CrossMark

ERRATUM

Erratum to: Domain Size Distribution in Segregating Binary Superfluids

Hiromitsu Takeuchi¹

Published online: 20 April 2017

© Springer Science+Business Media New York 2017

Erratum to: J Low Temp Phys (2016) 183:169–174 DOI 10.1007/s10909-016-1543-7

In the original article, there was an error in Eq. 5. Following is the corrected equation:

$$\rho(S, l)l(t)^4 = c_S \tilde{S}^{-\tau} \equiv \tilde{\rho}(\tilde{S}) \tag{5}$$

In addition, there were errors in the vertical axes of Figs. 1 and 2. Following are the corrected figures.

The online version of the original article can be found under doi:10.1007/s10909-016-1543-7.

Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan

Fig. 1 Domain size distribution $\rho_0(S)$ in the initial pattern with $l=l_0$. A broken line represents the power law with the approximate value $\tau=2$ of the Fisher exponent. The distribution $\rho_0(S)$ obeys the power law in the scaling regime $l_0^2 \ll S \ll L^{D_S}$ with the fractal dimension $D_S=2-\beta/\nu$ with the critical exponents $\beta=5/36$ and $\nu=4/3$ of two-dimensional percolation theory

Fig. 2 Dynamic scaling plot of the domain size distribution $\rho(S, l)$ for $l(t)/l_0 =$ 0.8, 1.0, 1.4, 2.0, 2.8, 3.9, and 5.6 with the effective system sizes $\tilde{L} = L/l(t) =$ 81.5, 65.2, 46.6, 32.6, 23.3, 16.7, and 11.6, respectively. The broken line represents the universal function $\tilde{\rho}(\tilde{S})$ with $c_S = 0.1$ and $\tau = 2$. The positions of $\tilde{S} = \tilde{L}^{D_S}$ for different values from $l(t)/l_0 = 0.8$ to $l(t)/l_0 = 5.6$ are represented by thick arrows from right to left (Color figure online)

