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Abstract A decomposition of Legendre polynomials into propagating angular waves
is derivedwith the aid of an amplitude-phasemethod. This decomposition is compared
with the ’Nussenzveig/Fuller’ so called near/far-side decomposition of Legendre poly-
nomials. The latter decomposition requires the Legendre function of the second kind.
This is not the case with the amplitude-phase decomposition. Both representations
have the same asymptotic expressions for large values of (l+1/2) sin θ , where l and θ

are the polynomial degree and the angle respectively. Furthermore, both components
of both representations satisfy the Legendre differential equation. However, we show
the two representations are not identical.

Keywords Scattering · Legendre polynomials · Amplitude-phase method ·
Differential cross section · Chemical reaction theory

1 Introduction

Differential cross sectionsmeasure angular distributions of nuclear, atomic andmolec-
ular scattering events and are expressed in terms of angular eigenfunction expansions,
typically involving several, tens or hundreds of terms [1,2]. Various approximations,
like the infinite-order-sudden approximation in rotationally inelastic molecular scat-
tering, may express differential cross sections in terms of Legendre polynomials
Pl(cos θ), where l and θ are the (non-negative integer) polynomial degree and the
scattering angle respectively. The analysis in terms of single Legendre polynomials
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may be complicated. Usually semiclassical theories involving quantum interferences
of semi-classical trajectories are of great help, but they involve further approxima-
tions of the partial-wave expansion [2]. An alternative, yet exact, way is to use a
near/far-side decomposition. This approach collects terms in the differential cross
sections corresponding to semiclassical contributions originating from repelled and
attracted classical trajectories. In this way one has a complementary computational
tool explaining interference structures valid beyond the semiclassical view in terms of
near(repulsive)/far(attractive) trajectories [3–8].

The near/far-side analysis of differential cross sections of radially symmetric inter-
actions based on partial-wave expansions uses decompositions of the Legendre poly-
nomials Pl(cos θ) into propagating angular wave functions. The propagating angular
waves are required to satisfy theLegendre differential equation and also to satisfy semi-
classical expressions as (l + 1/2) sin θ → ∞ [3–8]. Advantages of the near/far-side
decomposition of a partial-wave expansion of scattering amplitudes have been pointed
out by several authors in molecular scattering [3–8], and in nuclear scattering [9–15].

An amplitude-phase method for solving second-order ordinary differential equa-
tions was recently applied to obtain Legendre functions and associated Legendre
functions of the first kind [16], in particular for complex values of the degree l.
The method provides numerically ’exact’ solutions from analytically exact bound-
ary conditions, in particular for calculating the Legendre polynomials. It expresses
any Legendre function in terms of two fundamental amplitude-phase solutions [16].
Fundamental amplitude-phase solutions allow direct exponential representations of
Legendre polynomials, without requiring linear combinationswith Legendre functions
of the second kind. Therefore it suggests an alternative way to separate near/far-side
angular contributions in differential cross sections.

The amplitude-phase representation of the Legendre polynomial turns out to be
different from the typically used propagating angular waves as defined byNussenzveig
and Fuller [17–20]. The differences are however notmanifested, as shown in this study,
under semiclassical conditionswhere scattering involves significant contributions from
large angular momentum quantum numbers.

Section 2 deals with the real-valued fundamental amplitude-phase solutions of the
Legendre differential equation and their behaviors as (l + 1/2) sin θ → ∞. The
particular linear combinations of amplitude-phase solutions representing the Legen-
dre polynomials are presented in Sect. 3, where also the semiclassical expression of
the Legendre polynomials is derived. Section 4 deals with the near/far-side compo-
nents of the Legendre polynomials in terms of the amplitude-phase solutions and
in the Nussenzveig/Fuller approach. In Sect. 5 the propagating angular functions of
the Nussenzveig/Fuller- and the amplitude-phase types corresponding to Legendre
polynomials are compared numerically. Conclusions are in Sect. 6.

2 Fundamental amplitude-phase solutions of the Legendre differential
equation

TheLegendre functions Pl(cos θ) and Ql(cos θ) satisfy theLegendre differential equa-
tion [21]
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y′′(θ) + cot θ y′(θ) + [l(l + 1)] y(θ) = 0, (1)

where the prime, ′, denotes differentiation with respect to the angle θ (0 ≤ θ ≤
π ). The degree l is assumed to be a non-negative integer, although the amplitude-
phase formulas presented are still valid without this assumption. By introducing a
new angular function

χ(θ) = (sin θ)1/2y(θ) (2)

in (1), one finds

χ ′′(θ) +
(

(l + 1/2)2 + 1

4 sin2 θ

)
χ(θ) = 0. (3)

The amplitude-phase method [16] is applied to Eq. (3) by assuming fundamental
solutions of either exponential form

χ±(θ) = u(θ) exp (± iφ(θ)) , (4)

or trigonometric form (
χs(θ)

χc(θ)

)
= u(θ)

(
sin φ(θ)

cosφ(θ)

)
, (5)

where in both cases the phase φ(θ) depends on the amplitude u(θ) via

φ′(θ) = u−2(θ). (6)

The amplitude function u(θ) > 0 is any solution of the non-linear Milne-type differ-
ential equation [16]

u′′(θ) +
(

(l + 1/2)2 + 1

4 sin2 θ

)
u(θ) = u−3(θ). (7)

Since the coefficient in (3) is symmetric with respect to θ = π/2 it is possible to use
a symmetrical amplitude function u(θ) = u(π − θ).

From (2), the fundamental amplitude-phase solutions of Eq. (1) are:

(
ys(θ)

yc(θ)

)
= (sin θ)−1/2 u(θ)

(
sin φ(θ)

cosφ(θ)

)
, φ′(θ) = u−2(θ). (8)

An unspecified integration constant in (6) defining φ(θ) completely will be introduced
so that

φ(π/2) = 0. (9)

This choice is based on the presence of particular values for Pl(cos θ) and Ql(cos θ)

for θ = π/2 [22], where the boundary conditions of u(θ) are defined [16].
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2.1 Asymptotic behaviors of the fundamental amplitude-phase solutions

Equation (7) is solved algebraically for the amplitude u by assuming u is sufficiently
slowly varying that u′ and u′′ can be neglected, leading to

u−2 =
(

(l + 1/2)2 + 1

4 sin2 θ

)1/2

≈ (l + 1/2)

(
1 + 1

8(l + 1
2 )

2 sin2 θ
+ · · ·

)
.

(10)
The approximation is valid provided (l + 1/2) sin θ >> 1. The phase φ in (8) then
has an asymptotic (large-l) approximation

φ ≈ (l + 1/2)θ − (l + 1/2)π/2, (l + 1/2) sin θ >> 1, (11)

where the integration constant −(l + 1/2)π/2 is chosen so that φ = 0 for θ = π/2.
The fundamental amplitude-phase solutions of (8) thus have the large-l approxi-

mations:

(
ys
yc

)
≈ ((l + 1/2) sin θ)−1/2

(
sin

[(
l + 1

2

) (
θ − π

2

)]
cos

[(
l + 1

2

) (
θ − π

2

)]
)

, (l + 1/2) sin θ >> 1.

(12)
When analyzed with the aid of trigonometric relations one obtains

(
ys
yc

)
≈ ((l + 1/2) sin θ)−1/2

(− sin
(

πl
2

)
cos

[(
l + 1

2

)
θ − π

4

]
cos

(
πl
2

)
cos

[(
l + 1

2

)
θ − π

4

]
)

,

(l + 1/2) sin θ >> 1. (13)

Asymptotic expressions of Pl(cos θ) and Ql(cos θ) are obtained by appropriate
linear combinations of ys and yc in (12). They are discussed in the subsequent section.

3 Amplitude-phase expressions of Legendre polynomials

Values for χ(θ) (and χ ′(θ)) satisfying Eq. (3) and relevant for computing Legendre
functions of the first kind are given for θ = π/2 (see [22])

χ
(1)
π/2 = 1√

π
cos

(
πl

2

)
�

( 1
2 + l

2

)
�

(
1 + l

2

) , (14)

χ ′(1)
π/2 = − 2√

π
sin

(
πl

2

)
�

(
1 + l

2

)
�

( 1
2 + l

2

) . (15)

The superscript ’(1)’ refers to ’the first kind’ and χ
(1)
π/2 is shorthand for χ(1)(π/2), as

for the corresponding derivative χ ′(1)(π/2). The minus sign in Eq. (15) comes from
the differential relation d cos θ = − d sin θ .
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Byfitting the fundamental amplitude-phase solutions ys and yc to the specific values
(14) and (15), exact representations of the Legendre polynomials can be obtained as
[16]

Pl(cos θ) = (sin θ)−1/2 u(θ)
(
χ ′(1)

π/2uπ/2 sin φ(θ) + χ
(1)
π/2/uπ/2 cosφ(θ)

)
, (16)

where χ ′(1)
π/2uπ/2 and χ

(1)
π/2/uπ/2 are the appropriate factors of the amplitude-phase

fundamental solutions. The notation uπ/2 is defined by

uπ/2 =
[
l(l + 1) + 1

2

]−1/4

, (17)

which is obtained from the boundary conditions of the symmetric amplitude function
u(θ) for θ = π/2 [16].

For odd integer values of l the amplitude-phase expression (16) is

Pl(cos θ) = (sin θ)−1/2 χ ′(1)
π/2uπ/2 u(θ) sin φ(θ), (odd l) (18)

= χ ′(1)
π/2uπ/2 ys, (19)

and for even integer values of l

Pl(cos θ) = (sin θ)−1/2χ
(1)
π/2/uπ/2 u(θ) cosφ(θ), (even l) (20)

= χ
(1)
π/2/uπ/2 yc. (21)

Near the angle θ = π/2, used in the boundary conditions of the amplitude function,
the representations (18) and (20) can be expanded as

Pl(cos θ) ≈ χ ′(1)
π/2 (θ − π/2) + O

(
(θ − π/2)3

)
(odd l) (22)

and
Pl(cos θ) ≈ χ

(1)
π/2 + O

(
(θ − π/2)2

)
(even l) (23)

respectively. These expansions are exact to the explicit order shown and based on the
even symmetry of u(θ) with respect to θ = π/2.

3.1 Asymptotic expression of Legendre polynomials

For large integer values of l it is possible to compare formulas of the present amplitude-
phase approach with standard asymptotic expressions for the Legendre polynomials
(see e.g. [18,19] and/or McCabe and Connor [3–8]), given by
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Pl(cos θ) ≈
√

2

π(l + 1/2) sin θ
cos ((l + 1/2)θ − π/4) , (l + 1/2) sin θ >> 1,

(24)
valid for all large non-negative integers l. The two amplitude-phase expressions to
compare with are

Pl(cos θ) ≈ − sin

(
πl

2

) (
χ ′(1)

π/2uπ/2

) √
1

(l + 1/2) sin θ
cos ((l + 1/2)θ − π/4) ,

(l + 1/2) sin θ >> 1, (25)

for odd integers of l, and

Pl(cos θ) ≈ cos

(
πl

2

) (
χ

(1)
π/2/uπ/2

)√
1

(l + 1/2) sin θ
cos ((l + 1/2)θ − π/4) ,

(l + 1/2) sin θ >> 1, (26)

for even integers of l.
From (25), (26) in comparison with (24), one observes the different factors in

asymptotic expressions. By hypothesis, the following asymptotic relations hold

− sin

(
πl

2

)
χ ′(1)

π/2uπ/2 ∼
√

2

π
, (l + 1/2) >> 1 (odd l), (27)

cos

(
πl

2

)
χ

(1)
π/2/uπ/2 ∼

√
2

π
, (l + 1/2) >> 1 (even l). (28)

From (14) and (15) one obtains

− sin

(
πl

2

)
χ ′(1)

π/2uπ/2 = 2√
π

�
(
1 + l

2

)
uπ/2

�
( 1
2 + l

2

) , (29)

cos

(
πl

2

)
χ

(1)
π/2/uπ/2 = 1√

π

�
( 1
2 + l

2

)
�

(
1 + l

2

)
uπ/2

. (30)

so the key asymptotic relation to be proved in order to derive the well-known semi-
classical expression (24) is

�
( 1
2 + l

2

)
�

(
1 + l

2

)
uπ/2

≈ √
2, l → ∞. (31)

In fact, with the use of the asymptotic formula (5) on page 32 in [23], i.e.

ln�

(
1

2
+ z

)
≈ z ln z − z + 1

2
ln(2π), z → ∞, (32)
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one obtains

ln

[
�

( 1
2 + l

2

)
�

(
1 + l

2

)
uπ/2

]
≈ 1

2
ln 2, (33)

which proves the semiclassical formula (24) for large l based on the amplitude-phase
approach.

4 Near/far-side decompositions

4.1 The amplitude-phase near/far-side decomposition

This decomposition is the one introduced in Ref. [16] for complex values of l with
Re l > −1/2. From (16) there is an obvious decomposition of Pl(cos θ) in terms of
Jost-type propagating angular functions

P(±)
l (cos θ) = 1

2
(sin θ)−1/2 u(θ)

(
χ

(1)
π/2/uπ/2 ∓ iχ ′(1)

π/2uπ/2

)
exp(± iφ(θ)), (34)

satisfying
Pl(cos θ) = P(+)

l (cos θ) + P(−)
l (cos θ). (35)

The solutions P(±)
l (cos θ) satisfy the Legendre differential equation, since they are

linear combinations of the real-valued fundamental solutions ys and yc. For odd integer
values of l the amplitude-phase expressions (34) simplifiy to

P(±)
l (cos θ) = ∓ i

1

2
(sin θ)−1/2χ ′(1)

π/2uπ/2 u(θ) exp(± iφ(θ)), (odd l). (36)

For even integer values of l expressions (34) simplifiy to

P(±)
l (cos θ) = 1

2
(sin θ)−1/2 χ

(1)
π/2/uπ/2 u(θ) exp(± iφ(θ)), (even l). (37)

Using Euler’s formula for the exponential factor in (34), one obtains

P(±)
l (cos θ) = 1

2
(sin θ)−1/2 u(θ)

(
χ ′(1)

π/2uπ/2 sin φ(θ) + χ
(1)
π/2/uπ/2 cosφ(θ)

)

∓ i
1

2
(sin θ)−1/2 u(θ)

(
χ ′(1)

π/2uπ/2 cosφ(θ) − χ
(1)
π/2/uπ/2 sin φ(θ)

)
,

(38)

valid for all non-negative integers l. Equation (38) can be written

P(±)
l (cos θ) = 1

2
(Pl(cos θ) ∓ i Rl(cos θ)) , (39)
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with the real function Rl(cos θ) being defined by

Rl(cos θ) = (sin θ)−1/2 u(θ)
(
χ ′(1)

π/2uπ/2 cosφ(θ) − χ
(1)
π/2/uπ/2 sin φ(θ)

)
. (40)

Rl(cos θ) is a solution of the Legendre differential equation since it is a linear combi-
nation of exact (amplitude-phase) solutions.

4.2 Nussenzveig/Fuller near/far-side decomposition

The propagating angular functions used in the Nussenzveig/Fuller decomposition
involve both Pl(cos θ) and Ql(cos θ), and are defined as [18–20,22]

Q(±)
l (cos θ) = 1

2

(
Pl(cos θ) ∓ 2 i

π
Ql(cos θ)

)
. (41)

This decomposition can also be expressed in terms of the same amplitude-phase
fundamental solutions, which is done for the first time in this paper.With the analogical
approach to Sects. 2 and 3 one finds for Ql(cos θ)

Ql(cos θ) = (sin θ)−1/2 u(θ)
(
χ ′(2)

π/2uπ/2 sin φ(θ) + χ
(2)
π/2/uπ/2 cosφ(θ)

)
, (42)

where χ ′(2)
π/2uπ/2 and χ

(2)
π/2/uπ/2 are the new factors in the linear combinations of

the amplitude-phase fundamental solutions. While uπ/2 is the same as in (17), values

for χ
(2)
π/2 and χ ′(2)

π/2 relevant for computing Legendre functions of the second kind at
θ = π/2 are

χ
(2)
π/2 = −

√
π

2
sin

(
πl

2

)
�

( 1
2 + l

2

)
�

(
1 + l

2

) , (43)

χ ′(2)
π/2 = −√

π cos

(
πl

2

)
�

(
1 + l

2

)
�

( 1
2 + l

2

) , (44)

which are also obtained from reference [22].

5 Numerical comparison

The amplitude-phase method provides ways of calculating Legendre functions of
the first or second kind in terms of fundamental solutions of Legendre’s differential
equation. It is then possible to compare the two near/far-side representations presented
in Sect. 4. Hence, Eqs. (39) and (41) are the two (exact) near/far-side representations
compared numerically in the present section.

Differences in Q(±)
l (cos θ) and P(±)

l (cos θ) occur only in the imaginary parts. In a
series of tables the differences of the imaginary parts can be seen for small, medium
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Table 1 Numerical comparison
of the imaginary parts of

Q(+)
3 (cos θ) and P(+)

3 (cos θ)

for selected values of the angle θ

θ/◦ Im Q(+)
3 (cos θ) Im P(+)

3 (cos θ)

5 −0.396551939796008 −0.396412615667989

15 0.011252516825386 0.011248563378341

25 0.200897859221705 0.200827275985947

35 0.268338287533512 0.268244009850886

45 0.235275455754521 0.235192794331319

55 0.130350634271783 0.130304837021450

65 −0.006178921957558 −0.006176751061825

75 −0.129825363966732 −0.129779751264299

85 −0.202571714339455 −0.202500543013258

Table 2 Numerical comparison
of the imaginary parts of

Q(+)
30 (cos θ) and P(+)

30 (cos θ)

for selected values of the angle θ

θ/◦ Im Q(+)
30 (cos θ) Im P(+)

30 (cos θ)

5 0.234615351459853 0.234615368359349

15 0.111215921672006 0.111215929682961

25 −0.005817186004943 −0.005817186423959

35 −0.080725653595215 −0.080725659409937

45 −0.079219865834323 −0.079219865834323

55 −0.017049671863151 −0.017049673091250

65 0.051365737103799 0.051365740803706

75 0.072855536558358 0.072855541806189

85 0.033393747988477 0.033393750393851

and large integer values of l, and a sequence of θ . MatLab (version 10a) was used
for the computations and the relative and absolute errors are controlled by the ’tol’
parameter, set to 2.3 × 10−14.

Tables 1, 2 and 3 showvalues of the imaginary parts of Q(+)
l (cos θ) and P(+)

l (cos θ).

Values of Q(−)
l (cos θ) and P(−)

l (cos θ) are obtained by complex conjugate symmetry.
The real parts agree to all significant figures.

Table 1 shows results for l = 3 and a restricted sequence of angles in the range 5 ≤
θ/◦ ≤ 85. The polynomials exhibit exact symmetries about θ = 90◦. The entries for a
given angle agree to about 3 decimal positions. Low values of the angular momentum
quantum number are relevant in electron- and in other sub-atomic scattering problems.
For such values the semiclassical condition (l +1/2) sin θ >> 1 may not be satisfied.

Table 2 shows results for l = 30 and the same restricted angular region. The entries
for a given angle agree to about 7 decimal positions. This value of l represents typical
angular momenta in atomic orbiting and rainbow scattering of hydrogen.

Table 3 shows results for l = 300 and the same angles. The entries for a given angle
agree to about 12 decimal positions. Large values of l are typical for atomic collisions
with large reducedmasses compared to the case of hydrogen scattering. Further results
(not shown) indicate that the agreements are independent of the parity of l.
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Table 3 Numerical comparison
of the imaginary parts of

Q(+)
300(cos θ) and P(+)

300 (cos θ)

for selected values of the angle θ

θ/◦ Im Q(+)
300(cos θ) Im P(+)

300 (cos θ)

5 0.023085715194327 0.023085715194494

15 0.027593673426331 0.027593673426530

25 −0.035365628346761 −0.035365628347017

35 0.016311824755513 0.016311824755631

45 0.010483837095221 −0.235275455754521

55 −0.024826451939561 −0.024826451939741

65 0.017819818789656 0.017819818789785

75 0.003059009369289 0.003059009369311

85 −0.020452790176916 −0.020452790177063

Table 4 Numerical comparison of the imaginary parts of Q(+)
l (cos θ) and P(+)

l (cos θ) for the angle

θ = 10−7 and two values of l

l Im Q(+)
l (cos θ) Im P(+)

l (cos θ)

1 −6.32146 −6.28012

10 −5.70746 −5.70748

At forward angles close to θ = 0, and backward angles close to θ = 180◦, both
angular functions diverge with similar numerical agreements depending mainly on
the magnitude of l. Table 4 shows the numerical values of the imaginary parts of
Q(+)

l (cos θ) and P(+)
l (cos θ), for θ = 10−7◦ and l = 1, 10. At larger values of l the

agreement improves.
There are problems with the separation of a Legendre polynomial into its natural

propagating angular functions at such small values of l. Since the asymptotic condition
((l + 1/2) sin θ >> 1) is not satisfied for small values of l; how can two near/far-side
methods with the same asymptotic condition satisfied be seen as ’exact methods’?
Explicitly, for l = 0 one has P0(cos θ) = 1 and it is not clear how to separate unity
into two near/far-side angular waves other than in a symmetric way; for l = 1 one has
P1(cos θ) = cos θ = 1

2

(
ei θ + e− i θ

)
, where the natural propagating angular functions

(e± i θ ) do not satisfy the Legendre equation separately. At present the near/far-side
analysis of scattering seems to be an analysis slightlymore useful than the semiclassical
trajectory method mentioned in the introduction [2].

6 Conclusion

A near/far-side decomposition of Legendre polynomials is derived with the aid of
an amplitude-phase method. For large values of (l + 1/2) sin θ expressions of the
Legendre polynomial and its near/far-side components are shown to agree with the
well-known semiclassical expressions. The ’Nussenzveig/Fuller’ near/far-side compo-
nents of Legendre polynomials are also known to satisfy the semiclassical expressions.
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On account of similar numerical and asymptotic (semiclassical) properties, the Leg-
endre polynomials can be represented by both types of complex conjugate pairs of
propagating angular functions, (39) and (41), compared in this paper.

However, it is shown that the amplitude-phase and the Nussenzveig/Fuller repre-
sentations are not identical. The amplitude-phase decomposition uses only functional
properties of the Legendre polynomial itself, while the Nussenzveig/Fuller decom-
position also uses properties of the corresponding Legendre function of the second
kind.Non-negligible numerical differences occur for Legendre polynomials of degrees
l = 1 (and to a lesser extent for l = 2 and 3). Such a difference would possibly affect
near/far-side analysis of (sub-)nuclear scattering at low energies, but not near/far-side
analysis of non-resonant very low energy heavy-particle scattering.
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