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Abstract
Using dilute silver erbium alloys as a paramagnetic temperature sensor in metallic 
magnetic calorimeters (MMCs) has the advantage of the host material not having 
a nuclear quadrupole moment, in contrast to the alternative of using gold erbium 
alloys. We present numerical calculations of the specific heat and magnetization 
of Ag:Er, which are necessary for designing and optimizing MMCs using this type 
of alloy as sensor material. The parameter ranges we consider are temperatures 
between 1mK and 1K , external magnetic fields of up to 20mT , and erbium con-
centrations of up to 2000 ppm . The system is dominated by an interplay of crystal 
field effects, Zeeman splitting, and the RKKY interaction between erbium ions, with 
certain specific constellations of erbium ions having noticeable effects on the spe-
cific heat. Increasing the external magnetic field or assuming a decreased strength of 
the RKKY interaction leads to a higher magnetization and a narrowing of the main 
Schottky peak, while changes in the erbium concentration can be well described by 
parameter scaling.

Keywords  Heat capacity · Schottky anomaly · RKKY interaction · Dilute erbium 
alloys · Metallic magnetic calorimeters

1  Introduction

Metallic Magnetic Calorimeters (MMCs) are cryogenic particle detectors that rely 
on reading out the temperature-dependent magnetization of a paramagnetic sen-
sor material in order to transform the temperature increase caused by a particle 
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impacting the detector into a measurable signal [1]. Dilute alloys of erbium and 
noble metals placed in a weak magnetic field are well suited to be such a sensor 
material [2], due to the small de Gennes factor [3] of Er3+ , and the fast electron-spin 
relaxation time allowing for short signal rise times [4] of under 100 ns[5]. Initially, 
gold was most commonly used as a host [6–8], as the low RKKY interaction in gold 
results in a larger magnetic response. A number of detailed analyses of Au:Er are 
available [9, 10], including the full quantum mechanical simulations by Schönefeld 
[11, 12], which match experimental data well. However, it was also observed that 
the nuclear magnetic moment I = 3∕2 of the 197Au nucleus can cause an additional 
heat capacity when the nuclear levels are split by a nearby erbium ion breaking the 
cubic symmetry of the electric field gradient at this lattice site [12]. The interac-
tion of the nuclear quadrupole moment with the electric field gradient leads to an 
additional heat capacity and a more complex pulse shape at low temperatures, mak-
ing data evaluation difficult. One solution is using silver as a host material, where 
this feature is not observed [13], since silver does not have a nuclear quadrupole 
moment. Experimentalists must weigh this advantage against the disadvantage of 
the RKKY interaction in silver being roughly 2–3 times stronger than in gold [14, 
15], which decreases the magnetic response of the sensor. In recent years, MMCs 
operating at the lowest temperatures have increasingly used Ag:Er sensors [16–19].

One main advantage of MMCs is that they operate near thermal equilibrium. 
Additionally, the signal size they produce depends only on geometrical factors 
and on bulk thermodynamic properties, such as the specific heat and magnetiza-
tion. As a result, accurate simulations of an MMCs inherent noise and energy 
resolution, such as described by Fleischmann et al. [20], are possible when given 
the specific heat and magnetization of the sensor material as input parameters. 
In this article, we present simulations tailored to meet this need, as well as more 
detailed analyses of Ag:Er regarding the influence of external magnetic fields, the 
strength of the RKKY interaction, and the erbium concentration.

2 � Simulation of Interactions in Ag:Er

For our applications, the atomic concentration xEr of erbium in the sensor mate-
rial is no larger than a few thousand ppm. The resulting alloy is a solid solu-
tion [21], with the erbium taking the place of silver atoms in the fcc lattice. The 
erbium loses three electrons to the conduction band, resulting in Er3+ ions with 
quantum numbers L = 6 , S = 3∕2 , J = 15∕2 , and Landé factor gJ = 6∕5 . How-
ever, the crystal field of the silver causes an energy splitting of the 16-fold degen-
erate J = 15∕2 ground state into a number of multiplets. The lowest of these is a 
Γ7 doublet, which is separated by a 25K ⋅ kB gap to the next lowest multiplet [22]. 
For our application of MMCs operated at temperatures below 1K, this allows us 
to reduce the system to this lowest doublet state, with an effective spin S = 1∕2 
and an effective Landé factor of g̃ = 6.8 [23]. The external magnetic field B then 
splits the Γ7 doublet, which we describe via the Zeeman Hamiltonian
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Here, � and S are the magnetic moment and spin of an erbium ion and �B is the 
Bohr magneton. The result of such an energy splitting of ΔE = g̃𝜇BB is a Schottky 
anomaly in the specific heat with a maximum at Tmax ≈ 0.42ΔE k

−1
B

≈ 10mK for a 
typical magnetic field of B = 5mT . The magnetization follows a Curie-like 1/T law 
and saturates at low temperatures. Note that we disregard hyperfine splitting, as we 
assume that isotopically enriched 168 Er is used, which has no nuclear spin.

In a further step, consider two erbium ions with spins Si and Sj at a distance rij 
from each other. They interact via the magnetic dipole–dipole interaction

where we have artificially introduced the Fermi wave vector kF = 1.2 ⋅ 1010 m−1 of 
the conduction electrons of the silver, and via the RKKY interaction

We have introduced the normalized vector r̂ij in direction ri − rj , and the two 
prefactors

with the vacuum permeability �0 , the coupling energy � between the localized spins 
and the conduction electrons, the volume V0 of the elementary cell, and the effec-
tive mass m∗

e
 of the conduction electrons of the silver. An important metric is the 

relative strength � = ΓRKKY∕Γdipole of the two interactions. For Ag:Er, � is not pre-
cisely known, with ESR measurements placing it between 6.4 and 13.7 [14], and 
magnetization measurements using MMCs suggesting � = 12.5 and � = 15 [15, 24]. 
In general, however, we assume the RKKY interaction to be more significant than 
dipole–dipole interactions.

In order to simulate the thermodynamic properties of Ag:Er alloys, we follow 
an approach similar to the one first described for Au:Er alloys by Schönefeld [11, 
12]. In our model, we construct a cubic section of an fcc lattice and randomly dis-
tribute NEr = 9 erbium ions on the lattice sites. Increasing the number of erbium 
ions beyond nine does not affect our results significantly, while dramatically increas-
ing computation time. Note, however, that spin glass effects, which we expect to 
occur in the low mK range [9, 25], are not the focus here and are described poorly. 
The volume V of the fcc cube is determined by the desired erbium concentration. 
As erbium ions near the boundary of the cube would experience a lower effective 
erbium concentration, we copy the cube 26 times to form a 3×3×3 grid of identi-
cal lattice sections. A random direction is chosen for the external magnetic field B. 
Based on this model, we construct the Hamiltonian of the system via Eqs. 1, 2, and 
3. From the resulting eigenvalues Ei we calculate the partition function

(1)HZeeman = −� ⋅ B = −g̃𝜇BS ⋅ B .

(2)H
dipole

ij
= Γdipole

1

(2kFrij)3
[
Si ⋅ Sj − 3

(
Si ⋅ r̂ij

)(
Sj ⋅ r̂ij

)]
,

(3)HRKKY
ij

= ΓRKKY

(
Si ⋅ Sj

)
F(2kFrij) with F(�) = �−3

(
cos � −

sin �

�

)
.

(4)Γdipole =
𝜇0

4𝜋

(
g̃𝜇B

)2(
2kF

)3
and ΓRKKY = �2

4V2
0
m∗

e
k4
F

�2(2𝜋)3
g̃2(gJ − 1)2

g2
J

,
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and the occupation probability pi = zi∕Z for each eigenstate. The heat capacity C 
and magnetization M of the system follow via

where the angular brackets denote the expectation value ⟨X⟩ = ∑
Xipi of a variable 

X. By repeating these steps 10, 000 times with random distributions of erbium ions 
and averaging over the resulting physical quantities, we achieve consistent and rep-
resentative results. As a final step, the heat capacity of the electronic and phononic 
contribution of the silver is added. Silver’s diamagnetic contribution to the magneti-
zation can be neglected.

The results of a simulation with xEr = 500 ppm , B = 5mT , and � = 15 appear 
in Fig. 1, with the specific heat c per mole of Ag:Er on the left and the magnetiza-
tion M on the right. We plot a set of 300 randomly chosen individual simulations in 
green, to which the contribution of the silver has already been added. The average 
over the entire set of 10, 000 simulations appears in black. The main feature in the 
specific heat curve is the Schottky peak from the Zeeman splitting of the Γ7 dou-
blet. Without any other interaction, this would result in the blue curve. However, 
the interactions between erbium ions cause shifts of the energy levels, which are 
dependent on the random distances rij between erbium ions. As a result, the averaged 
peak is broader, and due to conservation of the entropy S = ∫ C(T)∕T dT  , necessar-
ily less tall than the Schottky peak in a pure Zeeman system.

(5)Z =
∑

i

zi =
∑

i

e
−

Ei

kBT

(6)C =
1

kBT
2

�
⟨E2⟩ − ⟨E⟩2

�
and M = −

1

V

�
�E

�B

�
,

Fig. 1   Result of a simulation of Ag:Er with xEr = 500 ppm , B = 5mT , and � = 15 . The calculated spe-
cific heat per mole of Ag:Er (left) and the magnetization (right) of 300 of the 10, 000 simulated sys-
tems appear in green, together with the averaged curve in black. Respective curves for a non-interacting 
system appear in blue, with N representing the number of free magnetic moments. The electronic and 
phononic contribution of the silver host material appears in orange. Expected Schottky peaks for certain 
erbium constellations are marked with letters, see Table 1 (Color figure online.)
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In a number of individual systems we see secondary peaks, most notably at higher 
temperatures. These are present in systems where a particular pair of erbium ions 
happens to have a strong RKKY interaction. In order to assign each of these second-
ary peaks a certain distribution of erbium ions, consider a simple system with two 
erbium ions interacting only via the RKKY interaction. All possible relative posi-
tions of the two erbium ions that result in a Schottky anomaly with Tmax > 100mK 
are listed in Table 1, with the relative positions and resulting distances rij in units of 
the cubic lattice constant a = 4.1 Å. For each possible separation, we list only one 
of the Nperm possible x,y, and z offsets. The calculated Tmax are marked in Fig. 1 and 
we see a good match to the side maxima of the full simulation, with small devia-
tions due to other interactions. Note that the number of individual systems that fea-
ture one of the listed Schottky anomalies correlates with Nperm , resulting in peaks 
B and E being more prominent than peaks C and D. In the temperature range of 
80mK − 500mK , the averaged specific heat (black) is strongly affected by the rela-
tively small number of systems with a side peak and lies noticeably above the spe-
cific heat of most of the individual systems without a side peak.

We consider now the magnetization, plotted on the right-hand side of Fig. 1 as a 
function of the inverse temperature. In the limit of non-interacting spins, the mag-
netization is described by the Brillouin function

with the number N of free spins, the volume V of the simulated lattice section, and 
h = g̃S𝜇BB∕(kBT) . This function appears in blue in Fig. 1 for N = 1, 3, 5, 7, and 9 , 
where it describes clusters of individual systems well. If two of the original NEr = 9 
erbium ions are so close that they are locked in an anti-parallel orientation, they 
can no longer contribute to the magnetization and the system is effectively reduced 
to NEr − 2 = 7 spins. For erbium distributions with multiple such pairs, the num-
ber of free erbium ions is reduced further to 5, 3, or 1 free spin. We thus observe a 

(7)M =
N

V
g̃S𝜇B

[
2S + 1

2S
coth

(
(2S + 1)h

2S

)
−

1

2S
coth

(
h

2S

)]
,

Table 1   Locations of the 
Schottky anomalies in a system 
of two erbium ions interacting 
only via RKKY for � = 15

The first three columns denote one example for the relative x, y, 
and z positions in the fcc lattice in units of the cubic lattice constant 
a = 4.1 Å. Column 4 lists the resulting distance r

ij
 . The number of 

possible permutations Nperm gives a measure for the probability of 
a system fulfilling that characteristic distance requirement. Entries 
are sorted by the expected locations Tmax of the resulting Schottky 
anomaly, which are marked in Fig. 1

Δx∕a Δy∕a Δz∕a r
ij
∕a Nperm Tmax∕mK Fig. 1 mark

0 0.5 0.5 0.71 12 4467 −

0.5 0.5 1 1.22 24 1082 A
0.5 1 1.5 1.87 48 306 B
0 0 2 2 6 192 C
0 1 1 1.41 12 156 D
0 0.5 2.5 2.55 72 134 E
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distinct division into plateaus at low temperatures. Averaging these curves (black) 
then results in an accurate representation of the material.

3 � Influence of B, ̨  , and x
Er

Based on the system introduced in Fig. 1 with B = 5mT , � = 15 , and xEr = 500 ppm , 
we analyze the effects these parameters have on our simulations.

The specific heat of five systems in different magnetic fields appears in the top 
left of Fig.  2. Following the calculations in Sect.  2, the location of the Schottky 
anomaly of the unperturbed system (dashed lines) is proportional to B. In the 
limit of large magnetic fields, the interacting system (solid lines) approaches this 

Fig. 2   Analysis of a Ag:Er system when varying different parameters. The specific heat is plotted for 
different magnetic fields (top left) and for different � (top right). The specific heat and magnetization 
scaled with erbium concentration plotted against a scaled temperature axis demonstrates the scaling law 
(bottom). Comparable simulations with � = 5 , 10, and 12.5 are available online. The system presented in 
Fig. 1 with xEr = 500 ppm , B = 5mT , and � = 15 appears in dark green in all plots (Color figure online.)
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Zeeman-Schottky limit, since the influence of the magnetic field overshadows 
erbium-erbium interactions. For low magnetic fields, the RKKY interaction is domi-
nant, with a number of characteristic peaks overlapping as in Fig.  1, leading to a 
broad maximum in the specific heat. The precise location and shape of this peak are 
dependent on � and the erbium concentration.

An analysis of the effect that � = ΓRKKY∕Γdipole has on the specific heat of Ag:Er 
appears on the top right of Fig. 2. As the precise value of � is unknown, the simula-
tions cover the entire range of suggested values from � = 6 to � = 15 [14, 15, 24]. A 
larger � , and thus a stronger RKKY interaction, leads to a broadening and flattening 
of the Schottky peak, similar to the effect a decreased magnetic field has on the sys-
tem. However, Tmax is shifted towards higher temperatures, since the stronger forces 
between erbium ions lead to larger energy gaps between eigenstates. The lower spe-
cific heat in the temperature range below 20mK , where MMCs are typically oper-
ated, seems to favor systems with a large � . This is, however, offset by a reduction in 
dM∕dT  (not pictured) caused by an increased number of erbium ions being locked 
through RKKY interactions. In an analysis of individual simulations as presented in 
Fig. 1 (right), more systems were described by a lower N than in a comparable simu-
lation with a reduced �.

Regarding the erbium concentration xEr , we expect the scaling law outlined by 
Souletie et al. [26] to hold. That is, a change in xEr is equivalent to scaling the other 
physical quantities:

Conversely, when scaling all quantities equally, curves should stay identical. Four 
different systems with � = 15 and equal ratio B∕xEr appear on the bottom of Fig. 2 
with appropriately scaled axes ( � = 5 , 10, and 12.5 are available online). The scaled 
specific heat is almost identical between all systems, with even the contribution of 
the conduction electrons not disturbing the scaling, which was derived for the spin 
contribution only. Only the phononic contribution of the silver is not described by 
the scaling law, which leads to discrepancies at high temperatures. Considering the 
magnetization, we see a small deviation for simulations with the highest erbium 
concentrations. In these cases, the average distance between erbium ions is so low 
that we can no longer fully ignore the oscillatory nature of the RKKY interaction. 
Peaks in the RKKY interaction lead to an increased freezing of the spins in cer-
tain eigenstates, reducing the available spins which can be oriented with respect to 
B . This results in a lower magnetization. We conclude that for concentrations of 
xEr ≲ 1000 ppm , the scaling law is a good approximation, if one calculates the spe-
cific heat contribution of the lattice separately.
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�
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