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Abstract This paper studies linear conjugacy of PL-RDK systems, which are kinetic
systems with power law rate functions whose kinetic orders are identical for branching
reactions, i.e. reactions with the same reactant complex. Mass action kinetics (MAK)
systems are the best known examples of such systemswith reactant-determined kinetic
orders (RDK). We specify their kinetics with their rate vector and T matrix. The T
matrix is formed from the kinetic order matrix by replacing the reactions with their
reactant complexes as row indices (thus compressing identical rows of branching
reactions of a reactant complex to one) and taking the transpose of the resultingmatrix.
The T matrix is hence the kinetic analogue of the network’smatrix of complexesY with
the latter’s columns of non-reactant complexes truncated away. ForMAK systems, the
T matrix and the truncated Y matrix are identical. We show that, on non-branching
networks, a necessary condition for linear conjugacy of MAK systems and, more
generally, of PL-FSK (power law factor span surjective kinetics) systems, i.e. those
whose T matrix columns are pairwise different, is T = T ′, i.e. equality of their T
matrices. This motivated our inclusion of the condition T = T ′ in exploring extension
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of results fromMAK toPL-RDKsystems.We extend the Johnston–SiegelCriterion for
linear conjugacy fromMAK to PL-RDK systems satisfying the additional assumption
of T = T ′ and adapt the MILP algorithms of Johnston et al. and Szederkenyi to
search for linear conjugates of such systems. We conclude by illustrating the results
with several examples and an outlook on further research.

Keywords Chemical reaction networks · Dynamic equivalence · Linear conjugacy ·
Mixed integer linear programming · Power law kinetics · T matrix

Abbreviations

BST Biochemical systems theory
CBK Complex balanced kinetics
CFK Comlplex factorizable kinetics
CKS Chemical kinetic system
CRN Chemical reaction network
CRNT Chemical reaction network theory
JSC Johnston–Seigel criterion
GMAK Generalized mass action kinetics
KSS Kinetic and stoichiometric subspaces
KSSC KSS coincidence
MAK Mass action kinetics
ODE Ordinary differential equations
PLK Power-law kinetics
PL-FSK Power-law factor span surjective kinetics
PL-NDK Power-law non-reactant-determined kinetics
PL-RDK Power-law reactant-determined kinetics
PT Point-terminal
RDK Reactant-determined kinetic orders
SCC Stoichiometric compatibility class
SFRF Species formation rate function

List of symbols

δ Deficiency of a CRN
ψK Factor map of a complex factorizable kinetics K
Ia Incidence map of a CRN
δk k-deficiency
Ik k-incidence map
Ak k-Laplacian map
K Kinetic subspace of a CKS
Y Molecularity map/ matrix of complexes
K (N ) Set of all chemical kinetics on a CRN N
f Species formation rate function of a CKS
S Stoichiometric subspace of a CKS
t − l Terminality
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1 Introduction

Researchers studying dynamical systems based on chemical reaction networks with
mass action kinetics (MAK) were aware from the beginning that different networks
could generate the same set of ordinary differential equations (ODE), i.e. be dynami-
cally equivalent. An important step in the systematic study of dynamical equivalence
was taken by G. Farkas [6], who investigated kinetic lumping schemes for MAK sys-
tems i.e. exact linear lumping schemes, which preserve the structure of the original
kinetic system. The mathematical foundations of dynamical equivalence were estab-
lished nine years later in the paper of G. Craciun and C. Pantea [4] and the commentary
note of G. Szederkenyi [18]. Two years later, M. Johnston and D. Siegel extended the
studies to linear conjugacy ofMAK systems and formulated a criterion for the property
[12].

In the past five years, various authors have pioneered the use of mixed integer
linear programming (MILP) algorithms for determining linear conjugacy between
mass action kinetics (MAK) systems. In particular, the special case of dynamical
equivalence–the classical question of model identifiability–has received a lot of atten-
tion. A good review of the work until 2013 in Realization Theory—as the field is
sometimes called by CRNT researchers–is provided in Johnston et al [14]. More
recently, Johnston [11] extended the algorithm described there to find linear conju-
gates satisfying the Deficiency One Theorem for MAK systems.

To our knowledge, only two papers have been so far published, which use MILP
approaches for linear conjugacy and dynamical equivalence of systemswith non-MAK
kinetics. In the first paper [7], Gabor et al. addressed systems with kinetics which are
rational functions (e.g. Michaelis–Menten and Hill type systems) by extending the
canonical method of Hars and Toth for representing MAK systems as CRNs [9] and
the algorithms of Szederkenyi [19] for dense and sparse realizations to such rational
function systems. In the second paper, Johnston [10] applied MILP algorithms on
translation ofMAK to GeneralizedMass Action Kinetics (GMAK) systems as defined
by Müller and Regensburger in [15], which we denote by GMAK-12 systems. This
translation process transforms toric equilibria of weakly reversible MAK systems to
complex balanced equilibria ofweakly reversibleGMAK-12 systemswith zero kinetic
deficiency.

In this paper, we extend the Johnston–Siegel Criterion (JSC) for Linear Conjugacy
[12] from MAK systems to PL-RDK (Power Law with Reactant-Determined Kinetic
orders) and adapt the JSC-based MILP algorithm of Johnston et al. [14] to the latter.
PL-RDK systems are the power law kinetic systems for which for which the rows in
the kinetic order matrix are identical if the reactions have the same reactant complex,
i.e. are branching reactions of the same reactant complex. Formally, if the power law

system on a network (S ,C ,R) is given by
dx

dt
= N diag(k) x F , where N is its

stoichiometric matrix, k the rate vector, F the kinetic order matrix and ρ : R → C
is the reactant map, the system is PL-RDK if ρ(r) = ρ(r ′) implies Fr,. = Fr ′,..
In [1], it is shown that PL-RDK systems are precisely the power law systems for

which a factorization
dx

dt
= Y Ak�K exists, where Y is the matrix of complexes,
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Ak the Kirchhoff matrix and the factor map �K = x F . Clearly, MAK systems
form a subset of PL-RDK. The correspondence between PL-RDK systems and the
Generalized Mass Action Kinetics introduced by Müller and Regensburger in [16]
(which we call GMAK-14) are discussed in detail in [21].

We specify the kinetics of PL-RDK systems with their rate vector and T matrix.
The T matrix is formed from the kinetic order matrix by replacing the reactions with
their reactant complexes as row indices (thus compressing identical rows of branching
reactions of a reactant complex to one) and taking the transpose of the resultingmatrix.
The T matrix is hence the kinetic analogue of the network’smatrix of complexesY with
the latter’s columns of non-reactant complexes truncated away. ForMAK systems, the
T matrix and the truncated Y matrix are identical.

The set PL-FSK (Power LawFactor Span SurjectiveKinetics) is an important subset
of PL-RDK and consists of systems with the property that reactions with different
reactant complexes have different kinetic order matrix rows. In other words, ρ(r) �=
ρ(r ′) implies Fr,. �= Fr ′,.. As shown in [1], this property is equivalent to the linear
independence of the non-zero coordinate functions of the factor map �K . Again,
MAK systems form a subset of PL-FSK, and various properties of MAK systems
can be extended to PL-FSK, e.g. the Feinberg–Horn Theorem on the coincidences of
the kinetic and stoichiometric subspaces [1]. The GMAK-14 systems whose map of
kinetic complexes ỹ : ρ(R) → R

S is injective correspond to PL-FSK. A property of
PL-FSK systems on linearly conjugate nonbranching networks N and N ′ motivated
the inclusion of the condition T = T ′ in our extension of the MAK results (s. Sect. 3).

2 Basic concepts and notation

In this section, we collect the concepts and propositions of CRNT that we need to
derive our results.

Definition 1 A chemical reaction network (CRN) N is a triple (S ,C ,R) of finite
sets of species inS , complexes in C ⊂ R

S , and reactions inR ⊂ C × C such that

1. (y, y) /∈ R for any y ∈ C ;
2. for each y ∈ C there exists y′ ∈ C such that (y, y′) ∈ R or (y′, y) ∈ R.

For a CRN N = (S ,C ,R), we denote with m the number of species in S , n the
number of complexes in C , and r the number of reactions inR.

The pair (C ,R) defines a digraph called the “reaction graph” of the CRN and
is often used to describe the network. However, the reaction graph determines the
triple uniquely only if an additional property is included in the definition: S =
∪ {supp y | y ∈ C }, i.e. each species appears in a complex. CRNs with this additional
property can equivalently be defined as:

Definition 2 A chemical reaction network (CRN) is a digraph (S ,C ,R)where each
vertex has positive degree and stoichiometry, i.e. there is a finite setS (whose elements
are called species) such that C is a subset of RS≥ . Each vertex is called a complex
and its coordinates in R

S≥ are called stoichiometric coefficients. The arcs are called
reactions.
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The connectivity concepts in digraph theory apply to CRNs, but have slightly dif-
fering names since a connected component is traditionally called a linkage class in
CRNT. Hence, a strong linkage class is subset of a linkage class where any two ele-
ments are connected by a directed path in each direction. A terminal strong linkage
class is a strong linkage class such that there is no reaction from a complex in the
strong linkage class to a complex not in the strong linkage class.

We now introduce the set of power law kinetics and the subsets that we will focus
on.

Definition 3 A kinetics for a network N = (S ,C ,R) is an assignment to each
reaction r j ∈ R of a rate function K j : �K → R≥, where �K is a set such that
R> ⊆ �K ⊆ R≥, c ∧ d ∈ �K whenever c, d ∈ �K , and K j (c) ≥ 0,∀c ∈ �K .

A kinetics for a network N is denoted by K = (K1, K2, . . . , Kr ) : �K → R
R≥ .

In the definition, c ∧ d is the bivector of c and d in the exterior algebra of RS . Our
work is focused on the following subset:

Definition 4 A chemical kinetics is a kinetics K satisfying the positivity condition:
for each reaction r j : y → y′, K j (c) > 0 iff supp y ⊂ supp c.

If�K = R
S
> , then the additional condition for a chemical kinetics simply says that

K j (c) > 0 for all c, hence the name “positivity condition”.

Example 1 Let �K = R
S
> and F an r × m matrix of real numbers. Define x F by

(
x F

)
i = ∏

x
Fi j
j for i = 1, . . . , r . The kinetics defined by ki x Fi is called a power law

kinetics (PLK) and the matrix F the kinetic order matrix.

Mass action kinetics is clearly a special case of this kinetics set. We are particularly
interested in two MAK(N ) supersets with similar properties. The first is the set with
reactant-determined kinetic ordersPL − RDK (N ).

Definition 5 A PLK system has a reactant-determined kinetic orders (of type PL-
RDK) if for any two reactions i, j with identical reactant complexes, the corresponding
rows of kinetic orders in V are identical, i.e., vik = v jk for k = 1, 2, . . . ,m.

PL − RDK (N ) includes mass action kinetics (MAK) and coincides with the
set of GMAK-14 systems recently introduced byMüller and Regensburger [16]. They
also constitute the subset of power law systems for which the claim of various authors
that their results “hold for complexes with real coefficients” are valid.

The superset of MAK systems of highest interest for us is the set of factor span
surjective systemsPL − FSK (N ).We use the following characterizationwhich
was derived in [1] as our working definition:

Definition 6 A PL-RDK kinetics is factor span surjective if and only if all rows with
different reactant complexes in the kinetic order matrix F are pairwise different (i.e.
ρ(r) �= ρ(r ′) implies Fr,. �= Fr ′,.).

If the givenkinetics is of typePL-RDK,wecandefine the factormapof theChemical
Kinetic System (CKS). The definition below came from Arceo et al. [1].
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Definition 7 The factor map ψK : Rm → R
n is defined as

(ψK )c (x) =
{(

x F
)
i , if c is a reactant complex of a reaction i

0, otherwise

A further important concept for a PL-RDK system is the Kirchhoff matrix of the
system:

Definition 8 The Kirchhoff matrix (also called the kinetics matrix or Laplacian
matrix) of a PL-RDK system is the m × n matrix defined by

(Ak)i j =
⎧
⎨

⎩

k ji , if i �= j

k j j −
n∑

x=1
k jx , if i = j

where k ji is the rate constant associated to the reaction from Ci to C j .

The SFRF f has the following decomposition: f (x) = Y ◦ Ak ◦ψK (x), indicating
as shown in [1] that, for any network N ,

PL −RDK (N ) = PLK (N )∩CFK (N ), where CFK (N ) is the set
of complex factorizable kinetics on N .

PL − FSK (N ) is a large and important subset ofPL − RDK (N )which
reflects important properties of its subset of MAK systems. For example, as shown
in [1], the Feinberg-Horn Theorem on the coincidence of kinetic and stoichiometric
subspaces extends precisely to this set of power law kinetics.

We recall the definition of them×n matrix Ỹ from [16]: for a reactant complex, the
column of Ỹ is the transpose of the kinetic order matrix row of the complex’s reaction,
otherwise (i.e. for a terminal point), the column is 0.

Definition 9 The T matrix of a PL-RDK system is formed by truncating away the
columns of the terminal points in Ỹ , obtaining an m × nr matrix. The corresponding
linear map T : R

ρ(R) → R
S maps ωρ(r) to (Fr )T . The subspace R̃ := Im T =〈

(Fr )T
〉
is called the kinetic reactant subspace and q̃ = dim R̃ is called the kinetic

reactant rank of the system.

Remark 1 Müller and Regensburger introduced the map (of sets) ỹ : ρ(R) → R
S

and called an element of its image a kinetic complex. Clearly T (ωy) = ỹ(y) for any
reactant complex. If we denote the number of kinetic complexes with ñr , then we have
q̃ ≤ ñr ≤ nr .

For the background on Biochemical Systems Theory (BST) and the CRN represen-
tations (total and embedded) of BST models needed for Examples 5 and 6, the reader
is referred to the discussion in [1].

Two kinetic systems M and M ′, though differing in structure, may give rise to a
similar dynamics. This property, called linear conjugacy, is characterized by trajecto-
ries which are related by a linear transformation. If this mapping is trivial, M and M ′
are said to be dynamically equivalent.
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Definition 10 Let (�(x0, t) and (�(x0, t) be flows associated to kinetic systems M
and M ′ respectively. M and M ′ are said to be linearly conjugate if there exists a
bijective linear mapping h : Rn

>0 → R
n
>0 such that h(�(x0, t)) = �(h(x0, t)) for all

x0 ∈ R
n
>0.

3 A necessary condition for linear conjugacy in PL-FSK systems

In this section, we briefly describe our motivation to include the assumption T = T ′
in the extension of the MAK results on linear conjugacy to PL-RDK systems. We first
observed that for someMAK systems with same sets of species and complexes, linear
conjugacy implied that their sets of reactants coincided too. Further investigations
then showed that this necessary condition was true for all PL-FSK systems on linearly
conjugate nonbranching networks, as shown in the following proposition.

Proposition 1 Let N = (S ,C ,R) and N ′ = (S ′,C ′,R ′) be nonbranching
networks and (N , K ) and ( ˜N , K ′) be PL-FSK systems and linearly conjugate. Then
T = T ′.

Proof Since N is nonbranching, nr = r . Furthermore, K is factor span surjective

if and only if ψK ,1, . . . , ψK ,r are linearly independent, where ψK ,i (x) = ∏

j
x
Tji
j .

For convenience, we write PK (i) = T ., i (the i-th column of T ) and consider PK
as a map R → RS . According to Proposition 14 of [1], this linear independence
is equivalent to PK (i) �= PK ( j) if i �= j . Hence each network has a decomposition
into r and r ′ single reaction subnetworks respectively, which we refer to as their
CF-decompositions. On the other hand, linear conjugacy implies for the SFRFs that
f − C f ′ = 0. Expressing both SFRFs in their CF-decomposition results in a linear
dependency relation between the constituent monomials. The summands of the LHS
can be separated into the set of monomials only in f and not in f ′, those common to
both and the set of those in f ′ but not in f . A monomial in the first set is pairwise
different from those in the union of the first and second set (except itself) since K is
factor span surjective and N nonbranching. By definition, this is also the case with
those in the third set. The same argument applies to the third set by symmetry. Hence,
the monomials on the LHS are linearly independent. This implies that the coefficients
for the monomials in the first and third sets are all zero, i.e. both sets are empty. The
remaining monomials are bijectively mapped to ImPK = ImP ′

K . This implies r = r ′
and is equivalent to T = T ′ after appropriate ordering of the columns. ��

Since all MAK systems are factor span surjective, we have the following corollary:

Corollary 1 If N = (S ,C ,R) and N ′ = (S ′,C ′,R ′) are nonbranching and
linearly conjugate, then ρ(R) = ρ(R ′).

Since for at least two significant sets of PL-RDK kinetics, T = T ′ is a necessary
condition for linear conjugacy, we add this property to extend the Johnston–Siegel
Theorem from MAK to PL-RDK systems in the next section.

123



J Math Chem (2018) 56:336–357 343

4 The MILP algorithm for linear conjugacy in PL-RDK systems

In this section, we present an MILP algorithm to construct PL-RDK systems, whose
underlying networks are weakly reversible, and are linearly conjugate to a given sys-
tem. We first extend the JSC for linear conjugacy for MAK systems to PL-RDK
systems with the additional property that T = T ′. This serves as the basis for the
adaptation of the MILP algorithm of Johnston et al. [13] for MAK systems to these
PL-RDK systems. We conclude with several examples illustrating the extended MILP
algorithm.

4.1 Extension of the Johnston–Siegel Criterion to PL-RDK systems

We restate the Johnston–Siegel Criterion for MAK systems as a reference for the
discussion in this and the following sections.

Theorem 1 [12] Consider two mass-action systems N = (S ,C ,R) and N ′ =
(S ′,C ′,R ′) and let Y be the stoichiometric matrix corresponding to the complexes
in either network. Consider a kinetics matrix Ak corresponding to N and suppose
that there is a kinetics matrix Ab with the same structure asN ′ and a vector c ∈ R

n
>0

such that
Y · Ak = C · Y · Ab

where C = diag {c}. Then N is linearly conjugate toN ′ with kinetics matrix

A′
k = Ab · diag {ψ (c)} .

Toextend the criterion for linear conjugacy,wefirst show that the hypothesisT = T ′
ensures the equality of the factor maps of the pair of kinetics:

Proposition 2 Consider two PL-RDK systemsN andN ′. Then T = T ′ if and only
if ψK = ψ ′

K .

Proof (⇒) If T = T ′ then ∀i, j Ti j = T ′
i j . If complex j is not a reactant complex, it

corresponds to no column in T and T ′. Hence, ψK j
= ψ ′

K j
= 0 . For any complex

j for which species i is involved and reaction k for which complex j is a reactant,
Fki = F ′

ki implies ψK j
= ψ ′

K j
.

(⇐) If ψK = ψ ′
K then for each reactant complex j , ψK j

= ψ ′
K ′

j
and x Fj = x F

′
j .

Since for each reaction k for which complex j is a reactant Fki = F ′
ki , then T = T ′.

��
We can now prove the extension of the JSC for PL-RDK systems:

Theorem 2 Consider two PL-RDK systems N = (S ,C ,R) and N ′ = (S ′,
C ′,R ′) and let Y be the matrix of complexes in either network. Suppose further that
T = T ′. Consider a kinetics matrix Ak corresponding to N and suppose that there
is a kinetics matrix Ab with the same structure asN ′ and a vector c ∈ R

n
>0 such that

Y · Ak = C · Y · Ab (1)
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where C = diag {c}. Then N is linearly conjugate toN ′ with kinetics matrix

A′
k = Ab · diag {ψK (c)} . (2)

Proof Let ϕ (xo, t) be the solution of the system of ODE ẋ = f (x) = Y AkψK

associated to the reaction network N .
Consider the linear map h (x) = C−1x where C = diag {c}, c ∈ R

n
>0.

Let ϕ̃ (y0, t) = C−1ϕ (x0, t) so that ϕ (x0, t) = C ϕ̃ (y0, t). It follows that

ϕ̃′ (y0, t) = C−1ϕ′ (x0, t)
= C−1Y AkψK (ϕ (x0, t))

= C−1CY AbψK (C ϕ̃ (y0, t))

Now,

ψK (C ϕ̃ (y0, t)) = ψK (diag {c} ϕ̃ (y0, t))

= DψK (C ϕ̃ (y0, t))

whereD = diag {e} and e j =
{
cF. j , if complex j is a reactant of some reaction k
1, otherwise

So, ϕ̃′ (y0, t) = Y AbDψK (ϕ̃ (y0, t)). Clearly, ϕ̃ (y0, t) is a solution of the sys-
tem ẋ = Y AbDψK corresponding to the reaction network N ′. We have that
h (ϕ (x0, t)) = ϕ̃ (h (x0) , t) for all x0 ∈ R

n
>0 and t ≥ 0 where y0 = h(x0) since

y0 = ϕ̃ (y0, t) = C−1y0 = ϕ (y0, t). It follows that networksN andN ′ are linearly
conjugate. ��
Remark 2 Again, we see from the proof that, if S = S ′, for the linearly conjugate
system constructed, C = C ′. We can also show that the set of reactant complexes
coincide:

Proposition 3 ConsiderPL-RDKsystemsN = (S ,C ,R)andN ′ = (S ′,C ′,R ′)
such that Y = Y ′ and T = T ′. Then ρ (R) = ρ

(
R ′).

Proof If T = T ′ then ψK = ψ ′
K . Hence, for every reactant complex j ∈ C , it is the

case that ψK j = ψ ′
K j and both are nonzero. It follows that complex j is in ρ(R ′).

Similarly, for every reactant complex j ∈ C ′, j is in ρ(R). ��

4.2 Adaptation of the Johnston et al. MILP algorithm to PL-RDK systems

Using the JSC, M.D. Johnston and collaborators developed several MILP algorithms
to find linearly conjugate networks with known MAK dynamics. In [8], Johnston et
al. specified a MILP algorithm to find linear conjugates which are weakly reversible.
In further papers [11,14] they refined their approach to construct linearly conjugate
systemswhich are not onlyweakly reversible but also have desirable deficiency proper-
ties: minimal deficiency and satisfying the Deficiency One Theorem conditions. Since
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Deficiency Theory for PL-RDK systems is little developed (s. [21] for a detailed
discussion), we focus only on extending the first algorithm for constructing weakly
reversible linear conjugate systems.

4.2.1 Key components of the Johnston et al. algorithm for MAK systems

The algorithm considers two mass action systems; the original system N =
(S ,C ,R) and the target systemN ′ = (S ′,C ′,R ′). The objective of the algorithm
is the determination of the network structure of the target system and its corresponding
rate constants which satisfies the weak reversibility and linear conjugacy conditions.
The algorithm assumes that the two networks share the same set of species and com-
plexes (i.e.S = S ′ andC = C ′), an assumption which implies that both the original
and the target systems have the same molecularity matrix Y and coefficient mapψ(x).
Also,R and K are known while R ′ and K ′ are to be determined.

The algorithm requires the following values to be determined before the implemen-
tation.

– The molecularity matrix Y ∈ R
m×n
�0

– The reaction structure R and the rate constant K of the original system or the
matrix M = Y · Ak , where Ak is the Kirchhoff matrix

– The sufficiently small parameter ε > 0 which is used to establish strict inequalities
as permissible nonstrict inequalities

– The parameter ui j > 0, i, j = 1, . . . ,m, i �= j

4.2.2 Discussion of the MILP algorithm for PL-RDK

The MILP model which searches for a dense weakly reversible linearly conjugate
network is given as follows. The parameters and variables used are found in Tables 1
and 2.

The objective is to find a dense realization of the given network that seeks to
maximize the number of present reactions denoted by δ.

minimize
m∑

i, j=1

−δi j (3)

There are four sets of constraints in the MILP model which incorporate the desired
structure of the network, weak reversibility requirement and linear conjugacy condi-
tion.

(WR)

⎧
⎪⎨

⎪⎩

m∑

i=1,i �= j

[
Ãk

]
i j =

m∑

i=1,i �= j

[
Ãk

]
j i , j = 1, . . . ,m

[
Ãk

]

i j
� 0, for i = 1, . . . ,m, i �= j

(4)
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Table 1 List of variables used in the MILP

Notation Description

δi j , i, j = 1, . . . ,m Binary variable that keeps track of the presence of the reaction in the target
network

[
Ab

]
i j , i, j = 1, 2, . . . ,m Kinetic matrix with the same structure as the target network

[
Ãk

]

i j
, i, j = 1, 2, . . . ,m A dummy matrix used to linearize the constraint that guarantees weak

reversibility

c A vector which is an element of Rn
>0

T A diagonal matrix diag(c) with vector c ∈ R
n
>0

Table 2 List of parameters defined in the MILP

Notation Description

Y Complex matrix of the original network

M Product of Y and the kinetic matrix Ak of the original network

ui j , i, j = 1, . . . ,m A positive-valued parameter

ε A sufficiently small parameter with value between 0 to 1

(LC)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Y · Ab = T−1 · M, T = diag {c}
m∑

i=1,i �= j
[Ab]i j = 0, j = 1, . . . ,m

[Ab]i j � 0, for i = 1, . . . ,m, i �= j
[Ab]i i < 0, for i = 1, . . . ,m
ε � ci � 1

ε
, for i = 1, . . . , n

(5)

(WR − S)

⎧
⎨

⎩

0 � −
[
Ãk

]

i j
+ ui j · δi j , i, j = 1, . . . ,m, i �= j

0 �
[
Ãk

]

i j
− ε · δi j , i, j = 1, . . . ,m, i �= j

(6)

(LC − S)

⎧
⎨

⎩

0 � −[Ab]i j + ui j · δi j , i, j = 1, . . . ,m, i �= j
0 � [Ab]i j − ε · δi j , i, j = 1, . . . ,m, i �= j
δi j ∈ {0, 1} for i, j = 1, . . . ,m, i �= j

(7)

Constraint set (4) checks weak reversibility of the chemical reaction network. Con-
straint set (5) imposes the linear conjugacy requirements. Constraint sets (6) and (7)
are additional sets of conditions to ensure that the target chemical reaction network
has the correct structure. A detailed discussion of the MILP formulation can be found
in [13].

An alternative form of the objection function (i.e.
∑m

i, j=1 δi j ) over the same set of
constraints can be used to determine the sparse realization of the network.

In aMAKsystem, dense/sparseweakly reversible linearly conjugate network can be
determined by implementing the MILP algorithm and solving for Ab and the vector c.
The kinetics matrix corresponding to the target network is calculated by applying (2).
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For a PL-RDK system, the same algorithm can be employed only that the computation
of the target Kirchhoff matrix is given as

A′
k = Ab · D (8)

where

D = diag {e} ande j =
{
cF. j , if complex j is a reactant of some reaction k
1, otherwise

It is important to note that the algorithm does not guarantee that the target network
will have the same number of complexes as the original. In order to account for this
discrepancy, a modification of the definition of a CRN is adopted, that is, a complex
is allowed to react trivially to itself. This additional condition does not affect the
determination of properties such as the deficiency and the weak reversibility of a
network.

To summarize, the main difference between the MILP algorithm, for MAK and
our extension lies in the consideration of the entries of the kinetic order matrix (or
equivalently of the T matrix) in the calculation of A′

k . However, the T matrix affects
only the values of the rate constants in the factor I ′

k of A′
k , but not the entries in the

incidence matrix factor I ′
a of Ak .

5 Results and discussion

In this section, we present five examples of PL-RDK systems to illustrate the MILP
implementation described in Sect. 4.2.2. The networks considered are taken from
[5,8,13,14]. Two of the examples are nonbranching networks accounting for trivial
and nontrivial linear conjugacy mappings. The third example considers a branching
network. The last two examples are BST models.

The algorithm was implemented using GUSEK (GLPK Under Scite Extended Kit)
[2], an open source integrated development environment which provides tools and
facilities for solving LP and MILP problems.

Example 2 We consider the chemical reaction network P defined by

P :
⎧
⎨

⎩

X1 + 2X2 → X1
2X1 + X2 → 3X2
X1 + 3X2 → X1 + X2 → 3X1 + X2

This network was considered in [13] as a MAK system in which a dense and sparse
linearly conjugate weakly reversible networks were determined through the one-step
MILP algorithm discussed in Sect. 4.2.2. Moreover, this network was also studied in
[12,20]. Network P has the corresponding molecularity matrix Y and matrix M .
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Y =
[
1 1 2 0 1 1 3
2 0 1 3 3 1 1

]

M = Y Ak =
[

0 0 −2 0 0 2 0
−3 0 2 0 −2 0 0

]
.

For the implementation of the algorithm, we endowed network P with power-law
kinetics to form a PL-RDK system. The system’s transformed kinetic order matrix T
is

T =
[
0.5 0.2 0.5 0.3
1 1 1 0.2

]

The associated SFRF of the PL-RDK system P is given by

Y A′
kψk (X) =

[
0 0 −2 0 0 2 0

−3 0 2 0 −2 0 0

]
ψk (X) .

The algorithm described in [13] with the modification described in Sect. 4.2.2 is
capable of determining either a dense or a sparse linearly conjugate weakly reversible

network. A dense realization shown in Fig. 1 was determined by considering ε = 2

3
and ui j = 20, j = 1, 2, . . . , 7 whenever i �= j . The implementation yielded

Ab =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

− 13
3 0 2

3 0 2
3 0 0

0 0 0 0 0 0 0
0 0 −2 0 0 2 0
0 0 0 0 0 0 0
2
3 0 2

3 0 − 4
3 0 0

11
3 0 2

3 0 2
3 −2 0

0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

with both c1 and c2 equal to 1. The values of the conjugacy constants imply that the
linear transformation is an identity. Since c is a trivial conjugacy vector, it follows that
matrix D is an identity. With this form of matrix D, the Kirchhoff matrix of the target
network P ′ is A′

k = Ab · D = Ab. The network structure of network P is given in
Fig. 1.

Fig. 1 A dense weakly
reversible realization that is
linearly conjugate to P
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Fig. 2 A sparse weakly
reversible realization that is
linearly conjugate to P

Example 3 In this example, we consider the same network P as in Example 2. A
sparse realization can also be generated by slightly modifying the objective function
of the MILP as described in Sect. 4.2.2. Specifying the parameters ε = 0.1 and
ui j = 20, j = 1, 2, . . . , 7 for i �= j , and considering the same T matrix T = T ′ as
in Example 2, the conjugacy constants c1 = 10 and c2 = 5 were obtained. Using (8),
the corresponding Kirchhoff matrix of the target network P was computed using (2).

A′
k =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

−9.49 0 0 0 6.32 0 0
0 0 0 0 0 0 0
0 0 −1.58 0 0 0.55 0
0 0 0 0 0 0 0
0 0 1.58 0 −6.32 0 0

9.49 0 0 0 0 −0.55 0
0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

Network P ′′ is a weakly reversible linearly conjugate network with four complexes
as presented in Fig. 2. This gives rise to the SFRF

Y A′
k�k (X) =

{−1.58x0.21 x2 + 0.55x0.31 x0.22
−9.49x0.51 x2 + 3.17x0.21 x2 − 6.32x0.51 x2

.

Example 4 Consider a kinetic system

ẋ1 = 1 − x21 − x1 + x2x3
ẋ2 = 2x1 − 2x2x3 − 2x22 + 2x23
ẋ3 = x1 − x2x3 + x22 − x23 (9)

In [14], it was determined that the kinetic realization involves the following com-
plexes:C1 = x1+x2+x3,C2 = x2+x3,C3 = x2,C4 = x3,C5 = 2x3,C6 = x2+2x3,
C7 = 2x2, C8 = 2x2 + x3, C9 = 0, C10 = x1, C11 = 2x1, C12 = x1 + x2, and

123



350 J Math Chem (2018) 56:336–357

C13 = x1 + x3. The induced network structure is shown in Fig. 3. This gives rise to

Y =
⎡

⎣
1 0 0 0 0 0 0 0 0 1 2 1 1
1 1 1 0 0 1 2 2 0 0 0 1 0
1 1 0 1 2 2 0 1 0 0 0 0 1

⎤

⎦

and M =
⎡

⎣
0 1 0 0 0 0 0 0 1 −1 −1 0 0
0 −2 0 0 2 0 −2 0 0 2 0 0 0
0 −1 0 0 −1 0 1 0 0 1 0 0 0

⎤

⎦ .

The pairing of this network with the transformed kinetic order matrix

T =
⎡

⎣
0 0 0 0 0.2 0.3
0.5 0 −1 0 0 0
1 2 0 0 0 0

⎤

⎦

yields the SFRF given below.

ẋ ′
1 = x0.52 x3 + 1 − x0.21 − x0.31

ẋ ′
2 = −2x0.52 x3 + 2x23 − 2x−1

2 + 2x0.21

ẋ ′
3 = −x0.52 x3 − x23 + x−1

2 + x0.21

Employing the algorithm with parameter values ε = 1

10
and ui j = 20 whenever

i �= j , a linearly conjugate sparse realization, as shown in Fig. 4, with conjugacy
constants c1 = c3 = 5 and c2 = 10 were determined. Solving for Ab, we have

Ab =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

0 0 0 0 0 0 0 0 0 0 0 0 0
0 −0.2 0 0 0 0 0 0 0 0.2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −0.1 0 0.1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.1 0 −0.1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −0.1 0 0.1 0 0
0 0.2 0 0 0 0 0 0 0 −0.2 0 0 0
0 0 0 0 0 0 0 0 0.1 0 −0.1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

.
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Fig. 3 A mass-action system representing the dynamics given of the kinetic system (9) with branching
structure

Fig. 4 A sparse realization
capable of generating the
kinetics of the kinetic system (9)

Using equation (8), the structure of the target system is determined and is embedded
by

A′
k =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0 0 0 0
0 −3.1623 0 0 0 0 0 0 0 0.276 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −2.5 0 0.01 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2.5 0 −0.01 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −0.1 0 0.162 0 0
0 3.1623 0 0 0 0 0 0 0 −0.276 0 0 0
0 0 0 0 0 0 0 0 0.1 0 −0.162 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

.

The resulting SFRF for the target network is

ẋ ′
1 = 3.1623x0.52 x3 + 0.2 − 0.276x0.21 − 0.324x0.31

ẋ ′
2 = −3.1623x0.52 x3 + 5x23 − 0.02x−1

2 + 0.276x0.21

ẋ ′
3 = −3.1623x0.52 x3 − 5x23 + 0.02x−1

2 + 0.276x0.21 .

For the background on Biochemical Systems Theory (BST) and the CRN represen-
tations (total and embedded) of BST models needed for the next two examples, the
reader is referred to the discussion in [1].
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Example 5 Ray et al. [17] constructed a BST model describing the biochemical net-
work of macrophages which are involved in host-pathogen interactions. The total
representation is comprised of 12 species and 27 complexes in 21 reactions which are
described below.

R1 : X10 + X6 → X10 + X6 + X1 R11 : X4 + X5 → X4 + X5 + X6
R2 : X1 → 0 R12 : X6 → 0
R3 : X11 + X6 → X11 + X6 + X2 R13 : X12 + X9 → X12 + X9 + X7
R4 : X2 → 0 R14 : X7 + X8 → X8
R5 : X1 + X2 + X7 → X1 + X2 + X7 + X3 R15 : X9 → X9 + X8
R6 : X3 → 0 R16 : X7 + X8 → X7
R7 : X3 → X3 + X4 R17 : 0 → X9
R8 : X4 → 0 R18 : X6 + X7 + X9 → X6 + X7
R9 : X4 → X4 + X5 R19 : 0 → X10
R10 : X4 + X5 → X4 R20 : 0 → X11

R21 : 0 → X12

Here, k1 = k2 = 1.73, k3 = k4 = 8.32, k5 = k6 = 0.173, k7 = k8 = 0.069,
k9 = 5.55, k10 = k11 = k12 = 2.77, k13 = k14 = 32.2, k15 = k16 = 40, k17 = k18 =
k19 = k20 = k21 = 36.7. This network was endowed with the T matrix

T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 0 0 0 0 0 0 1.19 0 0 0
0 1 0 0 0 0 0 0 0 0 0.48 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 −0.5 −0.5 0 0 0 −0.5
0 0 0 0 0 0 0 0 0 0 −0.177 1 0 0.5
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −0.645 0 0 0 0 0 0.5 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Implementation of the algorithmon the described network yielded no feasible solution.
To allow for the generation of a sparse realization, the algorithm was relaxed by the
removal of the constraints on weak reversibility. The nonweakly reversible linearly
conjugate target network obtained by setting ε to 0.1 and ui j to 20 whenever i �= j ,
described below has 18 reactions, 15 of which are also contained in the original
network. The associated kinetic rates are k1′ = 0.5471, k2′ = 8.32, k3′ = 2.631,
k4′ = 8.32, k5′ = 5.3788, k6′ = 0.069, k7′ = 0.383, k8′ = 2.77, k9′ = 2.77,
k10′ = 2.77, k11′ = 126.49, k12′ = 0.9039, k13′ = 32.928, k14′ = k40′ = k15′ = 3.67,
k16′ = 322, k17′ = 0.104, k18′ = 2.77.

Since it is the embedded representation of a BST system, which is dynamically
equivalent to it, we derive this for the original and target system and compare them in
the following. Note that since the embedded systems are derived from the total systems
by setting the independent variables constant, the linear conjugacy relationship is
maintained.
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R1
′ : X10 + X6 → X10 + X6 + X1 R10

′ : X6 → 0
R2

′ : X1 → 0 R11
′ : X12 + X9 → X12 + X9 + X7

R3
′ : X11 + X6 → X11 + X6 + X2 R12

′ : X9 → X9 + X8
R4

′ : X2 → 0 R13
′ : X6 + X7 + X9 → X6 + X7

R5
′ : X1 + X2 + X7 → X1 + X2 + X7 + X3 R14

′ : 0 → X10
R6

′ : X4 → 0 R15
′ : 0 → X11

R7
′ : X4 → X4 + X5 R16

′ : 0 → X9 + X12
R8

′ : X4 + X5 → X4 R17
′ : X7 + X8 → 0

R9
′ : X4 + X5 → X4 + X5 + X6 R18

′ : X3 → X4

The embedded representation of the original system is:

RE1 : X6 → X6 + X1 RE10 : X4 + X5 → X4
RE2 : X1 → 0 RE11 : X4 + X5 → X4 + X5 + X6
RE3 : X6 → X6 + X2 RE12 : X6 → 0
RE4 : X2 → 0 RE13 : X9 → X9 + X7
RE5 : X1 + X2 + X7 → X1 + X2 + X7 + X3 RE14 : X7 + X8 → X8
RE6 : X3 → 0 RE15 : X9 → X9 + X8
RE7 : X3 → X3 + X4 RE16 : X7 + X8 → X7
RE8 : X4 → 0 RE17 : 0 → X9
RE9 : X4 → X4 + X5 RE18 : X6 + X7 + X9 → X6 + X7

The embedded representation of the target system is:

RE1
′ : X6 → X6 + X1 RE9

′ : X4 + X5 → X4 + X5 + X6
RE2

′ : X1 → 0 RE10
′ : X6 → 0

RE3
′ : X6 → X6 + X2 RE11

′ : X9 → X9 + X7
RE4

′ : X2 → 0 RE12
′ : X9 → X9 + X8

RE5
′ : X1 + X2 + X7 → X1 + X2 + X7 + X3 RE13

′ : X6 + X7 + X9 → X6 + X7
RE6

′ : X4 → 0 RE14
′ : 0 → X9

RE7
′ : X4 → X4 + X5 RE15

′ : X7 + X8 → 0
RE8

′ : X4 + X5 → X4 RE16
′ : X3 → X4

Example 6 A summary of the characteristics of the embedded systems in Example 5
is provided in Table 3. Consider the anaerobic fermentation pathway from glucose to
ethanol, glycerol, and polysaccharide in the yeast Saccharomyces cerevisiae given in
[5], and originally described by Galazzo and Bailey [8]. The total representation of
the S-system model is given below.

The algorithm, in the absence of the weak reversibility contraints, was implemented
on the network embedded with kinetic order parameters, as shown in its T matrix.
Moreover, the kinetic rates for the 22 reactions are set as k1 = 0.5, k2 = 1.2, k3 =
0.4, k4 = 2.3, k5 = 1.5, k6 = 2, k7 = 0.7, k8 = 1.3, k9 = 3, k10 = 2.5, k11 =
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Table 3 Summary of the details of the embedded systems from Example 5

Embedded system No. of complexes/ no. of reactions Reactions in O not in T Reactions in T not in O

Original = O 21/ 8 RE6, RE7

RE14, RE16

Target = T 20/ 16 R′
E15, R

′
E16

R1 : X2 + X6 → X1 + X2 R12 : X3 + X4 + X5 + X10 → 2X5
+ X3 + X4 + X10

R2 : X1 + X5 + X7 → X2 + X5 + X7 R13 : 2X5 + X13 → X5 + X13
R3 : X1 + 2X5 + X7 → X1 + X5 + X7 R14 : 0 → X6
R4 : X2 + X5 + X8 → X3 + X5 + X8 R15 : 0 → X7
R5 : 2X2 + X5 + X8 → X2 + X5 + X8 R16 : 0 → X8
R6 : X2 + X5 + X11 → X5 + X11 R17 : 0 → X9
R7 : X2 + X5 + X11 → X2 + X11 R18 : 0 → X10
R8 : X3 + X5 + X9 + X14 → X4 + X5 + X9 + X14 R19 : 0 → X11
R9 : X3 + X5 + X9 + X14 → X3 + 2X5 + X9 + X14 R20 : 0 → X12
R10 : X3 + X4 + X5 + X12 → X4 + X5 + X12 R21 : 0 → X13
R11 : X3 + X4 + X5 + X10 → X3 + X5 + X10 R22 : 0 → X14

1.8, k12 = 2.4, k13 = 3.1, k14 = 1, k15 = 1, k16 = 1, k17 = 1, k18 = 1, k19 =
1, k20 = 1, k21 = 1, k22 = 1.

cT =

⎡

⎢⎢
⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

0 0.7464 0.7464 0 0 0 0 0 0 0 0
−0.2344 0 0 0.7318 0.7318 8.6107 0 0 0 0 0

0 0 0 0 0 0 0.6159 0.05 0.05 0 0
0 0 0 0 0 0 0 0.533 0.533 0 0
0 0.0243 0.0243 −0.3941 −0.3941 0 0.1308 −0.0822 −0.0822 1 0
1 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 −0.6088 0 0 0 0

⎤

⎥⎥
⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

With parameter values ε = 0.04 and ui j = 20, i, j = 1, 2, . . . , 31, i �= j , the target
network is determined using the MILP algorithm. The target network has 21 reactions
with reaction rates given below. Reactions 6 and 7 are replaced by X2 + X5 + X11 →
X11.
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R1
′ : X2 + X6 → X1 + X2 R11

′ : X3 + X4 + X5 + X10 → 2X5
+ X3 + X4 + X10

R2
′ : X1 + X5 + X7 → X2 + X5 + X7 R12

′ : 2X5 + X13 → X5 + X13
R3

′ : X1 + 2X5 + X7 → X1 + X5 + X7 R13
′ : 0 → X6

R4
′ : X2 + X5 + X8 → X3 + X5 + X8 R14

′ : 0 → X7
R5

′ : 2X2 + X5 + X8 → X2 + X5 + X8 R15
′ : 0 → X8

R6
′ : X2 + X5 + X11 → X11 E16

′ : 0 → X9
R7

′ : X3 + X5 + X9 + X14 → X4 + X5 + X9 + X14 R17
′ : 0 → X10

R8
′ : X3 + X5 + X9 + X14 → X3 + 2X5 + X9 + X14 R18

′ : 0 → X11
R9

′ : X3 + X4 + X5 + X12 → X4 + X5 + X12 R19
′ : 0 → X12

R10
′ : X3 + X4 + X5 + X10 → X3 + X5 + X10 R20

′ : 0 → X13
R21

′ : 0 → X14

Here, k′
1 = 0.276601, k′

2 = 16.3878, k′
3 = 15.60743, k′

4 = 16.32552, k′
5 =

30.42023, k′
6 = 1.11 × 1010, k′

7 = 2.10540, k′
8 = 13.88175, k′

9 =
19.30991, k′

10 = 13.90313, k′
11 = 52.96431, k′

12 = 60, k′
13 = 0.08, k′

14 =
k′
15 = k′

16 = k′
17 = k′

18 = k′
19 = k′

20 = k′
21 = 0.04.

The embedded representation of the original system is:

RE1 : X2 → X1 + X2 RE7 : X2 + X5 → X2
RE2 : X1 + X5 → X2 + X5 RE8 : X3 + X5 → X4 + X5
RE3 : X1 + 2X5 → X1 + X5 RE9 : X3 + X5 → X3 + 2X5
RE4 : X2 + X5 → X3 + X5 RE10 : X3 + X4 + X5 → X4 + X5
RE5 : 2X2 + X5 → X2 + X5 RE11 : X3 + X4 + X5 → X3 + X5
RE6 : X2 + X5 → X5 RE12 : X3 + X4 + X5 → 2X5 + X3 + X4

RE13 : 2X5 → X5

The embedded representation of the target system is:

RE1
′ : X2 → X1 + X2 RE7

′ : X3 + X5 → X4 + X5
RE2

′ : X1 + X5 → X2 + X5 RE8
′ : X3 + X5 → X3 + 2X5

RE3
′ : X1 + 2X5 → X1 + X5 RE9

′ : X3 + X4 + X5 → X4 + X5
RE4

′ : X2 + X5 → X3 + X5 RE10
′ : X3 + X4 + X5 → X3 + X5

RE5
′ : 2X2 + X5 → X2 + X5 RE11

′ : X3 + X4 + X5 → 2X5 + X3 + X4
RE6

′ : X2 + X5 → 0 RE12
′ : 2X5 → X5

6 Conclusion and outlook

Table 4 summarizes the characteristics of the embedded systems in Example 6. In
conclusion, we summarize our main results and outline some perspectives for further
research based on them.

Table 4 Summary of the details of the embedded systems from Example 6

Embedded system No. of complexes/ no. of reactions Reactions in O not in T Reactions in T not in O

Original = O 14/ 13 RE6, RE7

Target = T 14/ 12 R′
E6
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1. We used the T matrix description of a PL-RDK system to show that a necessary
condition for linear conjugacy between factor span surjective (PL-FSK) systems on
nonbranching CRNs is the equality T = T ′ of the T matrices of the two systems.

2. We extended the Johnston–Siegel Criterion for Linear Conjugacy fromMAK sys-
tems to PL-RDK systems satisfying the additional assumption that their T matrices
are equal.

3. We showed that the MILP algorithms of Szederkenyi [19] and Johnston et al. [13]
with just a few changes could be used to determine linear conjugates of a given
PL-RDK system under the assumption that the T matrix remains the same.

4. We provided several computational examples, including kinetic systems derived
from 2 complex BST models, for the extended algorithms.

5. The analysis by Arceo et al [1] of 15 BST case studies showed that most of the
chemical kinetic systems derived from them, especially the embedded ones, were
in PL-NDK(N ), the set of non-PL-RDK systems in PLK(N ). The concepts of
linear conjugacy of course apply to such systems, and in fact, in Examples 5 and
6, we used the linear conjugacy of the total systems (which are both PL-RDK) to
infer the linear conjugacy of the embedded systems (which are both PL-NDK). To
address the predominant case of non-RDK biochemical systems, we are extending
the methods presented here in a more general context in [3].
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