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Abstract
In this paper, we study the geometric quantum discord dynamics of the double quan-
tum dot charge qubit in the non-Markovian environment. We apply the non-pertur-
bative non-Markovian quantum state diffusion method to obtain the exact master 
equation of the double quantum dot system coupled to two independent non-zero 
temperature electronic bath. Then, we use this master equation to investigate the 
effects of non-Markovianity, inter-dot coupling strength and bath temperature on the 
dynamics of geometric quantum discord. Our studies show that the geometric quan-
tum discord of a double quantum dot system can be modified and enhanced in some 
cases via these factors.

Keywords Geometric quantum discord · Non-Markovian · Quantum state diffusion · 
Double quantum dot

1 Introduction

Quantum entanglement is one of the fundamental properties of quantum mechan-
ics [1] and also a core resource in the field of quantum information and quantum 
computing [2–4]. However, relevant theories and experiments have confirmed 
that quantum entanglement is not the only quantum correlation. Even if a non-
entangled system, there might still exist some other kind of quantum correlations 
in it. One of them is the quantum discord (QD), which is introduced by Olivier 
and Zurek based on von Neumann entropy [5]. Owing to QD significance and 
pervasiveness, its characterization, quantification, and functions have been exten-
sively investigated. But the calculations of QD require minimization procedures, 
which makes the calculations difficult. It had been calculated specifically only for 
a rather limited quantum states, and definition for more general quantum states is 
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still not known. To avoid this difficulty, Dakic et al. [6, 7] introduced the concept 
of geometric quantum discord (GQD), which greatly simplifies the calculation 
process and gives us a better way to understand and study QD. However, GQD 
is analyzed in a lot of theoretical models, such as a non-interacting simplest type 
of qubits [8, 9], these researches shown GQD can be controlled by the bath and 
initial state.

Among many physical systems in which quantum correlation states can be pre-
pared via various methods, the charge qubit encoded by the electron occupied states 
in a double quantum dot system has attracted much attention due to its controllabil-
ity and some unique characteristics in the fields of quantum information and quan-
tum control [10–12]. As a scalable solid-state system, it is also a hopeful candidate 
for quantum computing. However, like many other solid-state systems, a practical 
double quantum dot system is an open system, which is inevitably affected by the 
surrounding electronic bath, whose influence cannot be ignored. In an open quan-
tum system, the state of the system and the environment are entangled, and the state 
vector cannot accurately describe the state of the system. Therefore, in the open 
quantum system theory, the state of the system is described by the density operator. 
The equation of motion of the density operator is also called the master equation, 
which contains all the dynamic characteristics of an open quantum system. Recently, 
with the applications of principles and methods of quantum decay to superconduct-
ing devices, applications and implications in quantum thermodynamics setups are 
discussed in [13]. Steady state thermodynamics of two qubits strongly coupled to 
bosonic environments are analyzed to show that heat conduction in non-equilibrium 
steady states can be suppressed in the strong coupling limit [14].

Based on the reversibility of the process, the dynamics of an open quantum sys-
tem is defined as Markovian or non-Markovian. While the Markov evolution is an 
irreversible process, in the case of non-Markovian dynamics, the system energy (or 
phase information) dissipated into the environment may flow back to the system 
within a certain time interval and restore its historical state. Relevant studies have 
proved that the dynamic evolution of a double quantum dot system is a non-Marko-
vian process [15, 16]. Decoherence dynamics of a double quantum dot charge qubit 
is analyzed using the Feynman-Vernon influence functional path-integral method 
[16]. Compared to the path-integral method, the non-Markovian quantum state dif-
fusion (NMQSD) method proposed by Diosi et  al. [17, 18] has shown its unique 
computational characteristics in the study of non-Markovian dynamics of various 
solid-state systems coupled to the bosonic or fermionic bath [19–24]. In this article, 
we use the fermionic NMQSD method to obtain the non-Markovian exact master 
equation of a double quantum dot system strongly coupled to two independent non-
zero temperature electronic bath (source and drain). And with the master equation, 
we study the dynamic evolution characteristics of the GQD in the double quantum 
dot charge qubit system. The present study of GQD in simple examples will help us 
to understand the non-Markovian behavior of GQD and will demonstrate the quan-
tum correlation in double quantum dot systems can be manipulated with the help of 
non-Markovianity, inter-dot coupling and the fermionic bath temperature. In particu-
lar, these results may be helpful in the fields of quantum information as far as the 
GQD in double quantum dot charge qubits is considered as a resource.
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The paper is organized as follows: In Sec. II, the model of a double quantum dot 
system coupled to two independent non-zero temperature electronic bath is intro-
duced, and then, the formal exact master equation of the total system is derived 
using the fermionic NMQSD method. In Sec. III, after a brief introduction of GQD, 
the numerical simulations of GQD dynamics in the double quantum dot based on 
the exact master equation are provided. Finally, a brief conclusion is presented in 
Sec. IV.

2  System Model and Master Equation

There are many factors competing to play the consequent physics in the double 
quantum dot system. In this paper, we focus on the effects induced by the dot-bath 
coupling, inter-dot coupling, and bath temperature on the resulted non-Markovian 
dynamical properties of this charge qubit. For the double quantum dot charge qubit, 
the electronic occupied state is a �1⟩ state, and empty state is a �0⟩ state. The dou-
ble quantum dot is designed in the strong Coulomb blockade regime such that only 
one electron is allowed in the double quantum dot, and each dot only contains one 
energy level. Hence, a complete basis of the Hilbert space can be formed by the fol-
lowing �00⟩,�01⟩,�10⟩ states, on which an arbitrary state can be always written as

where |a|2 + |b|2 + |c|2 = 1.
The total Hamiltonian of the system is consisted of three parts: the double quan-

tum dot HD, the electronic bath HB and the interaction term Hint and can be written 
as (setting ℏ=1)

Here, a†
�
, a�(� = 1, 2) are the creation and annihilation operators for the electrons 

in the quantum dot with energy level Eη, and g is the inter-dot coupling strength. 
b
†

�k
, b�k(� = s, d) are the creation and annihilation operators for electrons in the 

source and drain at k’th mode, which satisfy the anti-commutation relations {
b�k, b

†

�
�
k
�

}
= ��k,�� k� , and ��k is energy of the bath electrons. The first (second) 

quantum dot is coupled to the source (drain) by the tunneling strength f�k , which 
corresponds to a tunneling rate Γ�k= 2���k

||f�k||
2 , where ��k is the density operator of 

the bath.
In the NMQSD method, to conveniently represent the environmental degrees 

of freedom with the coherent state basis, environments are required to be initially 
at zero temperature. As for the initially finite temperature bath, we can introduce 
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a fictitious bath term HC =
∑
�k

−��kc
†

�k
c�k to transform the finite temperature case 

into an effective zero by applying the Bogoliubov transformation [23, 24].
After the Bogoliubov transformation

The total system Hamiltonian in the interaction picture read as

where n�k is the average number of electrons in the k’th state of the source and drain 
with chemical potential �� . The fermionic operators d�k, e�k satisfy {
d�k, d

†

�
�
k
�

}
=
{
e�k, e

†

�
�
k
�

}
= ���� ,kk�.

We use Grassmann-Bargmann coherent states ��z�k⟩,��w�k⟩ to describe the state of 
electronic bath HB and fictitious bath term HC. The coherent states are defined as

where z�k,w�k are the Grassmann variables, satisfy 
{
z�i, z�j

}
=
{
w�i,w�j

}
= 0 and 

M
�
z�w�

�
= ∫ ∏

�

e−z
∗
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∗
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dw2

�
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∗
�
w�[∙]dz2

�
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�
 is 

the statistical mean over the Grassmann Gaussian noise variables. The time-local 
fermionic NMQSD equation can then be written as

where z∗
�k

,w∗
�k

 are the Grassmann Gaussian noise. O�,Q� are the operators defined as
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Ō𝜆

(
t, z∗

𝜆

)
= ∫ t

0
ds𝛼𝜆(t, s)O𝜆

(
t, s, z∗

𝜆

)

Q𝜆

(
t,w∗

𝜆

)
= ∫ t

0
ds𝛽𝜆(t, s)Q𝜆

(
t, s,w∗

𝜆

)



130 Journal of Low Temperature Physics (2021) 205:126–134

1 3

With the noise correlation function, Eq. (8), which is realized for the Drude, Lor-
entz, and Brownian cases (and combinations thereof), one can obtain the reduced equa-
tions of motion as the hierarchial equations of motion, by which quantum heat transport 
phenomena was investigated intensively [25–27].

By substituting the fermionic NMQSD equation (Eq. (6)) into the following relation

where Pt=
|||�t

(
z∗
�
,w∗

�

)⟩⟨
�t

(
−z

�
,−w

�

)||| as the stochastic density operator, the non-
Markovian exact master equation of the double quantum dot system strongly cou-
pled to two independent non-zero temperature electronic bath with memory effect 
can be written as

In the subsequent sections, we will use the above non-perturbative master equation 
to numerically study the non-Markovian dynamics of double quantum dot charge qubit 
GQD (Fig. 1).

3  Data Analysis and Discussion

According to the definition of GQD, the general two-qubit state can be written as [28]
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Fig. 1  The sketch of double quantum dot system (Color figure online).
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where ‖x‖2=
3∑
i=1

x2
i
,‖R‖2=

3∑
i,j=1

R2

ij
,kmax is the maximum eigenvalue of the matrix 

xxT + RRT . The maximum value of GQD is 0.5 and the minimum value is 0. For the 
X-state quantum system, the GQD analytic expression can be written as [9]

where k1 = 4
(||�23|| − ||�14||

)2,k2 = 4
(||�23|| + ||�14||

)2

,k3 = 2

((||�11|| − ||�33||
)2

+
(||�22|| − ||�44||

)2) are the eigenvalues of the matrix k. In 
the strong Coulomb blockade regime, the Eq. (13) can be written as

The double quantum dot system rate equations are reduced to [16]

Based on the Eqs. (10), (12), (14) and (15), we next numerically simulate the non-
Markovian dynamics of the double quantum dot charge qubit GQD. We will focus 
on the coherent manipulation regime where the double dot is set up symmetrically 
E1 = E2 = 25�eV  and the chemical potentials of the electron reservoirs are aligned 
above the energy levels of two dots with zero-bias voltage �1 = �2 = 20�eV  . 
For simplicity, we also choose the symmetric case of the same tunneling rate as 
ΓS = Γd= 100�eV  . Moreover, the correlation functions are modeled as the Orn-
stein–Uhlenbeck process

where γ−1 is memory time of the environment. When γ approaches to zero, it will 
manifest a strong non-Markovian effect, while � → ∞ corresponds to a white noise 
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We first consider effect of the environmental non-Markovianity on the double 
quantum dot charge qubit GQD. In Fig. 2a, b and c, we plot the GQD dynamics for 
separable initial states �00⟩,�10⟩,�01⟩ , respectively. The numerical simulation results 
show that GQD is generated only when the electron is allowed to enter at least one 
of the quantum dots. Moreover, for the �10⟩,�01⟩ states, we can see that the degree 
of the repeatedly regenerated GQD depends on the value of the parameter γ. When 
γ = 0.1, which is a strong non-Markovian regime for the environment, the charge 
qubit GQD exhibits a strong oscillation pattern before completely disappears. But 
when the environment recovers to the Markov limit γ = 1, it leads to a faster con-
verging of GQD to the ground state. In Fig. 2d, the initial state of the charge qubit 
is prepared to be in the maximal GQD. We note that when the environment is in 
the Markov limit (γ = 1), the charge qubit GQD sharply decays to the zero, accom-
panied by exponential decoherence. In a strongly non-Markovian regime (γ = 0.1), 
the non-Markovian time-dependent decay rate leads to a slower decay compared to 
the Markovian exponential one without dropping to the ground state for a definite 
time scale. Moreover, the decay process can be partially reversed due to the negative 
values of the decay rates. These show that the environment non-Markovianity can 
significantly enhance the generation and re-coherence of charge qubit GQD.

The inter-dot strength coupling is the crucial parameter that directly affects the 
properties of the double quantum dot system. When the dots are coupled through an 
ionic-like bond (weak coupling), the electron is localized on the individual dots, and 
when the coupling is covalent-like bonds (strong coupling), an electron can tunnel 
many times between the two dots in a phase-coherent way, which can be regarded 
as a coherent wave that is delocalized over the two dots [29, 30]. In Fig.  3a, we 
plot the dynamic evolution of the charge qubit GQD with different coupling strength 
parameters g. As can be seen, the stronger the inter-dot coupling ( g = 80�eV  ), the 
more robust the GQD is. This shows the non-classical coherence of the strong cou-
pled dots can inhibit the decay of charge qubit GQD. Another parameter that will 
affect the double quantum dot properties is the temperature of the bath. In Fig. 3b, as 

Fig. 2  (Color online) The dynamics of GQD with different memory capacity parameter γ. The initial 
states are a �00⟩ , b �10⟩ , c �01⟩ , d (�01⟩ + �10⟩)

�√
2 . Other parameters are g = 45�eV  , T = 0



133

1 3

Journal of Low Temperature Physics (2021) 205:126–134 

an expected result, in the low temperature electronic bath, the charge qubit GQD is 
enhanced and exhibits a stronger non-Markovian oscillation pattern compared to the 
case of high temperature electronic bath due to the more dominant non-Markovian-
ity at low temperature. This is due to the fact that the thermal movement of electrons 
in the bath can be suppressed by the low temperature so that the information feed-
back from reservior to the system is less influenced by the thermal fluctuation.

4  Conclusion

In this paper, using the non-perturbative NMQSD equation, we derived the exact 
master equation of the double quantum dot system coupled to two independent non-
zero temperature electronic bath directly from the microscopic Hamiltonian. Based 
on the master equation, we carried out numerical simulations of non-Markovian 
dynamics of the double quantum dot charge qubit GQD. Our results show that due 
to the non-Markovian environment memory, the historical phase information is 
recovered to some level leading to the regeneration of GQD. Moreover, the strong 
inter-dot coupling resulting in coherent tunneling and low bath temperature caus-
ing more dominant non-Markovianity both make a more robust charge qubit GQD. 
These theoretical investigations on the non-Markovian dynamics of double quantum 
dot charge qubit GQD may be helpful when it comes to use the system in quantum 
information processing.
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Fig. 3  (Color online) The dynamics of GQD with different strength couplings g and different tempera-
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state is |a|2 = 0,|b|2 = |c|2 = 1∕2 for all cases
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