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R. Szczȩśniak1,2 · A. P. Durajski1 ·
K. M. Skoczylas1 · Ł. Herok2

Received: 25 November 2015 / Accepted: 29 February 2016 / Published online: 10 March 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We investigate the thermodynamic parameters of the superconducting
antiperovskite CdCNi3 using the Eliashberg approach which is an excellent tool to the
exact characterization of the conventional superconductors. In particular, we repro-
duce the measured superconducting transition temperature (TC = 3.2 K) for a high
value of the Coulomb pseudopotential (μ�

C = 0.22). Then we determine the energy
gap, the thermodynamic critical field and the specific heat for the superconducting and
normal state. On this basis, we show that the thermodynamic properties of CdCNi3
differ slightly from the prediction of the Bardeen–Cooper–Schrieffer theory, which
means that CdCNi3 is amedium-coupling superconductor in contrast to related strong-
coupling MgCNi3.

Keywords Superconductors · Antiperovskites · Superconductivity · Thermody-
namic properties

1 Introduction

The first mineral perovskite CaTiO3 was found in the Akhmatov mine in Ural moun-
tains of Russia by A. B. Kemmerer and studied by Rose [1]. In the ideal form the
perovskite-type materials adopt a structure with the general stoichiometry ABX3,
where A and B are cations at the center and at the corners of the unit cell, respectively,
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Fig. 1 Unit cell of cubic
antiperovskite. The green atoms
at corner and blue atom at body
center are anions while face
centered red atoms are cations
(Color figure online)

and X are anions (usually oxygens) situated at the face center of the edges of the unit
cell [2]. Perovskites exhibit many interesting and intriguing properties from both the
theoretical and the experimental point of view. Potential applications of these materi-
als are associated with the unique features such as a near-zero temperature coefficient
of resistivity [3], negative thermal expansion [4], high-temperature superconductiv-
ity [5], magnetostriction [6], and giant magnetoresistance [7]. The above properties
result from a complex interplay between the crystal structure, electronic state of the
transition metal and amount of defects [8].

Another interesting group of materials having perovskite-type structure are antiper-
ovskites. In inorganic antiperovskite compounds the oxygen atoms are replaced by
transition metals and the positions of anions and cations are interchanged. For exam-
ple, in well-studied MgCNi3, C atom is centered in the octahedron composed of six
Ni atoms, and Ni has only two nearest-neighbor C atoms in contrast to the CaTiO3
in which a transition metal Ti has six nearest-neighbor oxygens [9]. Figure 1 presents
an example of the simplest cubic antiperovskites structure, where atoms at corner and
atom at body center are anions while face centered atoms are cations.

Mentioned above antiperovskite MgCNi3 is characterized by a high content of Ni
element which usually results in magnetism behavior. Surprisingly, in this case not
the ferromagnetism but the superconductivity near 8 K was experimentally discov-
ered by He et al. [10]. Several attempts have been made to investigate the structural,
electronic, magnetic, elastic, vibrational, and thermodynamic properties of this novel
superconductor [11–17]. However, the nature of superconductivity in this material is
still not clear whether the mechanism for superconductivity is conventional or not
[18,19]. The evidence of phonon-mediated pairing mechanism of superconductivity
was provided both by the experimental results [10,20,21] and theoretical estimations
[22,23]. Especially interesting is paper [23], where the strong electron–phonon cou-
pling was derived from specific heat data in the normal and superconducting states
independently. Moreover, the relevance of soft phonons and Van Hove-type singular-
ity in the electronic density of states near the Fermi energy have also been suggested
[23].
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The existence of superconductivity in MgCNi3 has inspired the intensive research
of other non-oxide perovskite-type materials [24–27] in particular the main attention
was paid to nickel-based antiperovskite. Literature reveals that in CdCNi3, AlCNi3 and
ZnNNi3 also exhibit superconductivity [28–32]. In particular, Uehara et al. observed
in the experimental work that CdCNi3 is a superconductor with TC = 2.5–3.2 K
and also does not show ferromagnetism [33]. The crystal synthesized using the high-
pressure technique has the same structure as MgCNi3 but the lattice constant is ∼1%
larger than that of MgCNi3. Uehara et al. concluded that the lower TC of CdCNi3,
in comparison to MgCNi3, may be due to the reduced value of density of states at
the Fermi energy (75 states/Ry for MgCNi3 and 59 states/Ry for CdCNi3). However,
it is also possible that the enhanced ferromagnetic correlation suppresses the critical
temperature in CdCNi3 [33].

In connection to still ongoing research on the superconducting state of
antiperovskite-type materials [34–36], in the presented paper we conducted the com-
prehensive theoretical analysis of all important thermodynamic properties of CdCNi3.
Moreover, the obtained results were compared with that of previously computed for
MgCNi3 compound [13].We expect that the presented resultswill expand the currently
existing knowledge on the superconducting state in antiperovskites and can stimulate
further exploration and discovery of new antiperovskite-type materials.

This paper is organized as follows. Section 2 contains a short outline of the the-
oretical model and computational methods. In Sect. 3, we discuss and compare the
thermodynamic properties of superconducting CdCNi3 andMgCNi3 systems. Section
4 summarizes the obtained results.

2 Methods of Research

2.1 Essentials of the Eliashberg Formalism

The precise prediction of superconducting properties such as the transition temper-
ature, superconducting energy gap or specific heat is one of the most important
challenges in condensed matter physics [37–42]. In conventional superconductors
below the critical temperature electron pairing results from interplay between the
electron–electron repulsive Coulomb effect and the attractive electron–phonon inter-
action [43]. Starting from the Bardeen, Cooper and Schrieffer (BCS) theory [44,45]
several approaches to the calculation of the superconducting properties have been
proposed. A more sophisticated description of the superconductivity extending the
original ideas of BCS theory is the Eliashberg theory of superconductivity [46] which
allows to reproduce the superconducting properties of a conventional superconductors
within an experimental accuracy. The advantage of the Eliashberg theory over the BCS
theory is that the first one takes into account the strong-coupling effects and the fact
that the interaction between electrons mediated by phonons is retarded in time.

Starting from the Fröhlich model of an electron–phonon interaction [47] and intro-
ducing the Nambu spinors [48] to provide a convenient matrix representation of the
Fröhlich Hamiltonian, the Eliashberg equations for the order parameter function and
for the wave function renormalization factor can be derived using Green’s functions
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theory [49–51]. The equations formulated on the imaginary frequency axis take the
following form [46,50]:

φn = π

β

M∑

m=−M

λ (iωn − iωm) − μ�θ (ωc − |ωm |)√
ω2
m Z

2
m + φ2

m

φm (1)

and

Zn = 1 + 1

ωn

π

β

M∑

m=−M

λ (iωn − iωm)√
ω2
m Z

2
m + φ2

m

ωm Zm, (2)

where ωn ≡ (π/β) (2n − 1) are the Matsubara frequencies with n = 0,±1,±2, . . . ,
±M , and M = 1100. Symbol β denotes a inversion of temperature β ≡ (kBT )−1.
Moreover, μ� represents the Coulomb pseudopotential with a cut-off frequency ωc
equals three times the maximum phonon frequency (ωc = 3	max), the quantity θ

denotes the Heaviside function, and λ (iωn − iωm) is a pairing kernel for the electron–
phonon interaction:

λ (iωn − iωm) ≡ 2
∫ 	max

0
d	

	

(ωn − ωm)2 + 	2 α2F (	) . (3)

The value of the maximum phonon frequency (	max) is equal to 77.8 meV [28].
At this point, it should be noted that the physical values of the order parameter

functions φ and the wave function renormalization factor Z can be determined using
the Eliashberg equations formulated on the real frequency axis [52].

2.2 Computational Details

Within the framework of the Eliashberg formalism, the superconductivity arising from
the electron–phonon coupling is characterized by the Eliashberg spectral function
α2F (ω), which can be written as

α2F(ω) = 1

2πρ (0)

∑

q j

γq j

h̄ωq j
δ(ω − ωq j ), (4)

where ρ (0) is the value of the electron density of states at the Fermi level. The
quantities δ(x) represent the Dirac delta function, ωq j is phonon frequency of the j th
phonon mode at vector q, and symbol γq j denotes the phonon linewidth [53]. The
α2F(ω) function for CdCNi3 was determined in paper [28] using the first-principles
pseudopotential method based on the density-functional theory. The phonon density
of states and the Eliashberg function were calculated using 28× 28× 28 k mesh with
the Gaussian width σ = 0.02 Ry [28]. All calculations were preformed for a cubic
CdCNi3 with the space-group symmetry Pm3m where the atomic positions are Cd
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Fig. 2 Diagram of calculation procedure (Color figure online)

at (0, 0, 0), C at (0.5, 0.5, 0.5) and Ni at (0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5). The
unit cell looks the same, as that visualized using VESTA software [54] in Fig. 1.

In the present paper, to investigate the superconducting properties of antiper-
ovskite CdCNi3 within the experimental accuracy, we adopted the numerical methods
described in paper [55] and successfully used in our previous studies [56–59]. The
scheme of conducted calculation was shown in Fig. 2. In particular, taking as a input
parameters the Eliashberg spectral function andmeasured value of TC we can calculate
the critical value of Coulomb pseudopotential. Then, we resolve Eqs. (1) and (2) for
different temperatures. The solutions of the Eliashberg equations on the imaginary axis
are use in the calculations of the free energy difference between the superconducting
and the normal state [50]:

�F

ρ (0)
= −2π

β

M∑

n=1

(√
ω2
n + �2

n − |ωn|
)

(5)

×
(
ZS
n − ZN

n
|ωn|√

ω2
n + �2

n

)
,

where symbols ZS
n and ZN

n denote the wave function renormalization factor for the
superconducting state and for the normal state, respectively. In a similar way it is
possible to calculate the London penetration depth (λL):

1

e2v2Fρ (0) λ2L (T )
= 4

3

π

β

M∑

n=1

�2
n

ZS
n

[
ω2
n + �2

n

]3/2 , (6)

where symbols e and vF denote the electron charge and the Fermi velocity, respectively.
In the next step, the thermodynamic critical field (HC) is calculated from the free

energy difference:

HC√
ρ (0)

= √−8π [�F/ρ (0)]. (7)
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The entropy difference between the superconducting and normal state is determined
by the first derivative of �F :

�S

kBρ (0)
= −d [�F/ρ (0)]

d (kBT )
, (8)

and the specific heat difference between the superconducting and normal state (�C =
CS − CN) follows from the second derivative of �F through:

�C

kBρ (0)
= − 1

β

d2 [�F/ρ (0)]

d (kBT )2
. (9)

The specific heat in the normal state is defined as CN = γ /β, where the Sommerfeld
constant (γ ) has the form: γ ≡ (2/3)π2 (1 + λ) kBρ (0).

The knowledge of the solutions of the Eliashberg equations on the imaginary fre-
quencies axis allows also to obtain the solutions on the real frequencies axis. On the
basis of these results, the exact value of the order parameter can be obtained in the
following way:

�(T ) = Re [�(ω = �(T ) , T )] , (10)

and the electron effective mass (m�
e) can be determined from the relation: m�

e/me =
Re [Z (0)], where me denotes the electron band mass.

On the basis of above thermodynamic functions we can estimate the dimensionless
ratios: R� ≡ 2�(0)/kBTC, RC ≡ �C (TC)/CN (TC) and RH ≡ TCCN (TC)/H2

C (0).
The above ratios (marked by blue fill on the diagram in Fig. 2) play a very important
role in theory of superconductivity because they can be determined in experimental
measurements and compared with theoretical predictions.

3 Results and Discussion

The critical temperature of CdCNi3 (TC = 3.2 K) has been determined from the
magnetization measurement in paper [33]. On this basis, we are able to calculate the
critical value ofCoulombpseudopotentialμ�

C. In particular, in theEliashberg equations
we assumed that T = TC and then we have increased the value of the parameter μ�

until we have reached the equality �m=1(μ
�
C) = 0, where the order parameter is

defined as follows: �n ≡ φn/Zn . The received results are shown in Fig. 3a, where the
dependence of the order parameter on the Matsubara frequencies is plotted. The full
dependence of �m=1 on μ� we can trace in Fig. 3b.

The high value of the Coulomb pseudopotential suggests that the critical temper-
ature of CdCNi3 cannot be correctly evaluated by means of the analytical McMillan
(McM) formula for TC [60]:

T (McM)
C = ωln

1.2
exp

[ −1.04 (1 + λ)

λ − μ� (1 + 0.62λ)

]
, (11)
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Fig. 3 a The order parameter
on the imaginary axis for the
selected values of the Coulomb
pseudopotential. b The full
dependency of the maximum
value of the order parameter on
the Coulomb pseudopotential at
TC (Color figure online)
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Fig. 4 a The energy dependencies of the order parameter functions on the real axis for selected values
of temperature. b The normalized energy gap at the reduced temperature. The inset presents the total
normalized density of states for selected temperatures (Color figure online)

where symbol λ denotes the electron–phonon coupling constant and ωln is the loga-
rithmic average of the phonon frequencies:

λ = 2
∫ 	max

0
dω

α2F(ω)

ω
(12)

and

ωln ≡ exp

[
2

λ

∫ 	max

0
dω

α2F (ω)

ω
ln (ω)

]
. (13)

In particular, for CdCNi3 we achieved: λ = 0.8, ωln = 101.6 meV and finally
T (McM)
C = 1.69 K.
The temperature-dependent solutions of the Eliashberg equations on the imaginary

frequency axis at μ�
C were used as the input parameters to the real axis Eliashberg

equations. The form of the order parameter on the real frequency axis for selected
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Fig. 5 a The free energy
difference, b entropy difference,
and c the specific heat as a
function of temperature for
antiperovskite CdCNi3 (Color
figure online)
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values of T is plotted in Fig. 4a. On this basis and from Eq. (10) we concluded that the
maximum value of the energy gap at the Fermi surface (2�(0) = 2�(T0)) is equal to
1.03 meV, where T0 denotes a minimum value of temperature for which convergence
of the solutions was obtained. In our case, solutions are stable from T0 = 0.4 K. The
temperature dependency of the energy gap can be modeled by the simple analytical
formula: 2�(T ) = 2�(T0)

√
1 − (T/TC)α , where the parameter α is equal to 3.3.

The energy gap decreases with temperature and vanishes at TC in a manner consistent
with behavior of conventional superconductors. In Fig. 4b, the dependence of the
normalized gap on the temperature is presented.

Moreover, the obtained results are compared with prediction of the BCS theory,
where α = 3. As we can see the differences are not as large as for example in the
case of MgCNi3 where α = 3.6 [13]. Knowledge of the gap function enables us to
calculate the total normalized density of states, defined as [50]:

NDOS(ω) = DOSS(ω)

DOSN(ω)
= Re

[
|ω − i�|

√
(ω − i�)2 − �2 (ω)

]
, (14)
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Fig. 6 a The thermodynamic
critical field, b deviation of the
thermodynamic critical field,
and c the normalized London
penetration depth as a function
of temperature (Color figure
online)
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where the symbols DOSS (ω) and DOSN (ω) denote the density in the superconduct-
ing and normal state, respectively. The pair breaking parameter � is equal to 0.15
meV. The obtained results for selected temperatures are presented in the inset of
Fig. 4b.

Also from the solution of the Eliashberg equations formulated on the real frequency
axis we determined the value of the electron effective mass at TC. In particular, for
CdCNi3 we obtained m�

e = 1.81me, wherein the MgCNi3 is characterized by m�
e =

2.55me [13]. At this point it should be emphasized that the value of m�
e is directly

related to the electron–phonon coupling constant and in a simple analytical way this
fact can be written as m�

e � (1 + λ)me.
In the next step, according to the scheme shown in Fig. 2 and using Eqs. (5)–(9),

we calculated the free energy, the specific heat and the entropy difference between the
superconducting and normal state, the thermodynamic critical field and the London
penetration depth. Moreover, our calculations were supplemented by the thermody-
namic critical field deviation:
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Table 1 The comparison of the
most important superconducting
ratios for CdCNi3 and related
MgCNi3 [13] antiperovskites

Parameters CdCNi3 MgCNi3

TC (K) 3.2 8

μ� 0.22 0.29

λ 0.8 1.34

R� 3.74 4.19

RC 1.50 2.27

RH 0.162 0.141

kBTC/ωln 0.031 0.086

D(T ) = HC (T )

HC (0)
−

[
1 −

(
T

TC

)2
]

. (15)

The obtained results are presented in Figs. 5 and 6. Particularly interesting is to com-
pare the obtained results with those predicted by the classical BCS theory. On the
basis of Fig. 6b, c we can see that our calculations indicate that CdCNi3 is a BCS
superconductor, which is in a general agreement with the experimental observation
[33] and previous theoretical study [28].

The presented thermodynamic functions enabled us to estimate the dimensionless
ratios R�, RC and RH. It should be mentioned that in the BCS theory, the above
parameters take the well-known universal values: 3.53, 1.43, and 0.168, respectively
[44,45]. In the case of antiperovskite CdCNi3, the obtained results are presented in
Table 1. We can see that R� and RC are close to, although slightly higher than, the
prediction of the BCS theory, while the value of RH is slightly lower. This is a typical
behavior of medium-coupling superconductors.

From the physical point of view, there are two reasons causing the deviation from
the BCS theory [43]. The first one is connected with the fact that the BCS model
bases on the time-independent interaction. The second one arises from the failure of
taking into account the strong-coupling effects. In the Eliashberg formalism the above
effects are described by the ratio of kBTC to ωln, in the weak-coupling limit we have:
kBTC/ωln → 0. In Table 1 we can see the obtained values for Mg- and Cd-based
carbides-nitrides antiperovskite.

During the comparison of the thermodynamic properties of sister antiperovskites
CdCNi3 and MgCNi3 we can conclude that the larger mass of Cd-ion than Mg-ion is
the cause of the deterioration of the superconducting properties of CdCNi3.

4 Conclusion

In this paper we investigated the thermodynamic properties of the superconducting
state existing in CdCNi3 compound. In the framework of the Eliashberg formalism
we had calculated all the most important parameters. Then, due to the fact that the
crystal structures of CdCNi3 have the same antiperovskite-type such as MgCNi3,
we compared the obtained parameters of CdCNi3 with that of earlier estimated for
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MgCNi3. The comparative studies indicate that the larger mass of Cd-ion thanMg-ion
reduces the values of superconducting parameters of CdCNi3. In particular, it can be
observed in the case of TC and the dimensionless parameters R�, RC and RH. For
CdCNi3 we have TC = 3.2 K, R� = 3.74, RC = 1.50 and RH = 0.162, whereas
for MgCNi3 we have TC = 8 K, R� = 4.19, RC = 2.27, and RH = 0.141. We
strongly encourage all readers to quantitatively verify the presented thermodynamic
parameters by means of the available experimental methods.
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tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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