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Abstract We discuss the design and performance of a transition edge sensor (TES)
X-ray microcalorimeter array for scanning transmission electron microscope (STEM)—
energy dispersive X-ray spectroscopy (EDS). The TES X-ray microcalorimeter has
better energy resolution compared to conventional silicon drift detector and STEM—
EDS utilizing a TES detector makes it possible to map the distribution of elements
on a specimen in addition to analyze the composition. The requirement for a TES
detector is a high counting rate (>20kcps), wide energy band (0.5-15keV) and good
energy resolution (<10eV) full width at half maximum. The major improvement of
this development is to increase the maximum counting rate. In order to accommodate
the high counting rate, we adopted an 8 x 8 format, 64-pixel array and common
biasing scheme for the readout method. We did all design and fabrication of the device
in house. With the device we have fabricated most recently, the pulse decay time is
40 s which is expected to achieve 50kcps. For a single pixel, the measured energy
resolution was 7.8 eV at 5.9 keV. This device satisfies the requirements of counting rate
and energy resolution, although several issues remain where the performance must be
confirmed.
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1 Introduction

An EDS performed with electron microscopes now plays an important role for
nanoscale compositional analysis in various fields such as material science and biotech-
nology. In this experiment, an electron beam is directed to a specimen and the elements
in the specimen are determined by measuring the energy of their characteristic X-rays.
In this way, we are able to detect all most of the elements at the same time. Presently,
Si solid-state detectors are commonly used for EDS. The energy resolution (typically
~130eV at 6keV) is often not good enough to resolve emission lines with small
energy separations. For example, the difference of the Si-Ke line (1.740keV) and
W-Mu line (1.775keV) is only 35eV. This prevents an accurate determination of the
line intensities.

In order to improve the energy resolution, Hollerith et al. [1] have developed SEM-
EDS mounted on a TES microcalorimeter. We have been developing a STEM-EDS
system utilizing a TES X-ray microcalorimeter [2,3]. When we introduced a single
pixel TES detector for STEM, we could achieve an energy resolution of 8.9eV [4].
We obtained the EDS images with this system but the signal-to-noise was not quite
good due to the low counting statistic by a single TES detector.

Our new project, the STEM-TES-EDS system analyzes the composition of spec-
imens with high sensitivity and makes it possible to map the distribution of those
elements in a specimen. An electron beam scans the specimen and maps the distribu-
tion of elements in up to one million pixel images. We need to increase the maximum
counting rate to improve the image quality and to complete the measurement within a
reasonable time scale. We set a maximum counting rate of 20kcps, an energy resolu-
tion less than 10eV and a wide energy band of 0.5-15keV to cover most of the atoms
with K to M fluorescence lines as our requirements.

2 TES X-ray Microcalorimeter Array for STEM-EDS

In our STEM-TES-EDS system, the TES detector is set atop an oxygen-free copper
rod which is designed by Nagayoshi et al. [5]. The area of the top is 12 x 12mm?.
When we considered the wiring space and the focal spot size of the polycapillary [6],
which was used in this system to increase the solid angle, the maximum area where
TES detector can occupy is limited to under 7 x 7 mm?. We lastly determined the size
of the TES detector to be 5.2 x 5.2 mm?.

The most important requirement of this TES detector is the 20kcps counting rate.
Because the maximum counting rate of our single pixel TES X-ray microcalorimter is
about 300 cps, we adopted an 8 x 8 format, 64 pixel-array. Also we adopted a common
biasing scheme [7] to reduce the number of wire harnesses instead of multiplexing.
We chose one unit as 8-pixel-TES and read out every one unit by common biasing.
In order to operate all pixels at the same time, all pixels are required to have simi-
lar superconducting-transition properties. That means the superconducting transition
curves coincide with each other and the resistance value of each pixel at the operation
point in common bias operation is almost the same.
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Fig.1 Top view (left) and cross section view (right) of single pixel TES X-ray microcalorimeter conceptual
illustration. The size the of TES, absorber and membrane are 180 x 180 pum, 120 x 120 pm, 300 x 300 pvm,
wiring pitch and line are 10/10 um. The thickness of the absorber and TES (Ti/Au) are 2.5 um and 40/90 nm
(Color figure online)

We designed a 64-pixel-TES-array to fulfill the requirements by optimizing the
TES parameters, such as transition temperature and heat capacity by the following
procedure. The pulse decay time must be shorter than 100 s in order to obtain a
maximum counting rate 300 cps/pixel. The pulse decay time [8], energy resolution
[9], and saturation energy [9] are given by
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where C,G, T, P, kg, o, and B are, respectively, the heat capacitance, the thermal
conductance, the operating temperature, the power, the Boltzmann constant, the sensi-
tivity of the TES, and the current sensitivity. The equations of «, 8, G are respectively
o = dlogR/dlogT, B = dlogR/dlogl and G = GoT"~'. The parameter G is
the thermal conductance at 1 K and » is the exponent in the power law describing
thermal conductance.

We fixed o, G and n based on our previous devices: « = 100, G = 0.52nW/K,
n = 3. We then selected the T, and C from Egs. (1)—(3) as 200mK and 0.6 pJ/K to
meet the requirements.

We then designed the size and the thickness of TES X-ray microcalorimeter. Fig-
ure 1 shows a conceptual image of the TES X-ray microcalorimeter and its size. We
fabricated the TES X-ray microcalorimeter array using an in-house fabrication process
[10]. We use 4 inch Si wafer with deposited SiO; and SiN,. The first step is to remove
SiN, and SiO» on the back of the Si substrate, for the later Si bulk etching. The TES is
created by sputtering and wet etching of Ti and Au. We add Al electrodes in the same
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Fig. 2 64-pixel-TES-array that we fabricated (left), Microscope photograph of the single pixel TES X-ray
microcalorimeter from top (right) (Color figure online)

way and followed by Au absorber by EB vapor deposition. Lastly the bulk Si of the
membrane area will be removed by DRIE etching. We show the 64-pixel-TES-array
that we fabricated and a microscope photograph of a single pixel TES X-ray (Fig. 2).

3 Performance of This TES X-ray Microcalorimeter Array

There are many things to evaluate the performance of this TES X-ray microcalorimeter
array. For example, the properties of R(7") and [V-curves, transition temperature, pulse
decay time, energy resolution, saturation energy, and the performance of TES with
high counting rate. We did the RT and IV measurement and X-ray irradiation test to
confirm the performances of this device.

3.1 Experiment Setup

We used a cryogen-free dilution refrigerator at JAXA with a lowest achievable tem-
perature of ~60 mK. The 64-pixel-TES-array shown in Fig. 2 and SQUID amplifiers
are placed on a cold stage with RuO, thermometer which is readout and controlled
by an Lakeshore AC resistance bridge 370 and 100 mS2 resistance heater. An >°Fe
isotope is also mounted at a distance of ~3 mm from the TES to serve as an X-ray
source.

3.2 The Superconducting-Transition Properties

We chose the 7 pixels of one unit and measured R(7") and I-V curves of the 7 pixels
to confirm the superconducting-transition properties (Fig. 3). The superconducting
transition of 7 pixels is almost uniform at about 200mK as designed. We also see
small differences among pixels. The dispersion is as small as 0.6 mK. This is smaller
than the transition range (~5 mK). The dispersion of the TES-array resistances at the
operation point in a common bias operation can be estimated from the I-V curves. It
is estimated to be less than 10 %. These differences are small enough to operate the
TES X-ray microcalorimeter with common bias scheme.
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Fig. 3 R(T) of 7 pixels TESs in one unit (left),Vieshand Iies curve of 7 pixels TESs in one unit (right)
(Color figure online)
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Fig. 4 Averaged pulse which obtained by one pixel (left), Mn Ko spectrum of 55Fe which obtained by
one pixel (right) (Color figure online)

3.3 X-ray Irradiation Test

We measured the X-ray energy resolution and decay time of one pixel to confirm the
performance. The thermal bath temperature is set at 150mK. A TES bias current is set
at 715 wA which means that it corresponds to 54 % of transition curve (40 m€2). The
two key experimental results are shown Fig. 4. First, the pulse decay time was 40 jvs.
With this decay time, we expected to achieve 50kcps by the 64 pixels array. Second,
the energy resolution was 7.8eV at 5.9keV in full width at half maximum (FWHM)
as shown in the right side of Fig. 4. Mn K« and Kf are easily separated. When we
zoom in on the K alpha-line, we see the structure of « 1 and « 2. We could measure
the values of @, C and G at operation point and they are, respectively 34, 0.56 pJ/K
and 0.22 nW /K. The value of C was almost same as designed and the values of o and
G were smaller than the designed values but we could achieve the requirements.

4 Conclusion

We designed a 64-pixel TES array to fulfill the requirements for a STEM-EDS and
fabricated it using an in-house process. We evaluated some of the performances of the
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TES detector. We found the TES array can be operated with common bias scheme,
with a single pixel decay time of ~40 s while the requirement is <100 s to obtain
300 cps/pixel. The energy resolution is about 7.8 eV at 5.9keV while the requirement
is less than 10eV. There are two remaining issues where the performance must be
confirmed by the following procedure. We will verify the energy range by irradiating
multi-color X-rays onto the TES X-ray microcalorimeter array and evaluate the perfor-
mance of the TES X-ray microcalorimeter array with high counting rate by irradiation
tests using an X-ray generator. We will then mount the TES X-ray microcalorimeter
array on a STEM and operate the STEM-EDS system.
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