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Abstract Extensions have been developed, of several variants of the stride of two
cyclic reduction method. The extensions refer to quasi-tridiagonal linear equation
systems involving two additional nonzero elements in the first and last rows of the
equation matrix, adjacent to the main three diagonals. Equations of this kind arise, for
example, in the simulations of biosensors or other electrochemical systems by solving
relevant ordinary or partial differential equations by finite difference methods, when
boundary derivatives are approximated by one-sided, multipoint finite differences.
The correctness of the algorithms developed has been verified using example matrices
with pseudo-random coefficients, under conditions of both sequential and parallel
execution.
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1 Introduction

In this paper we describe a specialised cyclic reduction (CR) algorithm for numerically
solving linear algebraic equation systems:

Ax = r, (1)
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in which x = [x1, . . . , xn] is an n-dimensional vector of unknowns, r = [r1, . . . , rn]
is an n-dimensional known vector of real numbers, and A is a real n×n known square
matrix having the following quasi-tridiagonal structure:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1 d1 e1 . . . 0

a2 b2 c2
...

a3 b3 c3
. . .

. . .
. . .

an−2 bn−2 cn−2
... an−1 bn−1 cn−1
0 · · · fn gn an bn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Matrix A differs from a purely tridiagonal matrix by additional, possibly non-zero,
elements d1, e1, fn and gn , present in the first and last rows of the matrix. A typical
situation requiring the solution of linear systems with matrix (2) arises from finite dif-
ferencediscretisations of two-point boundaryvalueproblems for secondorder ordinary
differential equations (ODEs), or from analogous discretisations of initial-boundary
value problems for (typically parabolic) one-dimensional partial differential equations
(PDEs) (for an overview of finite difference ODE/PDE solving, see, for example, Jain
[1], Smith [2], and Ascher et al. [3]). In particular, the present work is motivated
by finite-difference simulations occurring in electroanalytical chemistry [4,5]. In such
applications, coefficients ai , bi and ci for i = 2, . . . , n−1 result from the replacement
of spatial (second and first) solution derivatives in the ODEs or PDEs by standard or
compact three-point central approximations. Coefficients in the first and last rows ofA
result, in turn, fromone-sided three- or four-point, standard or compact approximations
to the first spatial derivatives occurring in boundary conditions. The latter discretisa-
tions are perhaps not very popular, sincemany authors use just two-point (one-sided or
central) approximations to the boundary derivatives, which lead to purely tridiagonal
matrices. However, there is evidence that the use of the multipoint one-sided finite
difference approximations improves the accuracy of the solutions (see, in particular,
the literature pertinent to electrochemical digital simulations: [4,6–10]). Numerical
algorithms for solving Eq. (1) should therefore be of interest.

Three-point one-sided approximations to boundary derivatives usually have a the-
oretical accuracy order consistent with that of the three-point central derivatives in the
ODEs or PDEs. In such a case coefficients e1 and fn are just zeroes. However, the use
of more points for approximating derivatives at the boundaries may give still better
results [4,6–10]. Furthermore, we shall see that it is relatively easy to incorporate the
non-zero e1 and fn into the algorithm described below, whereas the consideration of
more non-zero coefficients in the first and last rows of A, would be more complicated.
For these reasons we admit a possibility of e1 �= 0 and fn �= 0, in addition to d1 �= 0
and gn �= 0.

In former works [4,6–10] Eq. (1) was solved on serial computers by modifications
of the classical Thomas algorithm [11], that is by such or other version of the serial
LU factorization approach. For an overview of the literature related to the sequential
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algorithms of solving equations similar to Eq. (1), the Reader is referred to Bieniasz
[12,13]. In contrast to those serial algorithms, the numerical algorithm to be described
here is an adaptation of the CR method for tridiagonal matrices, first described by
Hockney [14] and Buzbee et al. [15] for block-tridiagonal matrices, and attributed to
Golub and Hockney. This choice is dictated by the growing importance of parallel
and vector computers for scientific and technical computing. Fine-grained parallelism
is inherent in CR, which has prompted many authors to implement this method on a
number of parallel and vector computers, or computer architectures (reviews of the
method are available in [16–19]; a few example implementations of CR for scalar tridi-
agonal and block-tridiagonal systems are described in Refs. [20–38]). We shall focus
on the most frequently considered, “stride of 2” version of CR (using the terminology
of Evans [39]).

Apart from being used for scalar- and block-tridiagonal matrices, CR has been
extended to periodic (cyclic) tridiagonalmatrices [14,40–43],which present a different
class of quasi-tridiagonal matrices, compared to matrix (2).

Of course, matrix A given by Eq. (2) can be viewed as a special case of banded
matrices, for which a variety of parallel algorithms is available (see, for example, Refs.
[44,45]), possibly utilising the concept of CR in some way. In particular, extensions of
CR to pentadiagonal and general banded matrices are known [46,47]. However, since
many of the elements on the external diagonals in A are zeroes, the algorithms for
general banded matrices are likely to be unnecessarily complex, and therefore compu-
tationally more expensive than the specially dedicated algorithm described here (the
dependence of the arithmetic complexity of banded solvers on the matrix bandwidth is
documented [48]). A similar unwanted overhead can be expected from algorithms that
might be developed for other generalisations of matrix A (for example for bordered
matrices).

The CR algorithms and computer codes will be developed assuming that (as is
often in practice) we need to solve a sequence of Eqs. (1) sharing the matrix A, but
differing by vectors r. We shall also assume that n can be an arbitrary positive integer,
in contrast to the frequently adopted simplification that n or n − 1 is a positive integer
power of 2. Of course, for small n = 1, 2, 3 some of the extra coefficients d1, e1, fn
and gn must be zeroes, and/or matrix A is no longer (quasi-)tridiagonal.

2 The CR algorithms

We shall begin the algorithms presentation with a brief reminder (in Sect. 2.1) of
the “stride of 2” CR (hereafter called just CR, for brevity) for a purely tridiagonal
matrix. Then, in Sect. 2.2 we shall provide details of the method extensions to the
quasi-tridiagonal matrix A.

2.1 The tridiagonal system

The basic idea of CR is to recursively reduce a tridiagonal system to a smaller system
possessing an analogous matrix structure, by eliminating every second equation and
every second variable. A complete set of operations for performing such a reduction,
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for a particular system of size n, will be called a “reduction step”. The above idea
is the easiest to explain in the case when n is sufficiently large, and equation index
i sufficiently bigger than 1 and smaller than n, so that the following subset of three
adjacent equations is contained in the original tridiagonal system:

ai−1xi−2 + bi−1xi−1 + ci−1xi = ri−1
ai xi−1 + bi xi + ci xi+1 = ri

ai+1xi + bi+1xi+1 + ci+1xi+2 = ri+1

⎫⎬
⎭ . (3)

In order to eliminate the i − 1st and i + 1st equations, and retain the i th equation, the
followingoperations are performed.The i−1st equation ismultiplied by pi = ai/bi−1,
the i + 1st equation is multiplied by qi = ci/bi+1, and the resulting equations are
subtracted from the i th equation, which then becomes:

a′
i xi−2 + b′

i xi + c′
i xi+2 = r ′

i−1. (4)

In Eq. (4) primes mark coefficients of the new, reduced system, so that a′
i = −piai−1,

b′
i = bi − pi ci−1 − qiai+1, and c′

i = −qi ci+1 are new tridiagonal matrix coefficients,
and r ′

i = ri − piri−1 − qiri+1 is the element of the new right-hand side vector. Note
that not only the i − 1st and i + 1st equations are eliminated, but also the unknowns
xi−1 and xi+1.

The above basic idea needs to be completed with additional refinements (a)–(f)
listed below.

(a) First of all one has to decide which of the equations are to be eliminated, and
which retained in a given reduction step. This gives rise to (at least) two variants
of the reduction step. In the “odd–even” variant odd equations are eliminated, and
even equations are retained. Conversely, in the “even–odd” variant, even equations
are eliminated and odd equations are retained. An issue usually overlooked is that
the identification of the odd/even equations may depend on the direction of counting
them. Although a forward counting (from 1 to n) is common, a backward counting
(from n to 1) may give a different selection of the equations, since n can be either odd
or even. A systematic application of the forward or backward counting in successive
reduction steps may also result in a somewhat different evolution of the related and
subsequent calculations, and in slightly different machine error accumulation. Any
sequential numbering of the equations does not, however, imply that the equations
must be transformed sequentially in some order. In fact, operations performed on
every second equation are entirely independent and can be performed in parallel.

(b) Initial and final equations in a sufficiently large system have to be handled
somewhat differently from Eq. (3), in a given reduction step. Their treatment is also
different in the odd–even and even–odd reduction step variants. Consider, in particular,
the first two equations (the handling of the last two equations is symmetrical). If the first
equation is to be eliminated, we subtract it from the second equation, after multiplying
it by p2, just as we do it in the case of the i − 1st equation in the subsystem (3). The
only difference is that we formally take a1 = 0. If the first equation is to be retained,
we subtract from it the second equation multiplied by q1. Coefficient p1 is not needed
in this case.
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(c) Modifications of the procedure described for Eq. (3) are needed also in the case
of small systems (n = 1, 2, 3, 4). We omit these details here, but the Reader will find
all the relevant formulae in Tables 1 and 2 (see Sect. 2.2).

(d) Depending on how the reduction steps are applied to the equation systems,
we can also distinguish “ordinary CR” and “parallel CR” (the name “parallel CR” is
predominantly used, see Hockney and Jesshope [17], but an alternative name, “cyclic
elimination”, is also encountered; see, for example, Gopalan and Murthy [30]).

In ordinaryCR, after obtaining a first reduced system (having about n/2 unknowns),
an analogous reduction step variant is applied to it, giving a second reduced system
(having about n/4 unknowns), to which an analogous reduction step variant is again
applied, etc. The reduction steps are continued until one finally obtains a single equa-
tion with a single unknown. A sequence of the so-called “back-substitution” steps is
then recursively performed. In the first back-substitution step the last reduced system
(with the single unknown) is solved, and the result is substituted into the equations
that were eliminated while constructing the last reduced system. In every next back-
substitution step a next portion of the unknowns is determined (this refers to the
unknowns that were formerly eliminated from a given reduced system), based on the
already determined unknowns, and substituted into the equations that were eliminated
while constructing the given reduced system. These back-substitution steps are con-
tinued until all unknowns are determined. In particular, if the unknowns xi−2, xi and
xi+2 (and the remaining unknowns of the first reduced system containing Eq. (4) are
already determined, then the back-substitution gives from Eq. (3):

xi−1 = (ri−1 − ai−1xi−2 − ci−1xi )/bi−1, (5)

xi+1 = (ri+1 − ai+1xi − ci+1xi+2)/bi+1, (6)

and so on, for other unknowns that were eliminated from the first reduced system. As
the determinations of the individual unknowns in a given back-substitution step are
all independent of each other, they can be performed in parallel.

Parallel CR consists in applying simultaneously the odd–even and even–odd reduc-
tion steps. In this way, after the first reduction step one obtains two reduced systems
(instead of only one in ordinary CR), having altogether n unknowns. After the sec-
ond step one obtains four systems, still having jointly n unknowns. After a sufficient
number of steps one obtains n independent equations with one unknown each. The
equations are then solved, which ends the calculations. Thus, parallel CR amounts
to the diagonalization of the matrix A. The back-substitution steps are not needed in
parallel CR. Note that the word “parallel” in the name of this method does not neces-
sarily mean a parallel execution; all calculations can be done either sequentially or in
parallel.

(e) From the programming point of view, single instances of data structures con-
taining matrix A and vectors r and x are sufficient in ordinary CR, since all reduction
and back-substitution steps can be realised by gradually transforming the initial A and
r. It is convenient to introduce the stride s and half-stride h = s/2. The first reduction
step operates on (physical locations of) matrix rows and vector elements separated
by s = 2, and s and h are doubled with every next reduction step. Later, they are
halved with every back-substitution step. Hence, if Eqs. (3–6) are to be interpreted
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Table 1 Formulae pertinent to the reduction steps of matrix A

Case Subcase Coefficients pi , qi Matrix transformations

i = 1 = n – – A′ = A

i = 1 < n n − s < i ≤ n − h pi unused a′
i = 0

qi = ci /bi+h b′
i = bi − qi ai+h

c′i = 0

d ′
1 = 0

e′1 = 0

n − s − h < i ≤ n − s pi unused a′
i = 0

qi = ci /bi+h b′
i = bi − qi ai+h

c′i = d1 − qi ci+h

d ′
1 = 0

e′1 = 0

i = n − s − h pi = e1/bn a′
i = 0

qi = ci−pi gn
bi+h

b′
i = bi − qi ai+h − pi fn

c′i = d1 − qi ci+h − pi an

d ′
1 = 0

e′1 = 0

i < n − s − h qi = ci /bi+h a′
i = 0

pi = e1/bi+s+h b′
i = bi − qi ai+h

c′i = d1 − qi ci+h − pi ai+s+h

d ′
1 = −pi ci+s+h

e′1 = 0

i = n > 1 1 + h ≤ i < 1 + s pi = ai /bi−h a′
i = 0

qi unused b′
i = bi − pi ci−h

c′i = 0

f ′
n = 0

g′
n = 0

1 + s ≤ i < 1 + s + h pi = ai /bi−h a′
i = gn − pi ai−h

qi unused b′
i = bi − pi ci−h

c′i = 0

f ′
n = 0

g′
n = 0

i = 1 + s + h qi = fn/b1 a′
i = gn − pi ai−h − qi c1

pi = ai−qi d1
bi−h

b′
i = bi − pi ci−h − qi e1

c′i = 0

f ′
n = 0

g′
n = 0

i > 1 + s + h qi = fn/bi−s−h a′
i = gn − pi ai−h − qi ci−s−h

pi = ai /bi−h b′
i = bi − pi ci−h

c′i = 0
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Table 1 continued

Case Subcase Coefficients pi , qi Matrix transformations

f ′
n = 0

g′
n = −qi ai−s−h

1 < i < n i = 1 + h = n − h pi = ai bn−ci gn
b1bn−d1gn

a′
i = 0

qi = b1ci−d1ai
b1bn−d1gn

b′
i = bi − pi c1 − qi an

c′i = 0

1 + h = i < n − h pi = ai /b1 a′
i = 0

qi = ci−pi d1
bi+h

b′
i = bi − pi c1 − qi ai+h

c′i = −pi e1 − qi ci+h

i < 1 + h ∧ n − s < i ≤ n − h qi = ci /bi+h a′
i = 0

pi unused b′
i = bi − qi ai+h

c′i = 0

i < 1 + h ∧ i ≤ n − s qi = ci /bi+h a′
i = 0

pi unused b′
i = bi − qi ai+h

c′i = −qi ci+h

1 + h < i = n − h qi = ci /bi+h a′
i = −pi ai−h − qi fn

pi = ai−qi gn
bi−h

b′
i = bi − pi ci−h − qi ai+h

c′i = 0

1 + h ≤ i < 1 + s ∧ i > n − h pi = ai /bi−h a′
i = 0

qi unused b′
i = bi − pi ci−h

c′i = 0

i ≥ 1 + s ∧ i > n − h pi = ai /bi−h a′
i = −pi ai−h

qi unused b′
i = bi − pi ci−h

c′i = 0

1 + h < i < n − h pi = ai /bi−h a′
i = −pi ai−h

qi = ci /bi+h b′
i = bi − pi ci−h − qi ai+h

c′i = −qi ci+h

Other (parallel CR only) – a′
i = ai

b′
i = bi

c′i = ci

as formulae involving physical locations of the original matrix/vector elements, then
indices i −1, i +1, i −2, and i +2, have to be replaced by i −h, i +h, i − s, and i + s,
respectively. The primed quantities A′ or r’ then refer to the same data structures that
contain A or r. In the case of parallel CR two instances of data structures containing
A and r appear necessary. If A (or r) is contained in one instance during a particular
reduction step, then A′ (or r’) can be placed into the second instance. In the next
reduction step A′ (or r’) plays the role of A (or r), and A (or r) plays the role of A′
(or r’).
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Table 2 Formulae pertinent to the reduction steps of vector r

Case Subcase Vector transformations

i = 1 = n – r′ = r

i = 1 < n n − s < i ≤ n − h r ′
i = ri − qi ri+h

n − s − h < i ≤ n − s r ′
i = ri − qi ri+h

i ≤ n − s − h r ′
i = ri − qi ri+h − pi ri+s+h

i = n > 1 1 + h ≤ i < 1 + s r ′
i = ri − pi ri−h

1 + s ≤ i < 1 + s + h r ′
i = ri − pi ri−h

i ≥ 1 + s + h r ′
i = ri − pi ri−h − qi ri−s−h

1 < i < n i < 1 + h ∧ i ≤ n − h r ′
i = ri − qi ri+h

i ≥ 1 + h ∧ i > n − h r ′
i = ri − pi ri−h

1 + h ≤ i ≤ n − h r ′
i = ri − pi ri−h − qi ri+h

Other (parallel CR only) r ′
i = ri

(f) In order to allow formultiple right-hand sides r (assumed in Sect. 1) it is desirable
to implement all reduction steps formatrixA in a one separate procedure. All reduction
steps for vector r, and back-substitution steps or determinations of x should then be
contained in a second separate procedure. Coefficients pi and qi (for all reduction
steps) are computed by the first procedure, and must be stored and supplied to the
second procedure. The total number of these coefficients is relatively small in the case
of ordinary CR, but can be quite large for parallel CR.

2.2 The quasi-tridiagonal system

The main complication arising from nonzero coefficients d1, e1, fn and gn is that they
cause the first and last equations to involve four unknowns, instead of only two in
the purely tridiagonal case. Therefore, if the first equation is to be retained in a given
reduction step, it is not sufficient to subtract from it the second equation multiplied by
a relevant coefficient q1, as was done for the purely tridiagonal system (see point (b)
in Sect. 2.1). It is also necessary to subtract the fourth equation multiplied by another
coefficient (we shall use for this purpose the coefficient p1, unused in the purely
tridiagonal case), in order to eliminate one more unknown from the retained equation
(n is assumed sufficiently large, the cases of small n require a separate treatment). The
coefficients p1 and q1 are thus calculated and used differently in the quasi-tridiagonal
system case. After one reduction step, coefficient e′

1 in the retained first equation will
vanish. After two reduction steps coefficient d ′

1 will also vanish, and the first equation
will become purely tridiagonal. A symmetrical situation arises when retaining the nth
equation: an additional subtraction of the n − 3rd equation multiplied by an extra
coefficient qn is necessary.

The above complication seems relatively easy to handle, but in fact it generates a
number of new cases and sub-cases in the formulae for reduction and back-substitution
steps, that were not needed for the purely tridiagonal system. Tables 1, 2 and 3 provide
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Table 3 Formulae pertinent to the calculations of vector x in back-substitution steps (for ordinary CR only)

Case Subcase Vector transformations

n − h < i < 1 + h – xi = ri
bi

i = 1 < n n − s < i ≤ n − h xi = ri−ci xi+h
bi

i = n − s xi = bn (ri−ci xi+h )−d1(rn−an xi+h )
bi bn−d1gn

i < n − s xi = ri−d1ri+s/bi+s−(ci−d1ai+s/bi+s )xi+h−(e1−d1ci+s/bi+s )xi+s+h
bi

i = n > 1 1 + h ≤ i < 1 + s xi = ri−ai xi−h
bi

i = 1 + s xi = b1(ri−ai xi−h )−gn (r1−c1xi−h )
b1bi−d1gn

i > 1 + s xi = ri−gnri−s/bi−s−(ai−gnci−s/bi−s )xi−h−( fn−gnai−s/bi−s )xi−s−h
bi

1 < i < n i < 1 + h xi = ri−ci xi+h
bi

i > n − h xi = ri−ai xi−h
bi

1 + h ≤ i ≤ n − h xi = ri−ai xi−h−ci xi+h
bi

a summary of all necessary cases and subcases, and related formulae, pertinent to the
reduction steps of matrix A (Table 1), reduction steps of vector r (Table 2), and back-
substitution steps for ordinary CR (Table 3). The formulae fromTables 1, 2 and 3 apply
to physical locations of the original elements of A, r, and x, with index i numbering
all the matrix rows and vector elements (from 1 to n). Stride s, and half-stride h
depend on the reduction or back-substitution step, as was already noted (see point (e)
in Sect. 2.1). The various cases and subcases usually correspond to the various total
numbers of equations contained in a particular reduced system, and various positions
of the i th equation of the initial system (1), inside this reduced system.

3 Numerical experiments

In order to test the CR algorithms described in Sect. 2, a large number of example
systems (1) was solved. In a majority of these examples elements ai , bi , ci , d1, e1,
fn and gn , were initially filled with nonzero pseudo-random real numbers having a
uniform distribution over a certain interval (u, v) ⊂ R. The sums of absolute values of
the off-diagonal elements were subsequently added to, or subtracted from the diagonal
elements bi , depending onwhether bi was positive or negative, respectively. In thisway
diagonally dominant matrices A were obtained. The diagonal dominance is known to
be important for the numerical stability of the CRmethod for purely tridiagonal scalar
matrices [49]. In order to have exactly known solution vectors xexact, vectors xexact of
n elements were prepared by filling them with with pseudo-random numbers. Vectors
r were then computed as

r = Axexact. (7)

After solving Eq. (1) errors ex of the solutions were calculated as ex = x − xexact.
The above tests using pseudo-random matrices A allow one to more comprehen-

sively verify the correctness of the CR algorithms than any tests involving matrices
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resulting from finite-difference ODE or PDE discretizations. The latter matrices often
show regular patterns of coefficients (many coefficients may even be identical), so that
the effects of individual coefficients may not be noticed in the tests.

All previously mentioned mutations of CR have been tested: ordinary CR with
odd–even and even–odd reduction, and parallel CR, assuming either forward or back-
ward equation counting. Purely sequential as well as parallel performances of the
algorithms were examined (see implementation details below). In addition to using
CR, the example systems were also solved, for comparison, by several variants of the
sequential LU decomposition methods (or the Thomas algorithm [11]). These were:
the Doolittle and the Crout methods (see, for example, Kincaid and Cheney [50])
with matrix factorization proceeding either in a forward or backward sweep. The rel-
evant algorithms, applicable to Eq. (1), were obtained by modifying the procedures
described in Refs. [8,12,13]. Hybrid algorithms, combining incomplete CR with LU
decompositions were also tried, but we do not elaborate on them here, since they were
not found more efficient under conditions of the present implementation.

All computer programs were written in C++ using double precision (double C vari-
ables having 64 bits and 16 digit precision, compliant with the IEEE 754 standard
[51]), and compiled as 32-bit console applications under Bloodshed/Orwell Dev-C++
5.7.1 environment [52,53], using the TDM-GCC 4.8.1 compiler, a 32-bit release.
Matrices A were implemented as class objects containing three vectors (of length
n each) with coefficients ai , bi , ci , and four real variables d1, e1, fn and gn . The
parallelism of the programs was achieved by multithreading, using OpenMP direc-
tives [54] to decompose loops over index i in matrix/vector reduction steps and in
back-substitution steps, into portions performed by separate threads. Multithreading
is generally not expected to provide the most efficient parallel CR performance for
scalar systems (1), because the cost of maintaining and communicating the threads is
considerable in comparison with the costs of CR calculations themselves, unless n is
very large. OpenMP was previously used by Hirshman et al. [37] and Lecas et al. [38]
in their CR codes for block-tridiagonal systems, in which case the costs of CR calcu-
lations were relatively larger, compared to the parallel overheads. Most efficient CR
performance can probably be achieved at present by using modern GPU programming
[35,36], but this requires a suitable hardware, which is still not widely available. In
contrast, OpenMP coding is relatively straightforward and applicable to the majority
of currently available processors, and it is entirely sufficient for our main purpose of
checking the correctness of the CR algorithms for Eq. (1) under conditions of parallel
execution.

Calculations were run mostly on a multicore computer with an Intel Core i7-4960X
CPU, operating at 3.6GHz, under the Windows 7 x64 Ultimate operating system.
The computer allowed for a maximum of 12 simultaneous threads being run on 6
independent cores.
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4 Results and conclusions

There are two essential aspects of the numerical algorithms for solving Eq. (1), that
should be of interest in practice: errors and computational times (including possible
parallel speedups). These aspects are explored below.

In the case of small n one may expect that the relative errors ‖ex‖∞ / ‖x‖∞ of
the solutions result mostly from the relative perturbations ‖er‖∞ / ‖r‖∞ of vectors r,
according to the well known estimate of the maximum error [50]:

‖ex‖∞
‖x‖∞

≈ cond(A)
‖er‖∞
‖r‖∞

, (8)

where cond(A) is the condition number of matrix A. This is because matrix A was
known precisely in our experiments, but vectors r differed slightly from their exact val-
ues, since theywere calculated numerically fromEq. (7).Assuming that ‖er‖∞ / ‖r‖∞
is roughly at the level of the machine precision ν (ν ≈ 1.11 × 10−16 in the case of
double precision variables [51]), Eq. (8) predicts:

log
‖ex‖∞
‖x‖∞

≈ log ν + log[cond(A)]. (9)

As the matrices used in our experiments were random, their condition numbers also
took random values.

With increasing n, errors ‖er‖∞ / ‖r‖∞ are expected to be greater than ν, due
to machine errors generated in arithmetic operations involved in formula (7). Simi-
larly, the machine errors arising in the CR or LU procedures (omitted in Eqs. (8) and
(9)) bring an increasing contribution to the solution errors ‖ex‖∞ / ‖x‖∞, above the
maximum level indicated by these equations.

Figure 1 demonstrates that solution errors measured in numerical experiments are
consistent with the above expectations. Figure 1 shows typical error distributions for
ordinary CR with odd–even reduction, and forward counting, and for LU decom-
position by the Doolittle method with matrix factorization in a forward sweep. The
distributions look very similar, and they were alike for all other methods tested. As
can be seen, for n ≤ 2000 the solution errors vary approximately in the interval
10−16 ≤ ‖ex‖∞ / ‖x‖∞ ≤ 10−11, so that, on average, a thousendfold increase of n
corresponds to the increase of the errors by a factor of about 105. The generally small
magnitudes of the errors confirm the overall correctness of the algorithms developed
in this study.

The effect of the interval (u, v) of pseudo-random coefficient values, on the
errors, was investigated assuming (u, v) = (−102, 102), (−105, 105), (−1010, 1010),
(−1020, 1020) and (−10100, 10100), but no significant changes of the error distribu-
tions were observed. For still larger intervals (u, v) well expected overflow errors
occurred, precluding obtaning correct solutions.

Computational times of the matrix A reduction phase, or of the LU decomposition,
varied between the minimum of about 10−6 s for n = 2, and the maximum of about
1 s for n = 106 in the case of the sequential execution, and between 10−4 and 1s
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Fig. 1 Relative solution errors
‖ex‖∞ / ‖x‖∞ obtained in
experiments with
pseudo-random coefficients of
Eq. (1), by using ordinary CR
with odd–even reduction and
forward counting, a sequential
execution (a), and LU
decomposition by the Doolittle
method with forward matrix
reduction (b). The errors are
plotted as functions of the
condition number cond(A) of
matrix A, for various values of
the system dimension n from the
interval [2, 2000], indicated by
various degrees of shadow. The
pseudo-random coefficient
values were chosen from the
interval (u, v) = (−102, 102).
Solid lines represent plots of
Eq. (9)
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in the case of the parallel execution of the algorithms. This refers to all algorithms
examined, although differences in timings, reaching even two orders of magnitude,
were observed between various algorithms, also depending on the number of threads.
Parallel CR was systematically much slower than ordinary CR.

Comparable ranges of computational times were observed in the vector r reduction
and solution phases.

At low n a performance loss of the parallel calculations, relative to the sequential
calculations, was noticeable, due to the parallel overheads associated with maintain-
ing and communicating the threads (see Sect. 3). Acceleration of the calculations,
resulting from the parallel execution, was observed only at very large n (greater than
about 104). Parallel speedups (relative to the fastest sequential algorithm, which is LU
decomposition) exceeding unity were recorded only in the case of ordinary odd–even
or even–odd CR, at n � 105. Speedups corresponding to this particular situation are
plotted in Fig. 2, as functions of n. As can be seen, with six threads the speedups
approach maximally the value of about 1.4. Using more threads resulted in a decrease
of the speedup. This was probably caused by the way the threads were distributed
among the six available cores, although other reasons, especially the issues of the
cache memory access, and the role played by the operating system, might also be
important; these questions were not studied further. It can also be seen that ordinary
odd–even CR is about 2–2.5 times slower than LU decomposition, in the case of the
sequential execution. This result is consistent with the arithmetic cost evaluations for
purely tridiagonal systems [18].

123



J Math Chem (2017) 55:1793–1807 1805

Fig. 2 Parallel speedups
obtained for ordinary odd–even
CR, by using sequential
execution (white circles), two
threads (black circles), four
threads (black squares), and six
threads (black triangles). Dotted
lines indicate the speedup = 1.
Subfigure a refers to the
speedups of the matrix A
reduction phase, relative to the
timings of the matrix LU
decomposition phase by the
Doolittle method with matrix
factorization in a forward sweep.
Subfigure b refers to the
speedups of the vector r
reduction and back-substitution
phases, relative to the timings of
the solution phase in the LU
decomposition method. All
computational times were
obtained as averages from 2000
program runs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

sp
ee

du
p

log(n)

a

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0

sp
ee

du
p

log(n)

b

The speedups obtained confirm that the particular software and hardware config-
uration used in the tests (multithreading using OpenMP on the multicore Intel Core
i7-4960X CPU, operating at 3.6GHz, under the Windows 7 x64 Ultimate) cannot be
recommended for the most efficient implementations of cyclic reduction. Alternative
configurations (in particular those using GPUs) are likely to be more attractive.
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