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Abstract
Enhanced fluctuations pervade a phase near a transition point. This phenome-
non was observed in recent simulations of polyhedral particles, where rod-shaped 
vacancy defects diffused through a solid phase carrying mass flow. The defects pro-
liferated at the melting point, magnifying the mass flow to liquid proportions. Here, 
we show that the number of vacancies increases on heating or lowering the pressure, 
in accordance with Boltzmann  statistics, but the Boltzmann equilibrium becomes 
unstable at a threshold number resulting in the first-order melting transition. The 
instability is driven by an increase in entropy if the defects repel, or by a reduc-
tion in enthalpy if they attract. A corresponding thermodynamic instability occurs 
in other melting transitions, including in argon, colloids, cryogenic helium and 
simulations of hard spheres. The statistics of the vacancies explains a long-standing 
anomaly in the heat capacity of solid helium-4, as well as recent measurements of 
thermally activated mass flow through solid helium-3. In liquid helium-4, the vacan-
cies conform to Feynman’s atomistic and quantum descriptions of rotons and quan-
titatively account for associated neutron scattering measurements. Colloids, silicon 
and sodium also melt ‘re-entrantly’ on elevating the pressure, and we identify quan-
titative evidence that this transition involves the proliferation of interstitial defects.
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1  Introduction

In the early 1960s, Alder and Wainwright reported computer simulations of discs 
assembled into a hexagonal crystal in two dimensions. They noticed defects diffus-
ing through the lattice carrying mass flow. These defects proliferated at the melting 
point, magnifying the cooperative diffusion to liquid-like proportions and causing 
the solid to melt [1, 2]. These results motivated Kosterlitz and Thouless’s thermody-
namic explanation of 2D phase transitions [3–7] and the seminal ideas of Alder et al 
were later reinforced by simulations of close-packed discs in 2D using considerably 
more computing power [8]

In 1968, Alder, Gardner, Hoffer, Philips and Young reported experimental evi-
dence for a corresponding melting transition in 3D. They found a steep rise in the 
heat capacity of solid body-centred cubic (bcc) 4 He within 0.02K of melting [9]; see 
later studies of this still-unexplained anomaly [10, p 93]. Alder et al. interpreted it 
as evidence for low-energy, mobile defects multiplying very near the melting point 
as in the simulations. However, they did not advance a thermodynamic model and 
did not identify the connection with earlier work on rod-shaped interstitial defects 
(‘crowdions’) diffusing through bcc crystals carrying mass flow; see Fig. 1a and the 
animation in the Supplementary Information (SI) [11].

The dislocation theory of melting assumes a sudden catastrophic proliferation of 
dislocations, and in its best-known variant the liquid state is essentially a crystal sat-
urated with dislocation cores [16, 17]. This approach has so far had only limited suc-
cess but similar considerations apply to other types of defects. In particular, recent 
simulations of polyhedral particles in 3D reported a phenomenon near melting cor-
responding to that noticed by Alder and Wainwright [18–22]. Rod-shaped vacancy 
defects (‘anti-crowdions’ [14] or ‘voidions’; see example in Fig. 1b) appeared in the 
solid which stochastically diffuse along their length carrying mass flow. The number 
of voidions increased near the transition, where they suddenly proliferated, enlarging 

Fig. 1   Topological defects that increment or decrement the number of particles. (a) a <100> crowdion: 
13 particles share the space of 12 in 6 bcc cells [11–13]. (b) an ‘anti-crowdion’ [14] or voidion: 10 cubes 
share the space of 11, from simulation by van der Meer, van Damme, Dijkstra, Smallenburg and Filion, 
revealing a vacancy analog of the crowdion interstitial in simple cubic crystals, Phys. review letters 121, 
258001 (2018) [15]. (c) Schematic density and (d) particle displacements Δx along the central axes of 
the defects (Color figure online)
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the volume while their mobility transformed the solid to a fluid phase. An intermedi-
ate liquid-crystal-like mesophase was reported between the solid and the liquid [18]; 
see subsequent simulations of larger systems and discussion [15, 19].

2 � Thermodynamics of Melting

The voidions in Fig. 1b are rod-shaped and are constrained to lie along the Car-
tesian directions of a cubic lattice. In 1963, Zwanzig showed that lattice-bound 
rod-shaped entities become thermodynamically unstable, resulting in a first-order 
phase transition, if their concentration rises above a threshold value [23]. At low 
concentration, they are randomly oriented (isotropic) along the allowed crystal-
lographic directions, but above the threshold concentration they locally align par-
allel to one another (nematic) which increases their packing efficiency and hence 
increases their accessible volume and associated translational entropy analogous 
to a liquid crystal transition [18, 24, 25].

Before the transition, the number of voidions in equilibrium is given by the 
usual Boltzmann formula n = no e

−E∕kT where E is the energy required to create a 
voidion, k is Boltzmann’s constant, T the temperature, n is small, and the constant 
of proportionality no is the number of accessible states of position and momen-
tum (weighted according to their energy if the energies differ) [26]. At constant 
pressure, E includes any work done against the external pressure when creating a 
voidion, i.e. it is the change in enthalpy H.

The following short proof of the Boltzmann distribution serves to introduce 
terminology. Consider two systems of N particles in equilibrium at pressure p 
and temperature T, one containing n and the other n + 1 voidions. The second 
system may be generated by removing a particle from the interior of the first 
and placing it at the surface, enlarging the volume V by V �

= V∕N where prime ′ 
denotes (�∕�n)p,T ,N (we have neglected possible elastic deformations due to creat-
ing the voidion, a very good approximation at constant pressure but not valid at 
constant volume where the lattice will be compressed). In equilibrium at con-
stant pressure, the Gibbs free energy G must be stationary (a minimum) so that 
G�

= H�
− TS� = 0 where H is the enthalpy and S is the entropy. Substituting 

S� = −k loge(n∕no) for small n gives n = noe
−H�

∕kT.
In this isotropic phase, the voidions ‘behave as a polydisperse “gas” of per-

pendicular hard rods (similar to the well-known Zwanzig model for nemato-
gens).’ [21]. When the voidions locally align parallel to one another, it increases 
their accessible volume and associated translational entropy as implied by Zwan-
zig, which corresponds to increasing no . The system responds by increasing the 
number n of voidions until n∕no (and hence S′ ) return to their original values and 
equilibrium is restored. Thus, H�

= TS� is approximately continuous, while the 
number of voidions increases discontinuously, thereby enlarging the volume. 
The copiously created voidions in the new phase move through the condensate 
in response to any local strains, transforming the rheology in a first-order melting 
transition.
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The foregoing transition is driven by increasing the entropy of rod-shaped 
excitations (voidions) that repel each other. A similar transition in this case 
driven by reducing enthalpy, occurs with excitations of any shape that attract one 
another. The following explication corresponds to the van der Waals equation of 
state for the condensing of a gas. The number of interactions between excitations 
is proportional to n2 for small n, and if they reduce the enthalpy H of the system 
by an2 then differentiating gives G��

= H��
− TS�� = −2a + kT∕n where the sym-

bol ′′ means (�2∕�n2)p,T ,N . The number of excitations will increase with tempera-
ture in accordance with Boltzmann statistics until they reach a threshold number, 
n = kT∕2a where G′′ reverses sign and the free energy switches from a minimum 
to a maximum, destabilising the Boltzmann equilibrium and increasing the num-
ber of excitations until their near-field repulsion (excluded volume) returns H′ to 
approximately its original value and equilibrium is restored.

The enthalpy change on creating an extra voidion can be estimated from avail-
able thermodynamic data using H�

= TS� ≈ TΔS∕Δn where Δ denotes the change at 
the transition. Substituting the Clausius-Clapeyron equation ΔS = ΔVdp∕dT  gives 
H�

≈ (ΔV∕Δn)Tdp∕dT  . This value can be extended into adjacent phases by inte-
grating the thermodynamic identity (�H�

∕�p)S = (�H∕�p)�
S
= V �

= V∕N on an adi-
abatic path away from the melting point so that, at any point in the vicinity of the 
transition,

where v = V∕N is the volume per particle, vm = ΔV∕Δn approximates to the vol-
ume per particle, pm is the transition pressure, and integration follows an adiabatic 
path in either direction away from the melting point.

(1)H�
≈ vm T

dp

dT
+ ∫

p

pm

v dp

Fig. 2   The change in enthalpy H′ and internal energy U′ on creating an extra voidion in equilibrium 
over a range of pressures p, calculated from published data using Eq. (1) and expressed as a temperature 
(see SI) [10, 27, 28]. The red lines show H′ and U�

= H�
− pV � on an adiabatic path through the melting 

points at the temperatures shown in the headings. The figures also show the experimental values of � , the 
excitation energy from neutron scattering [29] and � , the activation energy of mass flow through the solid 
phase [30] including two previously unpublished data points (private communication, Z G Cheng and J 
Beamish) (Color figure online)
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3 � Noble Gases and Colloids

Equation (1) governs particles that reversibly self-assemble into crystals at a transi-
tion pressure. Figure  2 shows the resulting enthalpy change H′ for three example 
solidification/melting transitions under pressure in noble gases, which are relatively 
inert like the particles in the simulations. It also shows the internal energy change 
U�

= H�
− pV � , which is discontinuous since the liquid has greater volume so more 

work must be done against the external pressure to create a voidion.
Figure 2 left shows the transition in argon at 147K and 3000 atmospheres, from 

published data [27]. The voidion enthalpy at melting ( H�
≈ 127 K) is comparable to 

the melting temperature as expected.
Figure 2 centre shows the solidification/melting transition in 4 He at 1.1K and 25 

MPa, also from published data [10]. The voidion enthalpy H′ is small near the melt-
ing pressure, indicating that the solid must contain many mobile voidions capable of 
carrying mass flow through the solid. This is consistent with experiment such as the 
exceptionally high malleability of the solid [31].

Figure  2 right shows the activation energy of thermally activated mass flow 
through solid 3 He from recent measurements [30]. The literature associates the solid 
flow with vacancies [31] and the figure confirms that the activation energy of the 
flow is the same as that of a voidion H′ over a range of pressures from published 
data [28]. Notice that the flow activation energy tends towards zero near the melting 
pressure. These measurements are consistent with Alder et al’s 1968 inference, from 
the anomalous heat capacity measurements, that the melting of solid bcc helium is 
caused by mass flow through the solid which magnifies at the melting point [9].

Cryogenic 4 He is not the only condensate of spherical particles with a close-
packed (cp) phase that melts on lowering the pressure. Computer simulations of 
hard spheres found a cp solid whose volume expands as the pressure is lowered until 
it melts [32]; these simulations were an early model for uncharged spherical colloids 
which melt from a cp phase at a threshold osmotic pressure [33]. Figure 3 compares 
the proportional volume changes at the transitions [10, 32, 33]. Remarkably, they 
are the same to experimental accuracy (except near the normal-superfluid transition 

Fig. 3   The volume of the liquid phase relative to the coexisting close-packed solid in 4 He [10]. Unusu-
ally, the volume of the liquid reduces on heating for reasons discussed in the text. The value marked hs 
is from measurements of the corresponding melting transition in uncharged spherical colloids [33]; this 
relative volume change is the same as for the simulated melting in hard spheres to the accuracy of simu-
lation [32] (Color figure online)
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temperature in 4He, see below). This close agreement suggests that the liquid phases 
share the same statistical packing arrangements. If so, it follows that the liquid-like 
flow in all three systems is associated with the motion of voidions in response to 
mechanical strains (i.e. the flow is out of thermodynamic equilibrium). Experiments 
with colloids support this inference since mechanical strains, such as those due to 
stirring, readily liquefy the solid even at much higher concentrations than the melt-
ing density [33].

One of the factors contributing to the low voidion enthalpy in helium even at 
very low temperature, as shown in Fig. 2 centre and right, is that creating a void-
ion reduces the zero-point energy associated with confinement of the atoms. See 
Pushkarov’s quantum description of crowdions (the sister excitation to voidions) in 
cryogenic 4He, whose mobility reduces zero-point energy [34], and London’s 1936 
conjecture that zero-point energy must be associated with the hcp to liquid transition 
[35].

4 � Rotons

We saw that solid helium near melting contains fluctuations (voidions) which are 
precursors of the liquid phase. Very near the transition their enthalpy becomes nega-
tive (see Fig. 2) indicating a thermodynamically large number of voidions in the liq-
uid. Describing the same phenomenon from the other direction, the liquid contains 
density fluctuations (holes in the sea of voidions) which are precursors of the solid 
phase. Each excitation (voidion hole) increases the number of particles by one, and 
its enthalpy and internal energy can be inferred by reversing the signs of H′ and U′ 
in Fig. 2; as before, the enthalpy changes sign near the transition.

Such density fluctuations, called ‘rotons’, were recently described in experimen-
tal detail near the solidification transition of a dysprosium superfluid at nanokelvin 
temperatures [36]. Liquid 4 He contains corresponding roton excitations, which Fey-
nman described as ‘analogous to the motion of a single atom with ... the other atoms 
moving about to get out of the way in front and to close in behind’ [37]. This agrees 
with our deductions derived from a thermodynamic perspective, namely that liquid 
4 He contains excitations that increase the number of particles by one.

There is currently ‘no theory .. which can accurately relate the energy and 
momentum of the elementary excitations in helium II, as measured in neutron scat-
tering, to the thermodynamic properties’ [29]. The dispersion relation of these ele-
mentary excitations should determine quantities such as the specific heat and nor-
mal fluid density, but the comparison presents a number of experimental difficulties. 
However, the neutron scattering measurements are in excellent agreement with the 
foregoing thermodynamic description as follows.

Figure 2 centre shows that the neutron scattering energy is the same, to experi-
mental accuracy, as the internal energy cost of destroying a voidion, −U� , over a 
range of pressures near melting. This suggests that inelastic neutron scattering heals 
a voidion defect (in other words, it creates a roton, the current interpretation). The 
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event is complete before the volume can be equilibrated, so it occurs at fixed volume 
and costs energy −U� to a first approximation.

Voidions also quantitatively account for the observed momentum transfer. A 
voidion advancing at velocity � has momentum −m� where m is the atomic mass. 
In a simplification, if the momentum was shared equally among � particles then the 
kinetic energy would be mv2∕2� , which is conventionally described as an effective 
mass of m∕� . Neutron scattering experiments report 0.13m at 1K near the melting 
pressure [29], suggesting the momentum is shared among at least 8.7 particles (more 
if the momentum is shared unequally). This is consistent with the volume increase 
on melting, 10.2% (Fig. 3) [10], which suggests a ratio of one voidion per 9.8 parti-
cles in an approximation that neglects other factors such as possible variations in the 
effective atomic radius with coordination number.

The temperature dependence in these experiments follows from the fact that 
heating will enlarge the dimensions of the voidions due to thermal agitation. This 
reduces their effective mass by sharing the momentum among more particles, as 
confirmed in neutron scattering where the effective mass reduces on heating [29]. 
Larger voidions occupy more sites, which reduces their maximum number density 
and hence the volume of a sample, consistent with the negative thermal expansion 
coefficient of liquid helium at low temperature [10].

Rotons can also be created by thermal energy. They form at a heated surface and 
propagate away ballistically carrying heat energy and mass flow. It has been con-
firmed experimentally that their momentum is parallel to their direction of travel 
[38] as expected for density fluctuations that increase the number of particles. Col-
liding them together produced another species of rotons, denoted R− , with momen-
tum antiparallel to its direction of travel [38]. There is a natural interpretation that 
energetic collisions may create a crowdion-voidion pair; the voidion has antiparallel 
momentum.

Feynman was unsure as to the precise atomic arrangement associated with rotons, 
but argued that his proposed alternatives may be roughly equivalent, and in particu-
lar, they suggest the same wave-function ‘at least within a function ...which is deter-
mined only vaguely’. His approximate wave-function resembles Pushkarov’s quan-
tum description of crowdions (the sister excitations to voidions) in cryogenic 4 He 
[34, 37]. In Feynman’s quantum representation, the propagation direction of a roton 
is given by the standard wave relation, i.e. the gradient of the excitation frequency 
with respect to the wave vector.

5 � Melting on Elevating the Pressure

Sodium near 900K melts in the usual way on lowering the pressure, but it also melts 
on elevating it near 25GPa. The latter ‘re-entrant’ transition is associated with a sof-
tening of interatomic interactions, but a quantitative thermodynamic description of 
the resulting first-order transition has not been advanced [39].

Sodium is a bcc metal which is known to contain topological defects (crowdi-
ons and voidions such as in Fig.  1) that diffuse through the lattice, weakening it 
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mechanically [12, 13, 20, 26, 34]. They are studied in the context of radiation dam-
age, but if they are in thermodynamic equilibrium their number will rise on heating 
until, at the threshold number, it triggers a transition by the mechanism described 
above, and the thermodynamically large number of mobile defects changes the vol-
ume and fluidizes the new phase, i.e. the bcc phase will melt in a first-order transi-
tion. Transitions involving the proliferation of voidions reduce the packing efficiency 
(ordinary melting), while those involving crowdions increase it (re-entrant melting).

A similar melting phenomenon occurs in charged colloids where the arrange-
ments have been photographed; see Fig. 4 of a colloid of charged spherical par-
ticles where the osmotic pressure was varied via centrifuging [40]. The melting 
of the close-packed phase (at p′

m
 ) was described above. We are interested in the 

bcc phase which self-assembles between two pressures: pm where it melts on 
lowering the pressure and pr where it melts on elevating it. The former transi-
tion is consistent with the proliferation of voidions since lowering the pressure 
reduces their enthalpy H�

= ∫ V �dp = ∫ (V∕N) dp at constant entropy (see Eq. 1). 
In turn, this increases the equilibrium concentration of voidions in accordance 
with Boltzmann statistics until the transition is triggered. The transition at pr 
is attributed to a softening of particle (electrostatic) interactions [40]. This also 
accords with our thermodynamic description at fixed pressure, since the energy 
(enthalpy) needed to create a crowdion reduces on increasing the pressure: crow-
dions reduce the volume so that elevating the pressure reduces their enthalpy 
H�

= ∫ V �dp = − ∫ (V∕N) dp . 
Our thermodynamic description agrees quantitatively with experiment in 

sodium. Heating increases the equilibrium number of both types of defects, caus-
ing the two melting pressures to converge until the bcc phase of sodium is extin-
guished near 1000K and 25GPa. This maximum temperature agrees with the 
energy needed to create a crowdion, of order 0.1eV [11] which corresponds to 
1160K. It also accounts for the unusual shape of the melting curve. For example, 
when melting involves the creation of voidions and crowdions in equal numbers, 
there is no volume change and the melting curve is vertical from the Clausius-
Clapeyron equation, dp∕dT = ΔS∕ΔV .

Fig. 4   Phases of a charged spherical colloid on varying the osmotic pressure p, with a schematic show-
ing the changes in n, the number of voidions or crowdions. Photographs to the same scale, from Royall, 
Leunissen, Hynninen, Dijkstra, and van Blaaderen, Re-entrant melting and freezing in a model system of 
charged colloids, J. chemical physics 124, 244706 (2006) [40]. The solid phases reported in this experi-
ment are body-centred cubic (bcc) and random hexagonal close packed (rhcp) (Color figure online)
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Finally, in further evidence, silicon transitions to a liquid or a glass on elevat-
ing the pressure, depending on temperature. Our attribution of such re-entrant 
transitions to the proliferation of crowdions is supported by recent simulations 
which discovered nanoscopic structures of enhanced coordination number and 
density in both the liquid and the glass [41] which we associate with crowdions.

6 � Concluding Remarks

We wrote down a thermodynamic relationship, eq. (1), governing particles that 
reversibly self-assemble into crystals on varying the pressure and temperature and 
found that it is consistent with observation of ordinary and re-entrant melting transi-
tions in polyhedral particles, argon, cryogenic helium, colloids, hard spheres, sili-
con and sodium. In particular, it quantitatively accounts for phenomena in cryogenic 
liquid helium that were incompletely understood, including neutron scattering from 
rotons. The relationship may also apply to melting, sublimation and solid-to-solid 
transitions in other substances.
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