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Abstract A key advantage of rational polynomials as a quotient of two polynomials
is their automatically built-in polar representation. Rational polynomials are thus the
most suitable for describing functions with peaks, such as those in magnetic resonance
spectra (MRS). The Padé approximant is the most important of these rational polyno-
mials because of its uniqueness for the power series expansion of the given function.
Non-parametric analysis through the fast Padé transform (FPT) is a convenient initial
step for processing MRS time signals, since it can be carried out once the expansion
coefficients of the polynomials are generated from the time signal, without polynomial
rooting.We applied the FPT to synthesizedMRS time signals similar to those encoded
in vitro from breast cancer. Padé-based non-parametric envelopes generated with and
without spectra partitioning are studied. Comparisons of these total shape spectra with
the related Padé component spectra were made. Phosphocholine (PC) and phospho-
ethanolamine (PE), separated by amere 0.001 parts per million of chemical shift, were
resolved in the non-parametric partitioned envelopes. However, in the non-parametric
FPT without partitioning, a single composite smooth Lorentzian peak (PC + PE)
was generated in envelopes, with no indication whatsoever that two resonances were
present. Subsequent parametric analysis (quantification) by the FPT confirmed that PC
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completely underlies the much more abundant PE. This problem, chosen to illustrate
the usefulness in the non-parametric partitioned envelopes, has clinical implications.
Namely, PC is a cancer biomarker which thus far was not identified with in vivo MRS
using envelopes from the conventional Fourier-based (single-polynomial) processing.

Keywords Magnetic resonance spectroscopy · Breast cancer diagnostics · Mathe-
matical optimization · Fast Padé transform

Abbreviations

Ala Alanine
AR Auto-regression
ARMA Auto-regressive moving average
au Arbitrary units
β-Glc β-glucose
BW Bandwidth
Cho Choline
FFT Fast Fourier transform
FID Free induction decay
FPT Fast Padé transform
FWHM Full-widths at half-maximum
GPC Glycerophosphocholine
ICRMS Ion-cyclotron resonance mass spectrometry
Lac Lactate
MA Moving average
Met Metabolite
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
m-Ins Myoinositol
NMR Nuclear magnetic resonance
PC Phosphocholine
PE Phosphoethanolamine
ppm Parts per million
ref Reference
RMS Root mean square
SNR Signal-to-noise ratio
SNS Signal-noise separation
SRI Spectral region of interest
Tau Taurine
tCho Total choline
TSP 3-(trimethylsilyl-)3,3,2,2-tetradeutero-propionic acid
ww Wet weight
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1 Introduction

This paper focuses on the advantageous properties of rational polynomials for han-
dling functions containing resonances. Magnetic resonance spectroscopy (MRS) falls
into this latter category. The fast Padé transform (FPT) is particularly amenable for
processing MRS time signals. We presently investigate certain unexplored features
of the non-parametric FPT prior to quantification. This is applied to a clinical prob-
lem of particular saliency. Namely, we examine the possibilities to more efficiently
detect the presence of a breast cancer biomarker. We begin by briefly presenting the
conventional Fourier-based methodology for processing MRS time signals, and the
drawbacks inherent therein.

1.1 The fast Fourier transform: generator of spectra as a single polynomial

The current practice inMRS is to convert the encoded time signal or the free induction
decay (FID) curve into its spectral representation in the frequency domain by the fast
Fourier transform (FFT). The Fourier spectrum is conveyed as a single polynomial:

FFT : Fm =
N−1∑

n=0

cnexp(−2π imn/N ), 0 ≤ m ≤ N − 1. (1)

Here, the fixed mth Fourier grid frequency is 2πm/T and the set of complex-
valued time signal points is {cn}. The total signal duration or total acquisition time T
is T = Nτ , where N is the total signal length and τ is the sampling time, which is the
reciprocal of the bandwidth (BW). The variables exp(±2π imn/N ) are the undamped
sinusoids and cosinusoids (nmτ/T = nm/N ).

One of the main rationales for employing the FFT is its capability to rapidly process
signals whenever their length is of the composite form, N = 2m(m = 1, 2, 3, . . .).
Besides this computational efficiency, the other favorable property of the FFT is its
relatively steady convergence as a function of increasing signal length [1].

Notwithstanding these advantages, the FFT has a number of major drawbacks.
Firstly is its poor resolution capability which has a number of causes. One is the
lack of possibility to interpolate. Namely, the FFT envelope spectrum is generated
from the pre-assigned frequencies whose minimal separation is predetermined by the
total acquisition time, T . Since any truthful interpolation is precluded, attempting to
improve resolution requires the use of longer T . However, since the FID rapidly decays
over time, mainly noise is recorded at longer T . This is especially problematic at low
magnetic field strength B0 such as in clinical scanners (1.5 and 3 T). Thus, attempts
to enhance resolution with the FFT, unavoidably lead to deterioration of signal-noise
ratio (SNR) [1]. Another reason for the poor resolution of the FFT is the absence of
any genuine extrapolation capabilities. In other words, there is no possibility to predict
information beyond the final encoded signal point, cN−1. Attempts to circumvent this
latter obstacle consist of using the periodic extensions of the time signals. This is
unsatisfactory since time signals encoded in MRS are not periodic. Contrary to the
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common misconception, zero-filling cannot augment resolution since the original N
data points in the encoded time signal already contain the entire information. Further
contributing to poor resolution and SNR is the linearity of the FFT.

The FFT is solely a non-parametric estimator. No further information beyond the
total shape spectrum can be generated via Fourier analysis alone. No trustworthy
information whatsoever can be ascertained concerning the number and abundance of
the components underlying the envelope spectrum. Common practice has often been
to subsequently perform post-processing via fitting. However, this practice is highly
speculative and entirely non-unique. Consequently, inaccuracies abound in the reports
of metabolite concentrations based upon this approach for handling MRS data [2].

Overall, the inadequacy of processing MRS data by the FFT is related to its mathe-
matical structure as a single polynomial. Its inadequacy in representing functions with
peaks is primarily due to the lack of polar structure [2,3].

1.2 The fast Padé transform: generator of spectra via the unique ratio of two
polynomials

In contrast to the FFT, the fast Padé transform, FPT, produces a spectrum as a non-
linear response function via the unique ratio of two polynomials [2]. This spectrum is
PK /QK in the diagonal form, with K being the polynomial degree or model order.

The exact response function is given by the infinite-rank Green function G(z−1),
which is defined by the Maclaurin series:

G(z−1) =
∞∑

n=0

cnz
−n, z = eiτω(Exact Green series), (2)

where the time signal points {cn} are the expansion coefficients. Whenever only a
finite number N (N < ∞) of signal points {cn} is available, as is always the case in
reality, a truncated response function is given. This is the finite-rank Green function
or the Green polynomial GN (z−1):

GN (z−1) =
N−1∑

n=0

cnz
−n (Exact Green polynomial). (3)

Alternatively, as per discrete time series nomenclature, these infinite- andfinite-rank
Green functions are called the infinite and finite z−transform, respectively [2].

1.2.1 The two variants the FPT

With respect to the complex harmonic variable z, there are two variants of the FPT,
defined inside (|z| < 1) and outside (|z| > 1) the unit circle for the causal and
anti-causal representations, respectively. These are acronymed as FPT(+) and FPT(−),
respectively, and are both frequency-dependent polynomial quotients extracted from
the common exact Green polynomial (3) in powers of z−1 [2,4]. Thus, in the FPT(±),
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the input response function GN (z−1) from (3) is approximated by the Green-Padé
functions G±

K (z±1), as the diagonal rational polynomials in the harmonic variables
z±1:

FPT(−) : GN (z−1) ≈ G−
K (z−1) = P−

K (z−1)

Q−
K (z−1)

≡
∑K

r=0 p
−
r z

−r

∑K
s=0q

−
r z−r

, (4)

FPT(+) : GN (z−1) ≈ G(+)
K (z) = P+

K (z)

Q+
K (z)

≡
∑K

r=1 p
+
r z

r

∑K
s=0q

+
r zr

. (5)

For the same inputGN (z−1), the two equivalent Green-Padé representations (4) and
(5) for spectra P−

K (z−1)/Q−
K (z−1) and P+

K (z)/Q+
K (z) are the mentioned anti-causal

and causal response functions in the FPT(−) and FPT(+), respectively. The expansion
coefficients of the numerators P±

K (z±1) and denominators Q±
K (z±1) are

{
p±
r

}
and{

q±
s

}
, respectively. They are extracted uniquely from the time signal points {cn} by

solving a single system of linear equations from definitions (4) and (5).
Since it operates with the reciprocal variable 1/z, the FPT(−) is an accelerator of

convergence of the input slowly converging expansion in powers of z−1 [1,2]. On the
other hand, the FPT(+) works directly with variable z and, thus, performs analytical
continuation of the same input development (3) which is in powers of z−1. The FPT(+)

is more difficult algorithmically, as it requires induction of convergence into divergent
series [2,5]. For that reason, to achieve convergence, the FPT(+) generally needs more
signal points than the FPT(−).

Internal cross-validation is provided by the FPT(+) and FPT(−) against each other
within the same Padé methodology, but using different algorithms [2,4,6]. Once con-
vergence has been achieved by both of these two variants of the FPT, the final joint
output list is produced from the spectral parameters that are generated by the FPT(+)

and the FPT(−). This self-contained checking requires no further comparison with any
other signal processor for verification.

1.2.2 High resolution of the FPT

The two approximations of the Green function GN (z−1) are provided by the expres-
sions for G(−)

K (z−1) and G(+)
K (z) from (4) and (5), respectively. From (2), the input

Green function G(z−1) is convergent outside the unit circle (|z| > 1), and divergent
inside the unit circle (|z| < 1). For the FPT(−), using (2) and truncating the entire N -
point set {cn} to its first half, would generate the Padé spectrum P−

K (z−1)/Q−
K (z−1)

by (4) which is twice more informative than the truncated version GN/2(z−1) of
GN (z−1). Namely, the quotient P−

K (z−1)/Q−
K (z−1) includes the information from

the complete non-truncated set {cn} (0 ≤ n ≤ N − 1). This is because expanding
P−
K (z−1)/Q−

K (z−1) in its Maclaurin series (in powers of z−1) would exactly recon-
struct the entire input N time signal points {cn} (0 ≤ n ≤ N − 1). This feature
of rational Padé polynomials reveals why the FPT(−) can attain superior resolution
compared to the FFT by using the same number of time signal points. This has been
demonstrated exhaustively with both synthesized FIDs [4,7–15] and in vivo encoded
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MRS time signals [1,4,6,16–18]. Conversely, the FPT(−) attains the same resolution
as that of the FFT by using fewer signal points, e.g. N/2 or so [6,16].

1.2.2.1 Extrapolation capabilities of the FPT As noted, with the FFT, there is a sharp
cut-off of the time signal at the endof T . In contradistinction, via the unique polynomial
quotient PK /QK , extracted directly from the investigated time signal, the FPT can
extrapolate beyond the acquisition time T . Namely, through the FPT, it is possible to
utilize the first available half (M = N/2) of the input data. The extracted polynomial
quotient PK /QK will have an expansion whose first 2M terms coincide with the
first N terms of the input data from (3). In this way, the FPT will have predicted the
missing second half (> N/2) of the expansion coefficients in the truncated inputGreen
polynomial of length M = N/2. This extrapolation improves resolution, since the N
terms of a convergent power series (2) are more accurate than its truncation to N/2.
Moreover, the total length of the FID reconstructed by the FPT(±) and denoted by
{c±

n } need not stop at N (i.e. n in {c±
n } can run through n = 0, 1, . . . , N −1, N , N +

1, . . .). Additional data points for n ≥ N in the full set {c±
n } relative to {cn} are the

Padé-based extrapolations that would have been available had the encoding continued
after cN−1 beyond the total acquisition time T , i.e. at times nτ > T [19]. Hence, the
predictive feature of the FPT(±).

1.2.2.2 Interpolation capabilities of the FPT In the FPT, the fixed Fourier mesh
2πmτ/T (m = 0, 1, 2, . . .) is not required. As soon as the Padé polynomials PK
and QK are extracted from the input time signal {cn}, the non-parametric envelopes
can be generated by the FPT. The total shape spectrum PK /QK can be computed at
any sweep frequency and these do not need to correspond to any preassigned grid.
Thus, unlike the FFT, there is no conundrum in the FPT between the need to increase
T in order to enhance resolution with worsening SNR. In other words, Padé-based res-
olution is not limited by the total acquisition time, T . Through the FPT, interpolation
can be carried out relying exclusively upon the actual features of the encoded time
signal, as opposed to zero-padding in the FFT. Interpolation is also a benefit of the
extrapolation features of the FPT, namely, that a finer grid becomes available based
on the time signal data predicted for t > T [19].

1.2.2.3 Noise suppression via numerator and denominator polynomials in the FPT
Further enhancing its high resolution properties is the non-linearity of the FPT, as a
ratio of two polynomials, whereby noise is suppressed and SNR augmented [1,2,4].
Namely, with the numerator (PK ) and denominator (QK ) polynomials, there is can-
cellation in the Padé spectrum (PK /QK ). A similar amount of noise or noise-like
content is present in PK and QK because these two polynomials are correlated (they
are constrained by the relationGN QK = PK ). This noise is imported from {cn} by the
expansion coefficients of PK and QK . Even if the input time signal {cn} is a noiseless,
synthesized FID, there will necessarily be some spurious (noise-like) parts of the solu-
tion of an over-determined system of linear equations for the expansion coefficients of
QK . As to PK , its polynomial coefficients are available from an analytical expression.
This expression is given in terms of {cn} and the already extracted expansion coeffi-
cients of QK , as is clear fromGN QK = PK . Regarding noise cancellation in the Padé
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spectrum PK /QK , it should be recalled that, generally, when e.g. two observables A
and B are experimentally measured, or generated through numerical computations
with finite precision, the errors in A and B are considerably canceled in their ratio
A/B [18].

1.2.3 The non-parametric FPT

Non-parametric analysis via the FPT(±) is automatically carried out as soon as the
expansion coefficients

{
p±
r

}
and

{
q±
s

}
of the polynomials P±

K and Q±
K , respec-

tively, are extracted using only the input time signal {cn}. The results are the
non-parametrically generated Padé total shape spectra or envelopes, P±

K /Q±
K . If the

input time signal {cn} were completely free of dephasing, the real and imaginary parts
Re(P±

K /Q±
K ) and Im(P±

K /Q±
K ) would be purely absorptive and dispersive spectral

lineshapes, respectively. In practice, this idealization would only be feasible with syn-
thesized time signals having the input real amplitudes (i.e. those with zero-valued
phases of the amplitudes of the fundamental harmonics). On the other hand, for
encoded MRS time signals, the phases of the amplitudes of such FIDs are predom-
inantly non-zero due to various sources, including a delay between the end of the
excitation pulse and the beginning of the encoding. As a consequence, for encoded
FIDs, absorption and dispersion lineshapes are inevitably mixed in Re(P±

K /Q±
K ) as

well as in Im(P±
K /Q±

K ).

1.2.4 The parametric FPT (quantification)

Via a single numerical procedure consisting of polynomial rooting, the parametric
variants FPT(±) provide quantification of MRS time signal data. The roots of the
characteristic equations of the numerator P±

K and the denominator Q±
K polynomials

generate the zeros and poles of the Padé spectra P±
K /Q±

K . Since the rational functions
P±
K /Q±

K are meromorphic functions whose only singularities are poles, the roots of
P±
K and Q±

K are the zeros and poles of P±
K /Q±

K , respectively.
The roots z±1

k of equation Q±
K (z±1) = 0 yield the fundamental frequencies ω±

k ,
where ω±

k = ∓(i/τ) ln(z±1
k ). The corresponding amplitudes d±

k in the FPT(±) are
automatically provided by the analytical expressions for the Cauchy residues of
P±
K (z±1)/Q±

K (z±1) taken at the kth pole z±1 = z±1
k = z±1

k,Q :

d±
k = P±

K (z±1
k,Q)

Q±′
K (z±1

k,Q)
, Q±′

K (z±1) = dQ±
K (z±1)

dz±1 , Q±
K (z±1

k,Q) = 0, Q±′
K (z±1

k,Q) 	= 0. (6)

Once the spectral frequencies and amplitudes become reconstructed, the paramet-
ric total shape spectra P±

K /Q±
K can be computed from either the Heaviside partial

fractions:

P±
K

Q±
K

= p±
0

q±
0

+
K∑

k=1

d±
k z±1

z±1 − z±1
k,Q

, (7)
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or from the equivalent canonical representations:

P±
K

Q±
K

= p±
K

q±
K

K∏

k=1

z±1 − z±1
k,P

z±1 − z±1
k,Q

, P±
K (z±1

k,P ) = 0. (8)

Coincidences z±1
k,Q = z±1

k,P of poles z±1
k,Q and zeros z±1

k,P lead to pole–zero cancel-
lation, as especially evident in (8). Such an occurrence results in a smaller degree
K of the polynomials in P±

K /Q±
K , and this effectively reduces the dimensionality of

the over-determined problem. Pole–zero coincidences yield zero-valued amplitudes
(d±

k = 0), as per (6), because in this particular case with z±1
k,Q = z±1

k,P , we have

P±
K (z±1

k,Q) = 0. Resonances with pole–zero coincidences (or near-zero coincidences)
and the concomitant zero (or near zero) amplitudes are markedly unstable relative
to any perturbation. They are classified as spurious or unphysical. This particular
coupling of poles and zeros in spurious resonances is known as the phenomenon or
Froissart doublets [2]. Their elimination from the FPT(±) through pole–zero cancella-
tion in spectra constitutes the powerful concept of Padé-based signal-noise separation
(SNS) [4].

1.2.5 Stabilization of Padé-reconstructed envelopes

With a gradual augmentation of the degree of the Padé polynomials, the computation
is carried out, such that the reconstructed spectra fluctuate until stabilization occurs.
At that stage, all the terms in the Padé numerator and denominator polynomials cancel
insofar as the computation is continued after the stabilized value of degree K in the
FPT(±) has been reached. Such a stabilization occurs in both the non-parametric and
parametric generation of the envelopes P±

K /Q±
K . The converged non-parametric and

parametric Padé envelopes fully coincide with each other.
We proceed now to link the briefly outlined considerations about signal processing

to a well-defined clinical problem in MRS, for which the highlighted features are
very relevant. Specifically, by way of an illustration within the FPT(+), we want to
demonstrate how to non-parametrically and, hence, most effectively visually identify
the presence of a molecular marker associated with breast cancer.

1.3 Phosphocholine: a breast cancer biomarker heretofore undetected with in
vivo MRS

1.3.1 Importance and challenges in breast cancer diagnostics

Breast cancer is the most frequently diagnosed malignancy and the leading cause of
cancer-related deaths among women worldwide [20,21]. Timely breast cancer detec-
tion is vital and has been consistently associated with improved survival [20,22,23].
Screening aimed at early breast cancer detection is currently carried out via morpho-
logic imaging techniques: mammography as the mainstay and magnetic resonance
imaging (MRI) with its very high sensitivity applied among women at increased risk.
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However, these anatomic imaging methods, MRI in particular, are associated with a
large percentage of false positive findings, i.e. they have poor specificity. False posi-
tive findings can engender various deleterious consequences [20,24]. Hence, the need
to go beyond anatomy, to assess the metabolic features of breast and other tissues
has been emphasized: namely, to detect the molecular changes reflecting the cancer
process [25], termed the “hallmarks of cancer” [26].

1.3.1.1 In vivo MRS for detecting breast cancer: reliance upon total choline By
revealing the metabolic features of breast tissue, both MRS (single-voxels) and its
multi-voxel counterpart termed magnetic resonance spectroscopic imaging (MRSI)
have been shown to enhance the specificity ofMRI in distinguishing breast cancer from
non-malignant breast lesions [27–33]. Nearly all the in vivo MRS studies aimed at
characterizing breast lesion have focused upon the peak of total choline (tCho), located
at chemical shift∼3.2 parts per million (ppm). In the spectral envelope, the tCho peak,
considered to reflect cellmembrane turnover, has therefore been linked to breast cancer
[28]. However, for the several hundred breast lesions evaluated in investigations using
clinical (1.5 or 3T) scanners with FFT-based data processing, the diagnostic accuracy
of MRS based upon estimates of tCho is insufficient (pooled estimates of sensitiv-
ity ranging from 71 to 88%, and specificity from 76 to 88% [27,29,30,33], with the
likelihood of publication bias considered to lower the actual diagnostic accuracy even
further [29,30,33]). Namely, on the basis of lack of detected tCho, breast cancers,
especially if small, were sometimes missed and benign lesions such as fibroadenomas
were sometimes misdiagnosed as malignant, if tCho was detected.

In vivo MRS studies have been carried out on breast lesions using higher field
(4 or 7T) scanners [34–37], for which it was anticipated that a smaller voxel size
could be used, since SNR increases with magnetic field strength. However, tCho was
still not detected in several breast cancers. In a number of benign breast lesions and
in normal breast, tCho was reported as being present [35]. With the regard to the
latter, further challenges arise in the normal breast during lactation. Namely, tCho is
generally detected during that time, but breast cancer can occur during lactation and
when it does, it is usually detected late [38]. Overall, it is seen that many different
cut-points have been used for tCho in attempts to distinguish cancerous breast lesions
from benign breast tissue. On the basis of tCho assessments through in vivo MRS,
there are no reliable standards for adequately identifying breast cancer.

1.3.2 Components of tCho detected via in vitro MRS: Implications for breast cancer
diagnostics

By in vitro MRS, much stronger static magnetic fields can be utilized, and the meth-
ods of analytical chemistry can also be applied to the excised specimens. Accordingly,
through in vitro nuclear magnetic resonance (NMR), much richer metabolic informa-
tion has been gleaned when employed to extracted specimens from the breast [39].
It was shown in these NMR studies of breast tissue that within tCho there are three
components that aid in identifying breast cancer as opposed to benign or normal breast
tissue. Namely, these are free choline (Cho) resonating at∼3.21 ppm, phosphocholine
(PC) at ∼3.22 ppm and glycerophosphocholine (GPC) at ∼3.23 ppm [40]. A “GPC to
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PC switch” occurs with malignant transformation in the breast. This switch is related
to over-expression of choline kinase, the enzyme responsible for PC synthesis [40–
42]. Two pathways, phosphorylation and oxidation of Cho, are favored with cancerous
transformation of mammary cells [40]. Consequently, PC levels rise, whereas choline-
derived ether lipids are diminished. High concentrations of PC and an elevated PC to
GPC concentration ratio are interpreted as indications of malignant transformation of
the breast [42,43]. More abundant PC may also reflect a loss of the tumor suppres-
sor p53 function [44]. Elevated PC is not only an indicator of breast cancer, but it is
reportedly associated with other malignancies, as well [45,46], and is thus considered
a cancer biomarker [43].

Not only are the resonant frequencies of PC, GPC and free Cho very close to one
another, but according to the NMR data from Ref. [39], phosphoethanolamine (PE)
resonating at ∼3.22 ppm is also identified in extracted breast specimens. Phospho-
ethanolamine is not a cancer biomarker. Due to its abundance, the PE peak completely
obfuscates the underlying PC resonance which is also located at ∼3.22 ppm in total
shape spectra. Through the FFT, the overlapping resonances contained within the tCho
peak cannot be resolved or quantified.

1.3.3 Non-parametric FPT compared to the FFT applied to the synthesized data
associated with breast

InRefs. [12–15], detailed comparisonsweremadebetween the performanceof the non-
parametric FPT and the FFT on the controlled, i.e. synthesized noise-corrupted data
(σ = 0.0289 RMS, where RMS is the root-mean-square of the noise-free MRS time
signal) associated with normal breast, fibroadenoma and breast cancer reminiscent
of those encoded in vitro in Ref. [39]. The FPT consistently showed a far superior
resolution capability, generating converged total shape spectra at a partial signal length
(NP = 1700), whereas even at the full signal length (N = 2048) , the FFT could
produce only rough, uninformative envelopes. On the other hand, through the standard
non-parametric computation of the absorption total shape spectrum in the FPT, the
prominent peak centered at ∼3.22 ppm was a pure Lorentzian, with no indication
whatsoever that a PC resonance was underlying PE. It was only through the parametric
FPT that this was ascertained.

1.3.4 The parametric FPT: PC detected and quantified for the synthesized data
related to breast

The parametric FPT(−) was initially applied to synthesized noise-free MRS time sig-
nals with input parameters akin to those reconstructed from in vitroMRS data encoded
for normal breast, fibroadenoma and breast cancer [39]. Both PC and PE, as well as
the seven other input resonances were all exactly reconstructed by the FPT(−) after
convergence was attained [47,48] for all three types of breast tissue. Subsequent con-
trolled studies with simulated FIDs were performed with the addition of various levels
of noise for normal breast, fibroadenoma and breast cancer [12–15]. At much higher
noise levels (σ = 2.89RMS), the parametric FPT(+) was particularly effective in iden-
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tifying and quantifying PC, PE and the other seven resonances, despite the presence
of far more abundant spurious resonances [15].

1.4 Further exploration of the capabilities of the non-parametric FPT: the aim
of the present study

Thus far, in all the cited studies applying the FPT to process MRS data associated with
breast cancer, it was exclusively through parametric processing that the PC resonance
could be identified. The complex–valued total shape spectrum was generated directly
through PK /QK , with the absorption spectrum being Re(PK /QK ). As stated, from
an inspection of the absorption spectrum provided by the non-parametric FPT via the
ratio of two polynomials PK /QK , the smooth, symmetric Lorentzian at ∼3.22 ppm,
gave no hint whatsoever that there might be a PC peak beneath the far more abundant
PE resonance [14].

It has been noted that a key advantage of rational polynomials as a quotient
of two polynomials is their automatically built-in polar representation [3]. Conse-
quently, rational polynomials are the most appropriate for describing functions with
peaks, such as MR spectra. Among the rational polynomials, the Padé approximant
is the most important because of its uniqueness for the power series expansion of
the given function. The leading role of the Padé approximant is well-recognized
in a wide range of disciplines incorporating spectral analysis. Among these are:
mathematics (theory of approximations, extrapolations, series resummation), physics
(quantum-mechanical eigenvalue problems), chemistry (ion-cyclotron resonancemass
spectrometry ICRMS), in NMR, engineering (response functions) and technology
(water leakage). In our research, we have used the Padé approximant in physics (par-
ticle collisions and spectroscopy) [49,50] and chemistry (ICRMS, NMR) [51–53].
Subsequently, we brought this multi-purpose method of rational polynomials to MRS
with a focus on early cancer diagnostics, where we incorporated the term “fast” to
indicate a quasi-linear scaling of the computational complexity with the total signal
length N , using the Euclid algorithm for extracting the numerator and denominator
polynomials.

Non-parametric analysis through the FPT(±) is a convenient initial step for pro-
cessing MRS time signals, since, as noted, it can be carried out once the expansion
coefficients

{
p±
r

}
and

{
q±
s

}
of the polynomials P±

K and Q±
K , respectively, are gen-

erated from the input time signal {cn}. No polynomial rooting is required. As the
spectral parameters have not yet been reconstructed, quantification is obviously not
performed. The question arises as to whether more information could be gleaned via
the non-parametric FPT applied to MRS time signals than has heretofore been the
case. Namely, would it be possible to further explore the additional degree of free-
dom via the two polynomials of the FPT relative to the single polynomial of the FFT
vis-à-vis reconstruction of spectral envelopes? To this end, we will compute absorp-
tive Re(P+

K /Q+
K ) and dispersive Im(P+

K /Q+
K ) spectra directly and also from their

corresponding partitioned analytical expressions to be given in Sect. 2.
From a practical standpoint, we would inquire as to whether a clear indication of

the presence of underlying resonances in some composite spectral structures could
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be ascertained from these alternative, non-parametric representations. In the present
study, the first on this particular sub-topic, we will carry out this investigation with a
focus on the spectral region between 3.2 and 3.3 ppm for synthesized, noise-free MRS
time signals associated with breast cancer according to the in vitro data of Ref. [39].
Thus, in concert with this general strategic inquiry, the direct clinical relevance will
be addressed.

2 Methods

2.1 The MRS time signal based on in vitro encoding from cancerous breast: The
input data

TheMRS time signal was synthesized as the sum of complex-valued attenuated expo-
nentials, according to the quantum-mechanical form:

cn =
K∑

k=1

dkz
n
k , zk = eiτωk , 0 ≤ n ≤ N − 1, Im(ωk) > 0, ωk = 2πνk, (9)

where as before, N denotes the total signal length. These theoretical data are based
upon encoded FIDs from cancerous breast, as reported in Ref. [39]. Every signal
point cn from the presently used formula (9) is the sum of K = 9 damped complex
exponentials exp (inτωk) (1 ≤ k ≤ 9). In general, the amplitudes dk are complex.
The angular frequenciesωk are also complex, such that there is an exponential decrease
in cn over time nτ (n = 0, 1, 2, . . . , N − 1) .

The corresponding MRS time signals of length N = 65536 in Ref. [39] were
encoded at a Larmor frequency (νL ) of 600 MHz. The static magnetic field strength
was B0 ≈ 14.1T . The bandwidth,BW,was 6MHz,where the inverse of this bandwidth
is the sampling time τ . Herein, within the FPT(+) we use only a quarter of the above,
i.e. N/4 = 16384 of the total signal length. Two of the nine resonances reconstructed
in Ref. [39] were located in the frequency band between 1.3 and 1.5 ppm. These
were lactate (Lac) at 1.332 ppm and alanine (Ala) at 1.471 ppm. The remaining seven
resonances from the same Ref. [39] were in the frequency band between 3.2 to 3.3
ppm. Included therein were PC and PE, respectively resonating at 3.220 and 3.221
ppm, i.e. separated by a mere 0.001 ppm.

With two exceptions, the median metabolite concentrations were based upon 14
samples taken from twelve patients (2 samples were taken from two of the patients).
The two exceptions were for β-glucose (β-Glc) and myoinositol (m-Ins), for which
metabolite concentrations were available for only 6 and 9 samples, respectively [39].

These median concentrations were used to derive the values of |dk | employed for
the breast cancer input data, with |dk | = 2Cmet/Cref (Cref = 0.05 mM/g). The mean
metabolite concentration is denoted by Cmet. Among these, the largest concentration is
that of taurine (Tau). The internal reference (ref) was TSP (3-(trimethylsilyl-) 3,3,2,2-
tetradeutero-propionic acid), a molecule which is not present in the tissue. Thus,
|dk | = Cmet/(25μM/g) of wet weight (ww). Since the T ∗

2 relaxation times were not
reported in Ref. [39], we set the line widths (full-widths at half-maximum, FWHM)
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as 0.0008 ppm. The peaks are all Lorentzian, consistent with the time signal from (9).
The phases ϕk (1 ≤ k ≤ 9) from generally complex-valued dk were all set to zero,
such that all the input amplitudes are real, dk = |dk |.

Specifically, the string of input metabolites and their fundamental parameters are
as follows:

Metk = {Lac,Ala,Cho,PC,PE,GPC, β-Glc,Tau,m-Ins},
Re(νk) = {1.332, 1.471, 3.212, 3.220, 3.221, 3.232, 3.251, 3.273, 3.281} ppm,

Im(νk) = 0.0008 ppm (1 ≤ k ≤ 9)
dk = |dk | = {0.325, 0.032, 0.004, 0.012, 0.090, 0.009, 0.029, 0.112, 0.036} au,

⎫
⎪⎪⎬

⎪⎪⎭

(10)

where the acronymaudenotes arbitrary units.As stated, the FPT(+) is presently applied
to the noise-free MRS time signal.

2.2 Two ways of computing the envelopes

The envelopes will be computed first, as common practice, by directly feeding the
set of the extracted complex numbers P+

K /Q+
K into the computer to generate the

pure absorption, Re(P+
K /Q+

K ) and pure dispersion, Im(P+
K /Q+

K ), spectral lineshapes.
Alternatively, the same absorption and dispersion envelopes can be computed from
the explicit expressions for the real and imaginary parts, respectively, of the complex
spectrum P+

K /Q+
K .

2.2.1 Why partitioning of the total shape spectra?

The mentioned explicit expressions for Re(P+
K /Q+

K ) and Im(P+
K /Q+

K ) taken “by
hand” from P+

K /Q+
K constitute the presently introduced “partitioned envelopes”. The

motivation for this is, in fact, suggested by the polynomial quotient formof the complex
spectrum P+

K /Q+
K in the FPT(+). Namely, this latter Padé spectrum is, already by its

definition, subdivided into two compartments: the numerator P+
K and denominator

Q+
K polynomials. Polynomials P+

K and Q+
K can respectively produce only zeros and

poles in the Padé complete spectrum given by the meromorphic complex function
P+
K /Q+

K . Part P+
K is recognized as the moving average (MA), whereas part Q+

K is the
auto-regression (AR). The spectrum P+

K /Q+
K of the combined AR and MA processes

represents the ARMA (auto-regressive moving average) model whose z−transform is
equivalent to the FPT(+) [2,4]. In fact, the expansion coefficients {q+

s } (1 ≤ s ≤ K ) of
polynomial Q+

K coincide with the backward prediction coefficients in the AR process.
Spectra generated by using P+

K alone are also known as an “All-zero model”.
Similarly, spectra built by employing only Q+

K go under the name of an “All-pole
model”. In other words, the reciprocal 1/Q+

K would contain only poles and these are
determined by the roots of the characteristic or secular equation Q+

K = 0. Thus, if the
quotient P+

K /Q+
K is alternatively viewed as the product [P+

K ] · [1/Q+
K ], it would be

possible to determine, and then visualize separate contributions to Re(P+
K /Q+

K ) and
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Im(P+
K /Q+

K ) stemming from the various products of the real and imaginary parts of
P+
K (MA) and [1/Q+

K ] (AR).
Such separate products follow automatically from the general formula for the ratio

of any two complex numbers z1 and z2 as z1/z2 = z1z∗2/ |z2|2, where the star super-
script indicates the operation of complex conjugation. Using this straightforward rule
for the case of P+

K /Q+
K immediately gives thementioned separate products in the form

of the below-listed quantities A+
K , B+

K ,C+
K and D+

K for the partitioned envelopes:

P+
K

Q+
K

= Re(P+
K /Q+

K ) + iIm(P+
K /Q+

K ), (11)

with i = √−1 being imaginary unity,

Re(P+
K /Q+

K ) = A+
K + B+

K , Im(P+
K /Q+

K ) = C+
K + D+

K , (12)

where,

A+
K = [Re(P+

K )][Re(Q+
K )]/ ∣∣Q+

K

∣∣2 = [Re(P+
K )]Re(1/Q+

K ), (13)

B+
K = [Im(P+

K )][Im(Q+
K )]/ ∣∣Q+

K

∣∣2 = [Im(P+
K )]Im(1/Q+

K ), (14)

and

C+
K = −[Re(P+

K )][Im(Q+
K )]/ ∣∣Q+

K

∣∣2 = −[Re(P+
K )]Im(1/Q+

K ), (15)

D+
K = [Im(P+

K )][Re(Q+
K )]/ ∣∣Q+

K

∣∣2 = [Im(P+
K )]Re(1/Q+

K ). (16)

The part 1/
∣∣Q+

K

∣∣2 in A+
K , B+

K , C
+
K and D+

K is the so-called power spectrum in
an “All pole model”. When P+

K and Q+
K are divided and the resulting numbers

directly programmed as P+
K /Q+

K , the computer would give the complete contribu-
tions Re(P+

K /Q+
K ) and Im(P+

K /Q+
K ) as in (11), without the specifics (12)–(16). This

standard procedure includes all the intact interference effects, with no insight what-
soever into the separate influence of the constituent parts of P+

K /Q+
K . However, when

Re(P+
K /Q+

K ) and Im(P+
K /Q+

K ) are identified by (12)–(16), prior to any numerical
computations, the possibility emerges to peer into the inner structure of the overall
envelope P+

K /Q+
K .

This inner structure appears in the partitioned envelopes A+
K , B

+
K , C

+
K and D+

K that
are built from the pertinent products of the two spectra (at a time) in the MA and AR
sequences. Thus, the absorption Re(P+

K /Q+
K ) of the complete spectrum P+

K /Q+
K is

the sum A+
K + B+

K of the absorption-absorption (A+
K ) and dispersion-dispersion (B+

K )

products via A+
K = [Re(P+

K )]Re(1/Q+
K ) and B+

K = [Im(P
+
K )]Im(1/Q+

K ), as per (13)
and (14), respectively.Analogously, the dispersion Im(P+

K /Q+
K ) of P+

K /Q+
K is the sum

C+
K + D+

K of the cross-products (or mixed products) through absorptive-dispersive
C+
K = −[Re(P+

K )]Im(1/Q+
K ) and dispersive-absorptive D+

K = [Im(P+
K )]Re(1/Q+

K )

lineshapes according to (15) and (16), respectively.
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The described compartmentalization of Re(P+
K /Q+

K ) and Im(P+
K /Q+

K ) is, in fact, a
redistribution of the full interference between the twopartitioned envelopes. Therefore,
a smaller interference effect in A+

K and B+
K , when these are viewed separately, could

unfold certain hidden resonances in compound peaks. A similar remark also applies to
C+
K and D+

K taken as individual, partitioned envelopes. As a check of the correctness of
the expressions (11)–(16), the spectra Re(P+

K /Q+
K ) computed directly or via A+

K +B+
K

must coincidewith eachother. The sameought to hold true also for a direct computation
of Im(P+

K /Q+
K ) and by way of the sum C+

K + D+
K .

For single, isolated resonances either way of these two computations would yield
mere superpositions of peaks with their minimal interference due to lack of overlap.
By contrast, overlapped resonances may interact strongly depending on the extent of
overlap. This would result in enhanced interference which is, in turn, able to mask
the individual lineshapes of the closely spaced resonances. It is in this case that the
partitioned envelopes are expected to be especially useful in disentangling the hidden
spectral content of the compound peaks. We emphasize that such an anticipation is
based on the reduced interference in A+

K and B+
K relative to A+

K + B+
K , with a similar

outcome in C+
K and D+

K with respect to C+
K + D+

K . In other words, interference reduc-
tion by spectra partitioning should lead to a narrower localization of the overlapped
resonances with potential dips or “windows” in between the adjacent, tightly packed
peaks. This framework is tested in the Results Section, with a particular focus on
the possibility of using the partitioned envelopes to visualize the separate PC and PE
resonances. Recall that the PC peak is buried in the PC + PE compound resonance
obtained by conventionally computed, non-partitioned envelopes.

3 Results

All the reconstructions are performed using a partial signal length NP = 6000 (K =
3000) of full signal length N = 16384, which itself is only a quarter of its encoded
counterpart for Ref. [39]. Figure 1 displays the partitioned and non-partitioned absorp-
tion envelopes computed non-parametrically in the FPT(+). Along the abscissae of
each panel are the input chemical shifts in the spectral region between 3.205 and
3.290 ppm. These are symbolized by circles that are mainly open and shown in black.
The two exceptions with the filled green and magenta circles relate to PC and PE,
respectively. The colored filling is shown only when the PC and PE lineshapes are
peaked practically at their correct locations 3.220 and 3.221 ppm, respectively. This
is the case in panels (a) and (b) where PC and PE are separately visualized, although
both circles are not simultaneously filled. Therein, the PC and PE peaks are centered
almost precisely at 3.220 and 3.221 ppm only on panels (a) and (b), respectively. For
this reason, panels (a) and (b) each have only one filled circle.

On panel (a), the PE peak is slightly shifted to the left from the associated input fun-
damental frequency 3.221 ppm and its circle if left unfilled. Similarly, on panel (b), the
PC peak is slightly shifted to the right of its exact location at 3.220 ppm, and the open
circle is seen therein. However, on panel (c), both circles for PC and PE are filled, since
therein the entire partitioned spectra from panels (a) and (b) are displayed together.
Panel (a) shows the partitioned envelope spectrum for A+

K = [
Re

(
P+
K

)]
Re

(
1/Q+

K

)
.
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Absorption Envelopes in FPT(+) : Non−Parametric Visualisation of the Hidden Phosphocholine, PC

Fig. 1 The partitioned and non-partitioned absorption envelopes computed non-parametrically in the
FPT(+) by using the noiseless FID, sampled at N = 16384 and truncated at NP = 6000 (K = 3000).
Along the abscissae of each panel are the input chemical shifts. The definitions of the displayed spectra A+

K
and B+

K are on the titles of the panels (a) and (b), respectively. Panel (c) repeats the top 2 panels alongside

A+
K + B+

K . Panel (d) shows 2 identical curves for Re
(
P+
K /Q+

K

)
computed with (black) and without (blue)

partitioning. For a discussion and the meaning of color-coding, see the main text. (color online)
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Therein, PC and PE are clearly distinguished as two separate peaks of fairly compa-
rable heights, and the five other resonances are also identified. Panel (b) exhibits the
partitioned envelope spectrum for B+

K = [
Im

(
P+
K

)]
Im

(
1/Q+

K

)
. Once again, PC and

PE are clearly seen to be two separate, adjacent peaks, with PE being more prominent
than PC.

Taurine andβ-Glc showmuch smaller peak heights in the partitioned envelope spec-
trum for B+

K compared to that for A+
K . These latter two partitioned envelope spectra are

displayed jointly in panel (c), with the same color coding as in panels (a) and (b): green
for A+

K andmagenta for B+
K . In addition, on panel (c) is the summed envelope A+

K +B+
K ,

indicated in black, where only a single compound peak PC + PE can be identified in
the interval [3.220, 3.221] ppm. It can be seen on panel (d), that the complete absorp-
tion envelope: A+

K + B+
K = {[

Re
(
P+
K

)]
Re

(
1/Q+

K

)} + {[
Im

(
P+
K

)]
Im

(
1/Q+

K

)}
is

indistinguishable from the related non-partitioned absorption envelope Re
(
P+
K /Q+

K

)
,

both of which display a symmetrical smooth single Lorentzian peak in the range
[3.220, 3.221] ppm, without any indication whatsoever that more than one peak may
be present therein.

The most notable feature of the absorption spectra displayed in Fig. 1 is that the PC
and PE peaks appearing in both partitions A+

K and B+
K are so well delineated that the

dips (or “windows”) between them descend all the way down to the background or
baseline of zero-values ordinates. On panel (a), it appears as if A+

K needs to push PE a
bit upstream in order to place PC at its correct position, 3.220 ppm. Likewise, on panel
(b), it is seen that B+

K acts as if it were necessary to push PC a bit downstream so that
PE could be centered at the corresponding correct location, 3.221 ppm. These slight
dislocations in PE or PC within A+

K or B+
K on panels (a) or (b) are due to the minimal

distance of merely 0.001 ppm between the input chemical shifts of 3.220 and 3.221
ppm of PC and PE, respectively. Moreover, this incremental separation of 0.001 ppm
between the chemical shifts, or equivalently, Re(νk), of PC and PE is smaller than the
sum 0.0016 ppm of their associated individual values of Im(νk). By reference to the
input parameters in (10), all the resonances have the same exceedingly small values for
Im(νk) that are Im(νk) = 0.0008 ppm. Given that the imaginary frequency Im(νk) is
the measure of the breadth of an absorptive Lorentzian resonance, it is understandable
why the individuality of PC and PE is masked under the combined PC and PE peak
on panel (d) of Fig. 1.

When it comes to the background baseline, panel (c) is the most illustrative not only
regardingPCandPE, but alsowith respect to the remainingfive resonances (Cho,GPC,
β-Glc, Tau andm-Ins) throughout the displayed spectral region of interest (SRI),which
is 3.205–3.290 ppm. Namely, on panel (c), the black curve for A+

K + B+
K just like the

blue curve for the non-partitioned counterpart Re(P+
K /Q+

K ) on panel (d), is entirely
positive-definite, and exhibits a perfectly smooth background immersed into the near-
zero level of the ordinate. Such an ideal smoothness of the black curve on panel (c)
comes after mutual exact compensations of the background undulations present in
the green and magenta curves for A+

K and B+
K . The partitioned envelopes A+

K and
B+
K display rolling backgrounds that are seen on panel (c) as being almost perfectly

symmetrical around the black curve for A+
K +B+

K . Hence, thementioned compensation
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Dispersion Envelopes in FPT(+) : Non−Parametric Visualisation of the Hidden Phosphocholine, PC

Fig. 2 The partitioned and non-partitioned dispersion envelopes computed non-parametrically in the
FPT(+) by using the noiseless FID, sampled at N = 16384 and truncated to NP = 6000 (K = 3000):
Along the abscissae of each panel are the input chemical shifts. The definitions of the displayed spectra
C+
K and for D+

K are on the titles of the panels (a) and (b), respectively. Panel (c) repeats the top 2 panels

alongside C+
K + D+

K . Panel (d) shows 2 identical curves for Im Re
(
P+
K /Q+

K

)
computed with (black) and

without (blue) partitioning. For a discussion and the meaning of color-coding, see the main text. (color
online)
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of whichever deviations A+
K and B+

K might individually have with respect to the non-
rolling background in A+

K + B+
K .

The reason for which the rolling backgrounds appear in the green and magenta
curves on panel (c) is in only a partial suppression of spurious resonances in A+

K
and B+

K , respectively. Conversely, a full suppression of all the spurious resonances is
behind the totally smooth background in the black curve for A+

K + B+
K on panel (c).

When Re(P+
K /Q+

K ) is conceived as A+
K + B+

K , suppression of spurious resonances
is necessarily only partial in either A+

K or B+
K . Suppression of spurious resonances

is mediated by pole–zero cancellations, as discussed with the parametric fast Padé
transform. Quantification to explicitly determine poles and zeros is not performed in
the non-parametric processing whose results are depicted on Fig. 1. Nevertheless, the
information on the implicit presence of spurious poles and zeros is still felt by P+

K and
Q+

K in the envelope P+
K /Q+

K through the expansion coefficients {p+
r } and {q+

s }. In
other words, regardless of whether or not we quantify via P+

K = 0 and Q+
K = 0 to find

the explicit zeros z+k,P and z+k,Q , respectively, the nearly equal amount of spuriousness

in P+
K and Q+

K will cancel out in the Padé spectral ratio P+
K /Q+

K .
The corresponding partitioned and non-partitioned dispersion envelopes are pre-

sented in Fig. 2, with the input chemical shift parameters along the abscissae.
The partitioned dispersion envelope for C+

K is shown in panel (a), where C+
K =

− [
Re

(
P+
K

)]
Im

(
1/Q+

K

)
. Both PC and PE are identified in the chemical shift

region [3.220, 3.221] ppm. The five other resonances are of quite low amplitude,
but can still be visualized. Panel (b) displays the partitioned dispersion envelope for
D+

K = [
Im

(
P+
K

)]
Re

(
1/Q+

K

)
. Here also, PC and PE are clearly separated from

each other. The negative dispersion component of Tau is also very prominent in
panel (b). The smaller downward pointed branches or lobes are also seen for β-
Glc and GPC. The partitioned dispersion spectra for C+

K and D+
K are juxtaposed

in panel (c), with the same color-coding as previously: green and magenta, respec-
tively, alongside the black colored complete dispersion spectrum for C+

K + D+
K .

For C+
K + D+

K , there is a prominent negative lobe at 3.22 ppm, but no indica-
tion at all that there are actually two resonances, i.e. PC and PE at that chemical
shift site. It can be seen in panel (d) that the complete dispersion spectrum for
C+
K + D+

K = {[
Im

(
P+
K

)]
Re

(
1/Q+

K

)} − {[
Re

(
P+
K

)]
Im

(
1/Q+

K

)}
is identical to

that for the non-partitioned absorption envelope Im
(
P+
K /Q+

K

)
.

Figure 3 zooms into the critical frequency window [3.215, 3.225] ppm containing
the overlapping PC and PE resonances. The left column shows absorption spectra and
the right column presents the dispersion spectra. In panel (a) is the partitioned absorp-
tion envelope spectrum for A+

K . Resonance PC at 3.220 ppm is a filled green circle.
Panel (b) exhibits the partitioned absorption envelope spectrum for B+

K . Resonance
PE at 3.221 ppm is a filled magenta circle. In panel (c), the two partitioned envelope
spectra are jointly shown (green for A+

K , magenta for B+
K ). Therein, both PC and PE

are filled circles. In panel (d), the two partitioned envelope spectra are displayed (green
for A+

K , magenta for B+
K ) alongside the complete envelope (A+

K + B+
K ), indicated in

black. Here, both PC and PE are filled circles. Panel (e) is the partitioned dispersion
envelope spectrum for C+

K . The PC peak at 3.220 ppm is a filled green circle. Panel
(f) exhibits the partitioned dispersion envelope spectrum for D+

K , where PE at 3.221
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Absorption & Dispersion in FPT(+): Non−Parametric Visualisation of the Hidden Phosphocholine, PC

Fig. 3 The partitioned and non-partitioned absorption (left) and dispersion (right) envelopes computed
non-parametrically in the FPT(+): A zoomed view of Figs. 1 and 2 into the critical frequency window
[3.215,3.225] ppm containing the overlapping PC and PE resonances. Along the abscissae of each panel
are the input chemical shifts of PC and PE. The definitions of the displayed spectra A+

K , B+
K , C+

K and D+
K

are on the titles of the panels (a), (b), (e), (f), respectively. Panels (c) and (g) join together the top 2 panels.
Panels (d) and (h) show the partitioned spectra alongside A+

K + B+
K andC+

K + D+
K , respectively. For a

discussion and the meaning of color-coding, see the main text. (color online)
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Absorption & Dispersion in FPT(+) : Non−Parametric Visualisation of the Hidden Phosphocholine, PC

Fig. 4 Non-parametrically reconstructed total shape spectra and the parametric processing (quantification)
for the component shape spectra in the FPT(+) using the noiseless FID sampled at N = 16384 and truncated
at NP = 6000 (K = 3000). The input chemical shift parameters are along the abscissae.Left column absorp-
tion spectra, right column dispersion spectra. The component absorption and dispersion spectra generated
via the parametric FPT(+) in panels (a) and (e), respectively. Panels (b) and (f), respectively: partitioned
envelope spectra A+

K (absorption) and C+
K (dispersion). Panels (c) and (g): the partitioned envelope spectra

B+
K (absorption) and D+

K (dispersion), respectively. Non-partitioned absorption and dispersion envelopes
are shown in panels (d) and (h), respectively. (color online)
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ppm is a filled magenta circle. In panel (g), the two partitioned envelope spectra are
plotted together (green forC+

K , magenta for D+
K ). Both PC and PE are filled circles. In

panel (h), the two partitioned envelope spectra are presented together (green for C+
K ,

magenta for D+
K ) alongside the complete envelope (C+

K + D+
K ), indicated in black.

Both PC and PE are filled circles.
A comparison between the non-parametrically reconstructed total shape spectra and

the component shape spectra (parametric estimation) is provided in Fig. 4.Here too, the
input chemical shift parameters are given along the abscissae.On the left columnare the
various absorption spectra and on the right column are the related dispersion spectra.
The component spectra, as reconstructed by the parametric FPT(+), are displayed in
panels (a) and (e). These are the standard absorption Re(P+

K /Q+
K )k and dispersion

Im(P+
K /Q+

K )k component spectra without partitioning, where the subscript k refers to
the kth resonance. In the absorption component spectra, it is clearly seen that at 3.220
ppm, there is a PC peak which completely underlies the much larger and wider PE at
3.221 ppm. Two separate, bi-lobed peaks, one the larger PE and the other the smaller
PC are also well delineated on the dispersion component spectrum of panel (e). In
panels (b) and (f), respectively, juxtaposed are the partitioned envelope spectra for A+

K
(absorption) andC+

K (dispersion), wherein PE and PC are resolved. This is also the case
in panels (c) and (g) in the partitioned envelope spectra for the B+

K (absorption) and D+
K

(dispersion), where PE and PC are readily identified. Each of the panels (d) and (h) for
absorptive Re(P+

K /Q+
K ) and dispersive Im(P+

K /Q+
K ) envelopes, respectively, shows

two indistinguishable curves with (black) and without (blue) partitioning. Therein, for
either way of computations, there is no hint of any kind that PC and PE are present at
3.22 ppm, i.e. they appear as unresolved.

4 Discussion and conclusions

The present paper is the first time that the non-parametric FPT has been applied in
the partitioned manner with the aim of identifying underlying components, without
quantification. The most striking finding is that indeed such analysis is not only fruit-
ful, but also trustworthy. The latter was confirmed by subsequent comparison with
the component shape spectra computed via Re(P+

K /Q+
K )k and Im(P+

K /Q+
K )k after

quantification (parametric processing).
The key is to examine the interference mechanism which is present in A+

K and in
B+
K for the partitioned absorption envelopes and in C+

K and in D+
K for the partitioned

dispersion envelopes. Thus, in all four of these cases, PC and PEwere clearly resolved.
However, with the sums A+

K + B+
K for the real part, Re

(
P+
K /Q+

K

)
, or C+

K + D+
K for

the imaginary part, Im
(
P+
K /Q+

K

)
, these effects were washed out. Thus, the absorption

and dispersion spectra for A+
K + B+

K and C+
K + D+

K are identical, respectively to the
standard, non-partitioned total shape spectra Re

(
P+
K /Q+

K

)
and Im

(
P+
K /Q+

K

)
, and

neither of these two representations resolved PC and PE.
The findings in this paper have clear fundamental implications. At the same time,

their practical importance, which also motivated this investigation, is emphasized,
especially for the specific clinical problem under study. Namely, it would now appear
to be feasible to first apply the non-parametric FPT, explicitly extracting the analytical
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expressions for the real and imaginary parts of complex PK /QK by way of (15)–
(16). This would be a convenient initial “screening” step to assess whether or not
the particular cancer biomarker PC is present. Further, the quantification procedure
through the parametric FPT (which reconstructs all the metabolites from the SRI),
might have a special focus upon those cases in which PC was identified firstly by non-
parametric processing. Such an approach has heretofore been entirely untenable with
the conventional, low resolution, single polynomial FFT, which does not quantify
at all. Rather, as outlined, because of the insufficient accuracy of Fourier-based in
vivo MRS with clinical (1.5 or 3T) MR scanners for identifying breast cancers and
distinguishing these from benign breast lesions, investigations have been made using
higher field scanners. Not only were these attempts sub-optimal, but the enormous
costs [54] would preclude such an approach for widespread applications in breast
cancer diagnostics, including and especially screening/surveillance. Rather, on the
basis of the present study, it can now be recommended that this step-wise, multi-
faceted Padé-based approach be tested in vivo, aimed at validation on clinical MR
scanners for breast cancer diagnostics, and beyond.
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6. Dž Belkić, K. Belkić, In vivo magnetic resonance spectroscopy by the fast Padé transform. Phys. Med.
Biol. 51, 1049–1075 (2006)
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9. Dž Belkić, K. Belkić, Mathematical modeling applied to an NMR problem in ovarian cancer detection.
J. Math. Chem 43, 395–425 (2008)
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11. Dž Belkić, K. Belkić, The fast Padé transform for noisy magnetic resonance spectroscopic data from
the prostate. J. Math. Chem. 54, 707–764 (2016)

123

http://creativecommons.org/licenses/by/4.0/


J Math Chem (2017) 55:1698–1723 1721
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14. Dž Belkić, K. Belkić, Proof-of-the-concept study on mathematically optimized magnetic resonance
spectroscopy for breast cancer diagnostics. Technol. Cancer Res. Treat. 14, 277–297 (2015)
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