upon a variety of applied research of
primary interest to engineering, technologies and industries. Not so long ago, how-
ever, researchers in this community began to take a closer look at the other disciplines
also dealing with time signals. Eventually, among the many remarkable achievements,
they encountered the recent advances in quantum chemistry within the realm of the
so-named “quantum-mechanical signal processing” [2,79–84]. Therein, their main
attention was caught by signal processors based upon rational functions, notably those
from the vast family belonging to the Padé approximant [85–93]. This is hardly coin-
cidental. Namely, although not always referred to explicitly by its proper name: the
Padé approximant, it occurs that rational functions, through the ratio of two polyno-
mials, are the most frequently used response functions for modeling the response of
generic systems to disturbances of any kind. To take a broadly familiar example, typ-
ing the words “Padé approximant” on Google, way back in September 1987, would
return some, at that time, impressive 2000 items. Three decades later, we note a nearly
100-fold increase to formidable 190000 items in September 2017.
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Thus, if the Padé approximant has become omnipresent, with its road so remark-
ably often traveled, which novelties of such modeling under the umbrella of
quantum-mechanical signal processing could merit the heightened attention of inves-
tigators from the standard signal processing arena? It is, in fact, the judicious and
practical combination of new insights in signal processing provided by basic sci-
ence, and a new prospect for advanced applications of signal processing including
those in medical diagnostics. Basic science, through its most prestigious propo-
nent, quantum physics, improved the fundamental notions, concepts and outlooks
of standard signal processing, and elevated its status to that of a complete the-
ory. This was done by reformulating spectral analysis (quantification), which is the
main mathematical tool of standard signal processing, in the powerful and general
language of quantum-mechanical stationary (time-independent) and non-stationary
(time-dependent) formalisms, advantageously coupled to the Schrödinger eigenvalue
problems,with time signals equivalently conceived as quantumauto-correlations func-
tions. This approach, in turn, stimulated a vigorous reformulation of signal processing
in biomedicine by placing rational polynomials as the response functions of choice,
front-and-center, where they are needed most in early cancer diagnostics by MRS.

The reason for the versatile applicability of rational polynomials in the role of
response functions is in their unprecedentedly useful mathematical expression which,
from the onset, provides the sought polar representation of the spectrum. Single poly-
nomials, such as those in the fast Fourier transform, FFT, are usually suitable for
describing smooth, regular functions. However, they are utterly inadequate for model-
ing functions with various types of discontinuities, as well as singularities like poles,
branch points and branch cuts. For such irregular functions, rational polynomials, as
polynomial quotients, e.g. the Padé approximant, are most suitable. It goes without
saying that the same polynomial ratios are also adequate for regular, continuous func-
tions. Rational polynomials describe poles, by default. Poles of rational polynomials,
as zeros of denominators, automatically yield the peaks in spectra, as the fingerprint
of the system’s structure.

In signal processing, the Padé approximant is equivalently called the fast Padé
transform, FPT, for a twofold rationale. First, one of its multiple computational codes,
called the Euclid algorithm, scales quasi-linearly as N (log2N )2 with the total signal
length N. Second, the Padé frequency spectrum can be inverted to retrieve the input
time signals to any desired degree of accuracy. The word “transform” is reserved only
to those mappings that are able to preserve the full information (despite corruption by
e.g. noise) when passing from one to the other equivalent domain (time to frequency
and vice versa, in the present context). Thus, renaming the Padé approximant as the
fast Padé transform is amply justified. It coheres with the generalized Weierstrass
theorem, which asserts that every function can be represented arbitrarily accurately
by expanding it in terms of rational polynomials.

As stated, signal processing encompasses two general methodologies, shape and
parameter estimations of spectra, with the former and the latter yielding the envelopes
and components, respectively. Usually, the two strategies do not mix. However, we
show within the FPT that the line separating these two tools need not be so sharp.
Rather, the two approaches can be intertwined by means of the so-called partitioned
envelopes whereby shape estimations alone can qualitatively uncover the component
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spectra. This is especially valuable for the abundant cases where e.g. two or more
closely packed (overlapped) peaks appear as a single compound lineshape.

Precisely such a challenging situation is addressed in the present illustration for
MRS time signals associated with breast cancer. Therein, the FPT-based partitioned
total shape spectra clearly separated phosphocholine, PC, a cancer biomarker, from
phosphoethanolamine, PE. These two peaks fuse together into a single ideally sym-
metric peak in the corresponding conventional, non-partitioned envelopes. This line
of investigation first started with synthesized noiseless MRS time signals for a sin-
gle model order of the FPT [1], as an initial proof-of-concept study. The present
examination is a feasibility study in a more realistic situation, involving noisy synthe-
sized MRS time signals for a sequence of model orders subsequently accompanied
by spectra averaging. The imposed stringent tests and benchmarking of the FPT have
successfully been completed in this general setting, as well.

The expounded strategy is a motivation to further apply the partitioned envelopes
from the FPT to in vivo MRS times signals encoded from breast and other organs, as
well. The idea is to proceed in two successive steps. First, to exhaust the partitioned
envelopes, as an additional degree of freedom in non-parametric or shape estimations,
determining whether cancer biomarkers are present at all in composite peaks in which
they are customarily invisible. Second, if present, the cancer biomarker abundance is
to be quantified by the subsequent local quantification via parametric processing in
the relevant, narrow frequency window.

Such a fast, stepwise processing is expected to be particularly critical for advances in
magnetic resonance spectroscopic imaging, MRSI. In MRSI, its volumetric coverage
of the scanned tissue frommultiple voxels (as opposed to a single voxel inMRS) leads
to thousands of spectra that need to be reconstructed and every saving of computational
time as well as human resources to analyze the results would be most welcome. Such
savings, not at the expense of accuracy and clinical reliability, should be feasible in
the FPT with its shape estimation of partitioned spectra in the pre-quantification stage,
followed by parameter estimation via efficient local quantification. This is one of the
prospects deemed to be well worth exploring in the near future.
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13. Dž. Belkić, Exponential convergence rate (the spectral convergence) of the fast Padé transform for
exact quantification in magnetic resonance spectroscopy. Phys. Med. Biol. 51, 6483–6512 (2006)
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