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Abstract The structure and density dependence of the pairing gap in infinite matter is
relevant for astrophysical phenomena and provides a starting point for the discussion
of pairing properties in nuclear structure. Short-range correlations can significantly
deplete the available single-particle strength around the Fermi surface and thus provide
areduction mechanism of the pairing gap. Here, we study this effect in the singlet and
triplet channels of both neutron matter and symmetric nuclear matter. Our calculations
use phase-shift equivalent interactions and chiral two-body and three-body interactions
as a starting point. We find an unambiguous reduction of the gap in all channels with
very small dependence on the NN force in the singlet neutron matter and the triplet
nuclear matter channel. In the latter channel, SRC alone provide a 50% reduction of
the pairing gap.

Keywords Nuclear physics - Superfluidity - Nuclear matter - Neutron matter

1 Introduction

Superfluidity plays an important role in nuclear physics. Nuclear structure is greatly
influenced by pairing [1]. Nuclear reactions can be sensitive to pairing correlations
[2]. In nuclear physics, the Bardeen—Cooper—Schrieffer (BCS) approach, coupled to
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density functional techniques for nuclear structure, has been particularly successful
in addressing a number of observed patterns that are sensitive to pairing correlations
[3,4]. There are still open questions in terms of how these patterns arise from first
principles [5,6]. Among others, we focus here on three key issues that affect the
pairing gap in infinite nuclear matter. The first one is the role that strong short-range
correlations (SRC) play in dampening the pairing gap. Second, what is the influence of
three-nucleon forces (3NF) on pairing properties? Third, and final, one would like to
know the size and density dependence of isoscalar neutron—proton pairing correlations.
In this contribution, we will focus on these aspects and address them using infinite
nuclear matter calculations based on a many-body approach that consistently treats
SRC, 3NFs and tensor correlations. Long-range correlations can and will significantly
affect the pairing gap, but we do not address them directly here [7—10].

Short-range correlations have an impact on nuclear structure [11-14]. A key effect
of SRC is the removal of single-particle strength below the Fermi surface, which
automatically brings in a population of high-momentum components [15-17]. These
components have been unambiguously identified in a variety of electron knockout
reactions [18-20]. The question of how this removal of strength affects the Fermi
surface and its surroundings is technically difficult to address, but is capital for pairing
properties which are sensitive to correlation effects [21,22]. A variety of many-body
techniques, like Brueckner—-Hartree—Fock [8] or correlated basis functions methods
[23], have been extended to treat pairing correlations. Here, we present results based
on the self-consistent Green’s function (SCGF) approach developed in Ref. [24] and
further extended in Ref. [10]. The approach provides a fully microscopic account of
single-particle strength removal based on realistic nucleon—nucleon (NN) interactions
and, in its extended pairing formulation, is well suited to account for SRC in pairing
properties.

Pairing properties can be directly linked to the underlying NN interaction [1]. NN
forces based on chiral perturbation theory have become a useful tool in nuclear ab
initio studies [25,26]. A key advantage from this approach is that NN forces go hand
in hand with associated 3NF. Besides that, chiral interactions also provide a way to
explore uncertainties in many-body calculations, either by using cut-off variation [27]
or more sophisticated techniques [28]. These approaches have recently been used to
estimate systematic errors in pairing gaps within the BCS approach, including the
effect of 3NFs [29,30]. The SCGF method can be reformulated starting from NN and
3NF forces [31], providing a transparent procedure to incorporate 3NFs into many-
body calculations considering SRC effects. In the case of chiral interactions, 3NFs at
N2LO have been implemented [32,33] and provide results that agree well with the
uncorrelated averages based on a free space normal-ordering procedure [29,30,34,35].
These interactions can be further incorporated into a pairing scheme and provide
insight on the relevance of 3NF for pairing physics.

Experimental and theoretical evidence points towards the fact that nuclear pairing
phenomena can be explained using (neutron—neutron) nn or (proton—proton) pp pair-
ing alone [1]. In stark contrast, BCS predictions in infinite matter using realistic NN
forces predict the largest pairing gap in the >SD; channel [36-39]. Isospin symmetric
nuclei do not show any phenomenological signal of dominant, strong np pairing [40].
This seems to point towards the fact that BCS predictions are invalid in this channel,
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at the very least for finite systems if not in infinite matter. Whatever quenching mech-
anism operates in this channel, then, it must be significant enough to strongly reduce
attractive pairing correlations. We study the effect of the SRC depletion of the nuclear
gap in symmetric matter using SCGF with 3NF.

The paper is organised as follows. Section 2 covers the formalism and theoretical
approach. Results for neutron matter are given in Sect. 3, whereas symmetric matter
and SD pairing are discussed in Sect. 4. Conclusions and an outline of future research
are provided in Sect. 5.

2 Formalism

In general, the BCS nuclear problem can be recast into an integral gap equation with
the following form:

JL-L
VL,(k Ky

J(L)
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where A ,{ is the pairing gap for a given total pair angular momentum J =L+ S.Ina
BCS picture, V 1k, k') is the bare NN interaction and k (k') represents an incoming
(outgoing) relatwe momentum for the usual BCS kinematics where centre-of-mass
momentum is set to zero. We consider coupled partial waves where J is conserved
but L # L’. The energy denominator & contains the information of the in-medium
propagation of paired particles. In the lowest order BCS approximation which we have

implemented here
-2
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where 1 is the chemical potential. The quasi-particle spectrum ¢, provides a disper-
sion relation between single-particle momenta and energies. The gap equation above
is derived under an angle average approximation, so that the average gap in the denom-

2
inator is insensitive to the L quantum number, A? = 3", [ J(L)]

Within the Gorkov formalism [21], the energy denominator of the gap equation is
provided by a double-energy convolution,

1 do do' 1 — f(w) — f(a)’)
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Here, f(w) = [1 + exp (%)]7] is a Fermi—Dirac distribution. The single-particle
spectral function Ay (w) describes the fragmentation of strength for a given momen-
tum k in the normal state [41]. In a quasi-particle picture, it reduces to a single § peak
centred at a dressed quasi-particle energy, &¢. The superfluid spectral function A (w),
in contrast, accounts for the presence of superfluidity. In a quasi-particle approxima-
tion, it describes a gapped spectrum and thus carries effectively information on the
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gap [21,24]. SRC associated with realistic NN forces induce fragmentation on the
normal and superfluid spectral functions. The coupled self-consistent pairing problem
including off-shell, energy-dependent spectral functions has only been solved with
simplified separable interactions [21].

Medium modifications to the BCS gap equation have been suggested to approx-
imately account for the fragmentation effects associated with Eq. (3). These can be
broadly divided into two subsets. In the lowest order BCS approach, the single-particle
energies in Eq. (2) are given by kinetic energies, & = % The first type of correction
attempts to modify the single-particle energies by introducing a momentum-dependent
single-particle in-medium shift, Uy. The overall effect can be very well approximated
in terms of effective masses at the Fermi surface, m*, and the gap is approximately
quenched by a factor m*/m [38]. The second kind of correction attempts to take
into account not only the shift, but also the reduction of single-particle strength
around the Fermi surface. To avoid the double convolution, fragmentation is intro-
duced via a momentum-dependent Z-factor, Z; < 1 [9,42]. In the following, we will
present results where these two effects are taken into account, and refer to it as the
“BCS + ¢ + Z;” approximation. Unfortunately, this approach only reproduces qual-
itatively the fragmentation of single-particle strength and in-medium quasi-particle
shifts.

The fragmentation induced by SRC in infinite matter can be accessed directly by
means of finite temperature SCGF calculations [41]. In this approach, in-medium
off-shell effects are consistently incorporated in the self-energy and in the effective
T-matrix interaction [43,44]. The single-particle spectral functions thus obtained have
relatively broad, momentum-dependent quasi-particle energies as well as extended
high-energy tails [17]. Normal single-particle spectral functions can now be routinely
obtained in infinite matter at finite density and temperature for any realistic NN force
[10,17,33]. An extrapolation procedure that takes into account the thermodynamical
consistency of the theory has been implemented to obtain the zero-temperature nor-
mal spectral functions [10], which can then be convoluted to get a “double normal”
denominator

Ar(0) A (@) . (4)

2xc
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While this denominator does not contain any information on the superfluid, it does
consistently account for the fragmentation of the spectral strength in infinite matter.
It can therefore be used to inform the superfluid phase of this fragmentation. The first
step towards a full self-consistent Gorkov solution is in fact found by including this
double normal denominator in the gap equation:

dk’ iLLv (kK ,
J(L) 2 : L\ J(L')
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The gap contribution in the denominator guarantees the nonlinearity that is necessary
to obtain a nontrivial pairing gap. The results obtained within this scheme differ quali-
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tatively from those obtained in extended BCS approaches with effective single-particle
energies, Uy, and/or strengths, Z; [10,24]. In the following, we will present results
obtained within this approach and label them “SRC” to indicate that the associated
gap calculations explicitly incorporate the effect of SRC.

Three-body forces play an important role in the saturation properties of infinite
nuclear matter and arise naturally in chiral perturbation theory [25,26]. These can be
incorporated into SCGF infinite matter calculations following the techniques outlined
in Ref. [31] and implemented in infinite matter in Refs. [32,33]. These represent an
extension of the normal-ordering approach, but incorporating explicitly the effect of
SRC via correlated momentum distributions. The effect of 3NF on single-particle
properties below saturation is rather mild, whereas above saturation the quasi-particle
spectrum becomes generally more repulsive. Depending on the 3NF, the momentum
dependence can also change and hence induce a substantial difference in effective
masses. In the following, all SCGF calculations including 3NF have been obtained
within the correlated approach with internal regulators [33].

3NF can be and have been incorporated in pairing calculations in the past [45,46].
Formally, one can prove from the original BCS formalism that 3NF enter the gap
equation, Eq. (1), via an average of the third particle in the normal-ordering spirit [47].
When fully antisymmetrised matrix elements are used in both the density-averaged
3NF, WLJ L and the 2NF, VLJ L the two contributions are added together to obtain the
bare pairing interaction in Eq. (1) [29,30,35]. The pairing results we show have been
obtained by solving the gap equation with these extended pairing interactions. The 3NF
in this case are however reduced to a density-dependent force using an uncorrelated
Fermi distribution. We do not expect that this small inconsistency affects the results in
any qualitative way. The extension of the pairing approach to incorporate correlated
averages is underway.

3 Pairing in Neutron Matter

We start our discussion by considering the case of pure neutron matter, in which
isoscalar partial waves are forbidden. We present results for the 'Sg singlet channel,
which dominates at low densities, first. We subsequently discuss the coupled triplet
channel, 3PF,, which is active at higher densities. Both cases are of relevance for
astrophysics, particularly neutrino cooling [48,49], although we refrain here from an
at-length discussion as we do not include LRC effects.

3.1 Singlet Pairing

We present the results of singlet pairing in neutron matter in the top panels (a)—
(d) of Fig. 1. These summarise the results for the gap at the Fermi surface in the
singlet channel as a function of Fermi momentum. While we have access to the full
momentum dependence of the gap, we restrict this discussion to the values at k = kg
for brevity. The gap obtained in the BCS approximation with two-body-only forces and
free single-particle spectra is shown in the panel (a). Solid, dashed and dotted lines
correspond to three different N3LO chiral NN forces introduced in Refs. [50,51].
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Fig. 1 Top panels: singlet gap in neutron matter at the Fermi surface as a function of Fermi momentum,
kg. From left to right, panels correspond to a BCS results with NN forces only, b BCS results with chiral
NN + 3NF forces, ¢ BCS with single-particle spectra with chiral NN + 3NF forces and strengths and d SRC
results with chiral NN 4 3NF forces, respectively. Bottom panels: the same for the triplet channel in neutron
matter (Color figure online)

These are characterised by different cut-offs, ranging from A = 414 MeV (solid
lines) to A = 450 MeV (dashed lines) and to the standard Entem—Machleidt force
with A = 500 MeV (dotted lines). Cut-off variation is one way of providing systematic
errors, and the area covered by these 3 forces is therefore indicative of one type of
uncertainty. We note that other errors, particularly those associated with different
regulators for a given cut-off, should also be explored.

With these interactions, the maximum gap is located around kr &~ 0.86 fm~! and
ranges from Apax ~ 2.96 MeV to 3.23. In all cases, the gap closes somewhat above
kp ~ 1.52 fm~!. This range of Apax is comparable to that associated with cut-off
variations with semi-local chiral forces [30]. We note that the cut-off dependence
around the maximum can be mostly ascribed to the N3LO450 interaction. The matrix
elements of the pairing interaction at the Fermi surface, V (kg, k), for these three
chiral forces are shown as solid lines in Fig. 2. We note that N3LOS500 is significantly
different in depth and shape from the N3LO450 and N3LO414 matrix elements. In
particular, it extends to higher momenta as expected from a larger cut-off which is
also implemented through a less sharp regulator [51]. The differences between the
N3L0450 and N3LO414 interactions are only visible near their corresponding cut-off
momenta. These small differences should explain the observed variation of the gap in
Fig. 1.

The chiral results with NN forces agree well with those associated with traditional
phase-shift equivalent interactions, like CD-Bonn [52] and Argonne v18 (Av18) [53].
We show these as dash-dotted and dash-double-dotted lines in Fig. 1. We find that
these two interactions provide results that are in between the N3L0O414 and N3LO500
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Fig. 2 Matrix elements of the pairing interaction V (kp, k) in the singlet channel in neutron matter at
kg = 1.33 fm—!. The solid lines in the left, central and right panels correspond to the N3LO500, N3LO450
and N3LO414 interactions. Dashed lines show the matrix elements when averaged 3NFs are introduced
(Color figure online)

forces, peaking at Apax &~ 3.00 MeV. One can therefore say that the gap in the singlet
channel is relatively well constrained, at least within the lowest order BCS approach
with NN forces only [1,30].

In-medium effects should play an increasing role at higher densities. The first type
of effect that we explore is that of 3NF. One of the advantages of chiral forces is that
the associated 3NF can be derived on the same footing within the chiral perturbation
theory expansion [25,26]. Here, we follow Ref. [51] and introduce 3NF at N2LO
in the chiral expansion. The independent low-energy constants in the three-nucleon
sector, cp and cg, do not play a role in neutron matter. We note however that these
have been adjusted to reproduce the experimental H and 3He binding energies and
the Gamow-Teller component of the triton B-decay half-life [51].

3NF matrix elements are predominantly repulsive in the relevant density regime
for this channel. The matrix elements associated with the NN+ 3NF chiral forces
are shown by dashed lines in Fig. 2 at kg = 1.33 fm~!. One clearly observes a
repulsive shift due to 3NF throughout all momenta. It is therefore not surprising that
the associated gaps in this channel become smaller when 3NF are included in a BCS
calculation. Panel (b) in Fig. 1 shows that 3NF reduce the maximum gap to values in
arange from Amax & 2.81 to & 2.96 MeV. The effect of 3NF increases with density,
and as a consequence, the closure of the gap is significantly affected by their presence.
Whereas gaps based on NN forces only close around kg ~ 1.5—1.6 fm~', gaps that
include 3NF become zero below ~ 1.4 fm~!.

We now turn our attention to other in-medium effects. We have implemented two
different approaches to treat this. Panel (c) shows results for an extension of the
BCS approach in which the single-particle energies, ¢, are obtained from a SCGF
calculation. The pairing interaction is also quenched by a momentum-dependent Z-
factor that is also obtained within SCGF. All results have been extrapolated to zero
temperature. We find that the pairing gap is quenched by in-medium effects, and now
the maximum gap lies in the region Apax =~ 2.40 to & 2.65 MeV. The results from
all NN interactions are very similar. Note, however, that this treatment does not take
into account the full off-shell dependence of the spectral strength.
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A more realistic treatment of strength removal is obtained in a consistent implemen-
tation of Eq. (5). The open symbols in panel (d) of Fig. 1 correspond to the CDBonn
and Av18 interaction SRC results already reported in Ref. [10]. SRC reduce the gap
at maximum by about 0.5 MeV with respect to the uncorrelated BCS approach and
also influence the closure Fermi momentum, which is about 0.2 fm~! smaller for
SRC predictions compared to BCS. The inclusion of 3NF only changes these results
quantitatively. Because the 3NF matrix elements are quite small around the maximum
gap, their influence in the SRC-correlated results is mild around the maximum. At
kr ~ 0.84 fm~!, the maximum gap with chiral NN + 3NF ranges between 2.15 and
2.34 MeV. As a consequence, the results below about kg & 1 fm~1! are similar to those
observed for CD-Bonn and Av18. Above this Fermi momentum, the gap with 3NF
and SRC is somewhat smaller than the NN-only prediction.

In general, we find results which are below the AvI8 prediction by about =~
0.1-0.2 MeV. We note that the origin of these small gaps is different in the case
of Av18 and that of chiral forces. For Av18, SRC are significant at these densities as
evidenced by the difference between the BCS and the SRC results. The same difference
for the chiral NN + 3NF forces is relatively smaller, which indicates that the effect of
SRC is less relevant for these soft chiral forces. Instead, small gaps are produced by
the repulsive effect of 3NF. Finally, we stress that the gap closure when 3NF and SRC
are considered occurs right above saturation, kg ~ 1.3 fm~!. Interestingly, the overall
picture shows a relative agreement between all approaches, which suggests that the
SRC-based depletion of the pairing gap is a rather universal effect. We also note that
LRC are repulsive in the singlet channel and hence reduce the gap further [10].

3.2 Triplet Pairing

The triplet channel in neutron matter has received attention recently [10,29,30,46]
because of its potential relevance in neutron star cooling physics, particularly in the
context of Cassiopeia A [48,49]. The bottom panels of Fig. 1 show the results of both
BCS and SRC predictions for the neutron matter gap in this channel. Two striking
features arise already at the BCS level in panel (e). First, unlike the singlet channel,
there is a substantial deviation of predictions above Fermi momenta of order kp &
1.7 fm~! in all the cases. At the lowest order BCS level, these differences must be
associated with the underlying pairing interaction. The attractive pocket of the diagonal
partial waves is located at relatively large momenta, so much so that there is a very
narrow range between the existing experimental data and pion creation threshold [29].
In other words, phase shifts are not restrictive enough in this relatively high density
region. Consequently, there is a wide range of predictions for pairing gaps based on
NN-only calculations in the BCS approach [panel (e)]. Whereas CD-Bonn, Av18 and
N3LO500 gaps peak above 0.5 MeV somewhere above kg = 2.2 fm ™!, the softer chiral
interactions N3LO450 and N3LO414 predict gaps with maxima below 0.3 MeV at
Fermi momenta below 2 fm~!. In fact, for the chiral interactions with a relatively low
and sharp cut-off, the closure momenta are relatively close to the cut-off momenta.
The other relevant feature that we want to highlight at the BCS level is the effect of
3NF, shown in panel (f) of Fig. 1. Whereas in the singlet channel 3NF played a repulsive
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Fig.3 The same as Fig. 2 but at kp = 1.68 fm~L. Top, central and bottom panels correspond to the partial
wave channels 3P2, 3F2 and the coupling 3PF2, respectively (Color figure online)

role that reduced the gap, in the triplet channel 3NF actually tend to increase the gap.
Again, at the BCS level this effect must be traced back to the pairing interaction. We
plot the components of the pairing interaction V (k, kp) for the three relevant partial
channels in Fig. 3 at kg = 1.68 fm~!. The effect of 3NF in the pairing interaction in the
diagonal *P; and 3F, channels is attractive, but relatively mild. 3NF are larger in the
coupled channels, where they are repulsive in absolute value. Overall, the attractive
3NF components must be dominant and result in a larger gap at all densities for each
force. With 3NF, the gaps reach maximum values of A, = 0.5 — 0.6 MeV for
N3LO0414 and N3LO450 and 1.22 MeV for N3LO500. The gap closure for the two
lower cut-off forces is not affected much by 3NF, which suggests that the closure is
due to the presence of the cut-off independently of 3NF.

The effect of SRC is significantly different in the triplet channel than in the sin-
glet channel. Again, we have implemented two different approaches for SRC—an
incomplete treatment using single-particle energies and renormalisation factors (or
“BCS +¢r + Z;” approximation) [panel (g)] and a complete treatment of fragmen-
tation in pairing physics effects [panel (h)]. In either approach, CD-Bonn and Av18
gaps are strongly suppressed at high densities, and the maximum gaps are well below
0.1 MeV in the more complete treatment of SRC. These relatively hard forces have

@ Springer



J Low Temp Phys (2017) 189:234-249 243

BCS NN BCS NN+NNN BCS+g,+Z; SRC
13 T T T T T T T T T T T T T T
Z120%D, @ ¢ (b) 3 F3sp, (©) 3 F3sp, (@) A
210 . 1F 7 F== N3LO+NNN 7 F== N3LO+NNN ]
2 9F \ 1F 7 [ ° CDBomn 7 F ° CDBomn ]
=2 8F vodF dF « Avis 1 F » Avig E
< 70 U 1F 1F 7]
- 6F (R 1k 1E 1
&5-’—‘N3L() i 1F 1F 1F 22 E
on AF T A=8laMev | JF 3 J1F J1F ]
£ 3*@’33?2% \ b 7 N3LO+NNN | 1F 1F 1
£ 3F -~ Cobom 4 F 1t 1k |
A TE - A F ‘ 1 F 1F E
1 Il 1 S Il 1 1 L 1 1 Il Il 1 Il >
%.0 05 10 15 20 00 05 10 15 20 00 05 10 15 20 00 05 10 15 20

Fermi momentum, kg [fm™] Fermi momentum, kg, [fm™"] Fermi momentum, kg [fm™"] Fermi momentum, kg [fm'l]

Fig.4 Triplet gap in nuclear matter at the Fermi surface as a function of Fermi momentum, k. The different
panels correspond to a BCS results with NN forces only, b BCS results with chiral NN+ 3NF forces, ¢
BCS + ¢ + Zj results with both NN and chiral NN + 3NF forces and d SRC results with NN forces and
chiral NN 4 3NF forces, respectively (Color figure online)

significant high-momentum components that remove effectively strength around the
Fermi surface. With an interaction that is only marginally attractive, this gives rise
to a large damping of the pairing gap. We note that the slightly erratic nature of the
calculations in panel (h) is due to the zero-temperature extrapolation procedure of
the denominator in Eq. (4), which is particularly sensitive to very narrow structures
around the Fermi surface. The BCS + ¢ + Zj approximation is also obtained from a
zero-temperature extrapolation, but no convolution integrals are involved. The results
are thus numerically more stable.

Chiral NN + 3NF calculations including SRC between kg = 1.5 and 1.8 fm™!
predict gaps that increase with density and lie in the range between 0.1 (0.1) and
0.3 (0.5) MeV in the SRC (BCS + ¢ + Zj) treatment. These are significantly larger
than the CD-Bonn and AvI18 results due to the combined effect of attractive 3NF
and an overall smaller effect of SRC for these renormalised, soft interactions. Above
kg &~ 1.85 fm~!, the predictions based on chiral forces diverge substantially. The
closure of the N3LO414 gap is abrupt and in the region kg &~ 1.85—2.05 fm~!, below
its corresponding BCS value. N3L0O450 yields the largest maximum gaps when SRC
are considered fully, up to about Ap,x = 0.45 MeV. We note that this is close to
the BCS value, which indicates that the effect of the fragmented energy denominator
is not necessarily associated with a damping of the gap, although this happens in a
regime where the applicability of this soft chiral force is questionable. Finally, the
results based on N3LO500 with 3NF have not reached a maximum gap up to about
kg = 2.2 fm~!. This is the maximum density at which our extrapolation procedure
works reliably and therefore there is no observable closure in panels (g) and (h) of
Fig. 1.

4 Pairing in Symmetric Nuclear Matter

We now turn our attention to the triplet gap in symmetric nuclear matter. This is
operated by the attractive SD; partial wave which is responsible for the existence of
the deuteron and also, to a large extent, for the saturation of nuclear matter [54]. Our
results are summarised in the four panels of Fig. 4. Panel (a) focuses on BCS results
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with NN-only interactions, including chiral forces as well as CDBonn and Av18. The
BCS results predict very large gaps in all NN-only calculations in agreement with
previous studies [36—39]. Av18, for instance, has a maximum gap of Ap.x =~ 13 MeV
around a Fermi momentum, k &~ 1.3 fm~!, which is very close to saturation density.
The BCS gap for CDBonn is only 1 MeV smaller, but its closure occurs significantly
earlier at kg ~ 2.2 fm™.

BCS calculations with chiral NN forces confirm the qualitative picture of large
maximum gaps, in the region Ay, ~ 10—11.5 MeV. These maximum gaps occur
at slightly lower densities than the CDBonn and Av18 counterparts, kg &~ 1 fm~!.
Beyond this density, the gaps steadily decrease to a minimum at around kp = 2 fm~".
Surprisingly, the gaps do not close here and, in the region beyond kg > 2 fm™!, we
find gaps that increase with density. However, this happens in an area where the matrix
elements are likely to be sensitive to regulator effects and hence we do not necessarily
expect these results to reflect any real physics.

Figure 4b shows BCS results with NN and 3NF forces. 3NF in the triplet channel
of nuclear matter can provide an effective saturation mechanism of nuclear matter
[32,51]. Because they significantly alter the nuclear interaction in symmetric matter,
one could naively expect relatively large effects in the corresponding pairing gaps. In
contrast, the associated BCS pairing gaps including 3NF essentially overlap the results
obtained with NN forces up to about the saturation Fermi momentum kg &~ 1.3 fm~!.
The pairing matrix elements at kg &~ 1.3 fm~! with (dashed lines) and without 3NF
(solid lines) are shown in Fig. 5. 3NF are mildly repulsive in the diagonal 3S; channel
for N3LO450 and N3LO414, and they are very small for N3LOS500. In contrast, the
3NF are clearly repulsive in the diagonal D wave channel. The coupling in the off-
diagonal channel is unambiguously attractive. All in all, the contributions at saturation
density are relatively small and one cannot disentangle easily whether they have a
repulsive or attractive nature.

The situation appears to change at suprasaturation densities. There, the gaps for the
N3LO500 + 3NF interaction are a few MeV larger than the associated NN-only force
in the region kg = 1.5—2 fm~!. This is in contrast to the N3LO414 and N3LO450
cases, for which the 3NF contributions to the gap are attractive, but relatively small
(between 0.5 and 2 MeV). We also find that 3NF tend to reduce the appearance of
second nonzero gap area at large densities.

The effects of SRC in the gap are very significant. Panel (c) shows the results for
the BCS + ¢, + Z; approximation. All results indicate a maximum gap of around
Amax X 6.2—6.7 MeV at kg ~ 0.95—1.05 fm~!. The closure for CD-Bonn and
Av18 occurs between 1.7 and 1.8 fm™!, in relative agreement with N3LO414 4 3NF
and N3LO450 + 3NF results. The closure for the N3LO500 + 3NF gap occurs beyond
2 fm~ L.

The results for panel (d) correspond to a more consistent implementation of SRC.
For both the traditional phase-shift equivalent forces and the chiral interactions, it
appears that the maximum of the gap is reduced to about Apx ~ 4.7—5.5 MeV.
In other words, SRC reduce the maximum gap to about 50% of the BCS maximum
value. These results are in agreement with the preliminary calculations using this
very same method but somewhat different numerical techniques in Ref. [24]. More-
over, the SRC gap associated with chiral NN + 3NF depends mildly on the cut-off
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Fig. 5 The same as Fig. 2 but at kg = 1.33 fm~—! for symmetric nuclear matter. Top, central and bottom
panels correspond to the partial wave channels 33 1 3Dl and the coupling 3SD1 , respectively (Color figure
online)

value and the implementation of the SRC effect, which suggests that the strong gap
reduction is a relatively generic feature that is insensitive to many-body uncertain-
ties.

We also find that the gap closure with SRC occurs at significantly lower densi-
ties than the corresponding BCS results. With CDBonn and Av18, the closure occurs
around kp ~ 1.5—1.7 fm~!. N3LO414 + 3NF and N3L0O450 4 3NF provide very sim-
ilar closures, but N3LOS500 + 3NF appears to level off at high densities and a crude
extrapolation indicates a closure closer to kg &~ 2 fm~!. This corresponds to densities
above 1.5 times saturation. Our calculations suggest that SRC do deplete neutron—
proton pairing correlations significantly, but not enough to completely remove them
in this channel. We note that our results with chiral interactions include 3NF consis-
tently with the underlying many-body approach, and therefore a different treatment
of the 3NF will not change this picture significantly. The situation regarding LRC is
difficult to address because of the interplay of spin and isospin excitations. Prelimi-
nary calculations in Ref. [55] indicate that LRC might provide an antiscreening effect
that could enhance the gap, but the effect of the strong tensor channel is difficult to
quantify in this context [56,57].

@ Springer



246 J Low Temp Phys (2017) 189:234-249

5 Conclusions and Future Prospects

Superfluid nuclear systems require special many-body treatments due to the interplay
between a strongly repulsive core, the presence of attractive components at interme-
diate distance and a strong tensor coupling [1]. The complex structure of the NN
force induces many-body correlations that have to be accounted for in the treatment of
pairing [41]. It is possible that these correlations cannot be accounted for realistically
within a BCS picture and that more consistent and realistic approaches are needed to
describe superfluidity in nuclear physics.

Here, we have presented results obtained in a Gorkov-inspired treatment that consis-
tently takes into account the SRC arising from the strong NN force. We have presented
results for neutron matter pairing in the singlet and triplet channels, as well as for the
tensor channel in symmetric nuclear matter. All our results indicate that SRC deplete
the gap from its BCS value. In the singlet neutron matter channel and in the triplet
symmetric matter channel, we find that results from traditional phase-shift equivalent
NN forces as well from chiral NN+ 3NF calculations are in relatively good agree-
ment. In neutron matter, the maximum gap decreases by about 0.5 MeV in all cases
after SRC are introduced. In symmetric matter, the maximum gap at the BCS level
is large, above 10 MeV. SRC, in contrast, reduce the maximum gap by about 50%
independently of the NN force and of the specifics of the 3NF that are considered.
SRC also tend to reduce the gap closure density, although the details are sensitive to
the structure of the NN force.

The triplet neutron matter channel is much more sensitive to the underlying NN
force. At the BCS level, the large differences obtained in maximum gaps and closures
are related to the underlying NN force, which is not anymore constrained by phase-shift
analysis at the densities where the triplet channel is active. Further, there are significant
differences in the density dependence of SRC at large neutron matter densities. As
a consequence, the SRC gaps are relatively different depending on the force under
consideration. While SRC results with traditional NN forces yield gaps well below
0.1 MeV in the channel, chiral forces can result in maximum gaps of the order of
0.5 MeV even after SRC are considered. Having said that, chiral forces are at the limit
of their applicability in this large density regime, as evidenced by the large cut-off
dependence.

Future advances in the treatment of correlations in nuclear pairing will go along
two directions. A more consistent treatment of SRC can be achieved by implementing
fully self-consistent Gorkov—Green’s function calculations that do not rely on zero-
temperature extrapolations [21]. The numerical tools exist and have been implemented
in nuclear structure already [6]. In infinite matter, the calculation of the superfluid spec-
tral function in a fully consistent theory can be difficult. Similarly to the normal case,
the superfluid spectral function has two very different features: narrow peaks close
to the Fermi surface and tails that extend to high momenta and energies. These pre-
clude the application of standard techniques with uniformly spaced grids in energy
and momentum. These structures will in turn affect the normal phase via a feedback
mechanism, so a fully self-consistent calculation will necessarily involve a recalcu-
lation of the normal properties at each density. We are not aware of any successful
attempts to implement the Gorkov formalism in infinite matter using fully realistic NN
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and 3N forces. This would however provide invaluable information on the interplay
between both SRC and LRC in pairing properties via a perturbative expansion. We
note however that the effect of pairing is still mostly restricted to momenta near the
Fermi momentum and is expected to have little effect on the normal self-energy as for
example has always been argued by Migdal [58].

Another relevant aspect which we have ignored her for brevity is the contribution
of LRC to the effective pairing interaction. Depending on the system, the density and
the many-body approach, the pairing interaction can be screened or antiscreened by
the exchange of spin, density and isospin fluctuations in the medium. A consistent
treatment in which these correlations are obtained from an underlying NN force is
still missing and should be a first priority to elucidate extremely relevant questions
associated with nuclear superfluids.
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