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Abstract By using LLP variational method, the Rashba effect on the bound polaron
in an asymmetric quantum dot is investigated and the expression of the bound polaron
ground state energy is derived. Considering different Coulomb bound potentials, we
discuss the relations between the ground state energy and the electron–phonon cou-
pling strength, the wave vector, the transverse effective confinement length and the
longitudsinal effective confinement length, respectively. The results show that the
ground state energy is a decreasing function of the Coulomb bound potential, the
electron–phonon coupling strength, the transverse effective confinement length and
the longitudinal effective confinement length. On the contrary, it is an increasing func-
tion of the wave vector. Due to the Rashba effect, the ground state energy splits into
two branches.

Keywords Rashba effect · Asymmetric quantum dot · Heavy hole characteristics ·
Bound polaron.

1 Introduction

Spintronics, starting in 1988, is still an active research field by now, which may fab-
ricate electron devices with brand-new physical properties by using eletcron spin
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and even realize quantum memory and quantum computation, then improve greatly
the efficiency of electron device. So it has a potential impact on information tech-
nology. Spin-splitting induced by the spin-orbit interaction is sometimes confused
with Zeeman splitting originating from the magnetic field. The later requires the time-
reversal symmetry broken. However, the former originating from the space inversion
asymmetry, is known as the Rashba effect, which plays an important role in semicon-
ductor spintronics . In recent years, the Rashba effect in low-dimensional systems has
attracted more attention from experimental and theoretical physicists. Based on an
analytical methodology, a three-electron-quantum dot (QD) in the presence of Rashba
spin-orbit interaction under cylindrical symmetry is investigated by Hassanabadi et
al. [1]. By means of the Keldysh Green’s function method, Zhang et al. [2] reported
a theoretical study on producing an electrically spin-polarized current in the Rashba
ring with parallel double dots embedded, which are subjected to two time-dependent
microwave fields. Hassanabadi et al. [3] theoretically investigated a three-electron QD
in the presence of Rashba spin-orbit interaction by an analytical methodology. Using
nonequilibrium Green’s function technique, Li et al. [4] investigated the spin current
through the three QD device. Manvir [5] proposed the theoretical investigation of the
effect of the Rashba-type spin-orbit interaction on the Fock-Darwin energy spectrum
in the parabolically confined QDs in the presence of a perpendicular magnetic field.
A detailed investigation of the nonlinear optical properties such as optical absorption
and refractive index change associated with intersubband transitions in a three-electron
QD in two dimensions in the presence of the Rashba spin-orbit interaction has been
carried out by Hassanabadi et al. [6]. Crisan et al. [7] studied the formation of local
moments in quantum dots arising in quasi-one-dimensional electron wires due to local-
ized spin-orbit interaction. Using an Anderson-type model to describe the occurrence
of the magnetic moments in these Rashba dots, the local magnetization was calculated
within the mean-field approximation. Chakraborty et al. [8] reported on a theoretical
approach developed to investigate the influence of the Bychkov–Rashba interation
on a few interacting electrons confined in a QD. Using the Hartree approximation,
the 8 × 8 kane Hamiltonian, and the envelope-function scheme the electronic struc-
ture of electrons bound within an inversion layer on p-InAs in a Mosfet geometry is
computed self-consistently and studied as a function of the two-dimensional electron
density Ns and the doping concentration NA−ND by Lamari [9]. Kanobb et al. [10]
investigated the electronic structure of Rashba spin-split quantum wires in a magnetic
field. Reynoso et al. [11] studied the edge states in a two-dimensional electron gas
with a transverse magnetic field and Rashba spin-orbit (SO) coupling. Matsuyama et
al. [12] discussed the dependence of the spin-orbit interaction on electron density in
inversion layers of metal-oxide-semiconductor field-effect transistors on p-type InAs
by magnetotransport at liquid-helium temperatures. Considering the influence of the
Rashba SO interaction on the condition of the electron–LO phonon strong coupling
in a parabolic QD, Yin et al. [13] calculated the bound polaron ground state energy by
the variational method of Pekar. The condition of electric–LO phonon strong coupling
in a parabolic QD was studied in detail by Li et al. [14] and the polaron ground state
energy was derived by the variational method of Pekar, considering the influence of
the Rashba SO interaction. However, few people have investigated the Rashba effect
on the ground state energy of the strong-coupling bound polaron in an asymmetric QD
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at present. Especially the electron with heavy hole characteristics in an asymmetric
QD has never been studied by employing the LLP variational method yet.

In this paper, we investigate the Rashba effect on bound polaron in an asymmetric
QD within the LLP variational method. The paper is arranged as follows. First, we
derive the expression of the ground state energy of the polaron. Then, our numerical
results are presented and discussed. Finally, a conclusion is drawn in our investigation.

2 Theory and Model

At zero magnetic field, we consider a polar crystal system in which an electron with
heavy hole characteristics is moving and interacting with the bulk LO phonons. Due
to the phonon field and the polar crystal boundary effect, the moving of the electron
in every direction is quantized. On the basis of effective mass approximation, the
Hamiltonian of the electron–phonon interaction system with a hydrogenic impurity at
the center can be written as

H = He + HL O + He−L O + HSO . (1)

He = P2
//
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Here VP (r) represents the three-dimensional anisotropic harmonic potential in the
x − y plane and z-direction, Vc(r) is the Coulomb bound potential, r = (ρ, z) refers
to the position operator of an electron and ω1(ω2) is the measure of the transverse
(longitudinal) confinement strength.

The second and the third terms in Eq. (1) describe the LO-phonon field and the
interaction energy of the electron–LO phonon. They are given by
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Where b+
k (bk) is the creation (annihilation) operator of the LO phonons with the wave

vector k and the frequency ωL O , V is the volume of the crystal and the electron–
LO phonon coupling strength is represented by α. ε0 and ε∞ are the static dielectric
constant and high frequency adiabatic constant, respectively.

The last term in Eq. (1) is the contribution of the Rashba spin-orbit interaction. It
can be expressed as [15]

HSO = i
aR

h̄

(
P3−σ̂+ − P3+σ̂−

)
. (5)

Using the notation P± = Px ± i Py, σ̂± = σ̂x ± i σ̂y , where P̂ , σ̂ denote the electron
momentum operator and Pauli matrices, respectively. In a semiconductor structure,
the Rashba parameter aR is determined by many factors.

We expand the Coulomb bound potential with the Fourier expansion

− e2

ε0r
= −4πe2

ε0V

∑

k

1

k2 exp(−ik · r). (6)

Then, we carry out the Lee-Low-Pines transformation to Eq. (1)

U = exp

[
∑

k

b+
k fk − bk f ∗

k

]
. (7)

Where fk( f ∗
k ) is the variational function to be determined by minimizing the energy.

For the ground state of the system, we choose the following variational trial wave
function

|ψ〉 =
(
λ2/π

)1/2
exp

(
−λ2ρ2/2

) (
μ2/π

)1/4

× exp
(
−μ2z2/2

) (
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) 〈
0ph

〉
. (8)

Where χ1/2 =
(

1
0

)
and χ−1/2 =

(
0
1

)
refer to the up and down states of the

spin, aand b are coefficients and |0〉ph is the unperturbed zero-phonon state which
satisfies bk |0〉ph = 0. λ and μ are variational parameters which can be determined by
minimizing the total energy of the system.

The total energy of the system can be obtained by computing the expectation value
〈ψ | U−1 HU |ψ〉. We have
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where E↑, E↓ are the ground state energy of the spin-up and spin-down components

with the spin-splitting energy ESO = aRk3, β = e2

ε0

√
m
π h̄ is the Coulomb bound

potential and l1 =
√

h̄
mω1

l2 =
√

h̄
mω2

are the transverse and longitudinal effective
confinement lengths, respectively.

From Eq. (9), we can see that the spin-splitting energy ESO is proportional to
k3rather than k. The result is consistent with [16]. The reason is that the electron in
conduction band owns heavy hole characteristic. As a result of it, the spin-splitting
energy ESO is proportional to k3.

3 Numerical Results and Discussion

To show more obviously the influence of the Rashba effect on the properties of the
bound polaron in an asymmetric QD, we perform a numerical calculation. For the sake
of simplicity, the usual polaron units (h̄ = 2m = ωL O = 1) are adopted. The results
are presented in Figs. 1, 2, 3, 4.

Figure 1 shows the relationship between the ground state energy E0, the spin-up
splitting energy E↑ and the spin-down splitting energy E↓ varying with the electron–
phonon coupling strength α for fixed k = 3, l1 = 0.2, l2 = 0.6 and aR = 0.01. From
this figure, we can see that the ground state energy, the spin-up splitting energy and the
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Fig. 1 The relation between polaron ground state energy E0, and spin-up(spin-down) splitting energy
E↑(E↓) with electron–phonon coupling strength α at different Coulomb bound potential β. They are
expressed by the full line, the dash dotted line and the dotted line, respectively
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Fig. 2 The relation between polaron ground state energy E0, and spin-up(spin-down) splitting energy
E↑(E↓) with wave vector k at different Coulomb bound potential β. They are expressed by the full line,
the dash dotted line and the dotted line, respectively
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Fig. 3 The relation between polaron ground state energy E0, and spin-up(spin-down) splitting energy
E↑(E↓) with the transverse effective confinement length l1 at different Coulomb bound potential β. They
are expressed by the full line, the dash dotted line and the dotted line, respectively

spin-down splitting energy decrease rapidly with the increase of the electron–phonon
coupling strength. With the increase of the coupling strength, the electron interacts
with more phonons. But the contribution of the electron–phonon interaction to the
polaron energies in Eq. (9) is a negative value. For this reason, the polaron energies
will enhance with the decrease of the electron–phonon coupling strength. We also
can see from the figure that the change of the energy spacing between spin-up and
spin-down is zero with the increasing of electron–phonon coupling strength. So we
can draw a conclusion that the influence of the interaction between the electron and
LO–phonon on the Rashba effect can be neglected.
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Fig. 4 The relation between polaron ground state energy E0, and spin-up(spin-down) splitting energy
E↑(E↓)with the longitudinal effective confinement length l2 at different coulomb bound potential β. They
are expressed by the full line, the dash dotted line and the dotted line, respectively

Figure 2 illustrates the ground state energy E0, the spin-up splitting energy E↑ and
the spin-down splitting energy E↓ as functions of the wave vector k with l1 = 0.2,
l2 = 0.4, α = 6 and aR = 0.01. It can be seen that the polaron energies are all
parabolic linearly increased with the increase of the wave vector. This is attributed to
the first term in Eq. (9) that the square of the wave vector is a positive value to the
energy. Therefore, the polaron energies will vary with the above changes. One can also
see from the figure that the energy spacing between spin-up and spin-down becomes
larger with the increase of the wave vector. From ESO = aRk3, we know that k3 is
proportional to ESO . Hence, the energy spacing will enhance with increasing wave
vector.

In Fig. 3, we plot the relational curves of the ground state energy E0, the spin-up
splitting energy E↑ and the spin-down splitting energy E↓ with the transverse effective
confinement length l1for k = 3, l2 = 0.6, α = 5 and aR = 0.05. Figure 4 presents
the influence of the longitudinal effective confinement length l2on the ground state
energy E0, the spin-up splitting energy E↑ and the spin-down splitting energy E↓ for
fixed k = 3, l1 = 0.2, α = 5 and aR = 0.05, respectively. From the two figures,
one can see that the polaron energies decrease when the transverse and longitudinal
effective confinement lengths increase. These can be attributed to the quantum size
effects. One can also see from them that the energy spacing between the spin-up and
the spin-down becomes larger with increasing transverse and longitudinal effective
confinement lengths. We can arrive at a conclusion that the influence of transverse and
longitudinal effective confinement lengths on the Rashba effect should be considered.
Comparing Fig. 3 with Fig. 4, we can see that the influence of the transverse effective
confinement length on the ground state energy is smaller than the longitudinal effective
confinement length.

In Fig. 1, 2, 3, 4, at the same position (same value of α, k, l1 and l2, respectively), we
find that the smaller the Coulomb bound potential is, the larger the polaron energy is.
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There is Coulomb bound potential between the electron and the hydrogen-like impurity
because of the existence of a hydrogen-like impurity in the center of an asymmetric
QD. Since the presence of the Coulomb potential is equivalent introducing another new
confinement on the electron, which leads to greater electron wavefunction overlapping
with each other, the electron–phonon interaction will be enhanced. In Eq. (9), we
know that the contribution of the Coulomb bound potential to the polaron energy has
a negative value. Hence, we can obtain the results mentioned above.

4 Conclusion

In conclusion, based on the LLP vibrational method, we investigate the influence of the
Rashba effect on the properties of the polaron in an asymmetric QD. It is found that the
ground state energy splits into two branches, that is, spin-up splitting energy and spin-
down splitting energy. At different Coulomb bound potentials, we discuss the relations
between the ground state energy with the electron–phonon coupling strength, the
wave vector, the transverse effective confinement length and the longitudinal effective
confinement length, respectively. The results show that the ground state energy is a
decreasing function of the Coulomb bound potential, the electron–phonon coupling
strength, the transverse effective confinement length and the longitudinal effective
confinement length. However, it is an increasing function of the wave vector.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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